NOTE ON CURVATURE OF FINSLER MANIFOLDS
ToMINOSUKE OTSUKI

In his paper [1], L. Auslander has proved some theorems on curvatur
of Finsler manifolds, but it seems to the author that the methods used
in his papar contains faults in some points. In this note, the author
will give, in connection with the Theorems 3.3, 3.4, 4.2 and 4.4 in [1],
remarks on the sectional curvature and the mean curvature of Finsler
manifolds and the relation between the metric connection of E. Cartan
and the connection of Levi-Civita of the induced Riemannian manifold on
a local cross section containing the lift of a geodesic of a Finsler manifold,
based on the general theory of affine connections of the space of tangent
directions in his paper [3].

1. We will use the notations in the author’s paper [3] in the follow-
ing. Let X be an n-dimensional differentiable manifold with suitable dif-
ferentiability which is necessary for our arguments.

Let {T(%), %, z} and {%B, X, =} be the tangent vector bundle of %
which will be simply denoted by 7(X) and its associated principal bundle,
Let {T(X)X T(®), T(X), z} and {8, T(X), =} be the induced bundles of
T(%) and its principal bundle by the projection map ¢ : T(¥)—% and let ,
and 7, be their induced bundle maps respectively. Let y': %——)R (the
real field) be the maps defined as follows :

For any be %, put b = c4(d), y = =z(d), then y is uniquely written
as y=y'(b)eb), where {e,(d), ---, e.(b)} is the frame at x ==z(b)E X which
defines the point #. Making use the canonical coordinates” for a local
coordinate system (U, #) = (U, u', -, u™) of ¥, we have

eb) = gz—‘—j (x)al, = % ()¢,

y =big, (h=(ad

Let § be the vector bundle which is the portion on T,(X) = T(X) — X of
{T(x) X T(X), T(X), 7}, then the bundle space of F is T(X) [ T.(X).

Let (X, L) be a positive regular Finsler manifold? and g be its metric
tensor of § whose components are locally given by

1 &°L%(u, £)

gifu, &) = 2 agar - (1.1)

D See (3], I, §3.
2) See [3], III, §25, that is, gisu,£) is positive definite everywhere.
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The components g;; of the tensor =°g of the induced vector bundle =¢%
with respect to its natural cross sections® are locally written as

é’u = S a’; a’}- (1. 2)

Let #’ be the differential forms on B which are the components of the
7° @ n*-image of the identity transformation dp* of 7(%X) and are locally
written as ¢’ = b/du’. We will denote also the differential forms ¥ 6’ on
B by the same symbols 6°.

Let I' be the metric connection of E. Cartan with respect to (X, L).

Then, the corresponding connection T for % is locally given by the dif-
ferential forms w{ on -7(U) — U as

wl = I'ddu* + C/, dE¥, (1.3)
which are also written as
w! = I'*J, du* + C%H D2, (1. 4)
where
r*=rs — Ch Im &, (1.5)
DE* = dE* + o} BN (1.6)

Let ¢/ be the differential forms on 530 = B —B for the induced connection

s F which are locally written as
6 = b,{(dai‘ + wh af). 1.7

Let £/, ©{ be the torsion forms and the curvature forms of the affine con-
nection (F, dp) in (U, #), where dp = (* @ «*) dp, and let &/, ©! be the
torsion forms and the curvature forms of the induced affine connection
z¢(I", dp)”. Then, &’ and £ are written as

&= wl N dut = — C/du’ /\ DEF, (1.8)

J
i

[

dwi + wi /\ of

e dul AN dut + P du® N DE* + % Sie DE* A D *

Dol ol

R,
- Rine du ANdu® + L Pl du" N DI* +% L2Scw DI"ADI, (1.9)

3) See [3], I, §2.
4) See [3], I, §3.
5) See [3], I, §1.
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where [’=§'/L®, 6’ and 6{ are also written as

6’ = do’ + 0] N 0' = — Cho' N Dy* = b] 1, (1.10)
0! = dof + 6L /N 0F = bl 25 af
: =%E1jnk 6"/ 6* + ﬁjm; 0" N\ Dy* + % §ijmc Dy" N\ Dy*

=%IE‘M 6" A 6% + LP 0"\Df*+ —%L? St DF*ADFY, (11.1)

where f/=y’/L and L also denotes the function L -7 on B—B. Eﬁhk, ﬁ;’,,,k,
:S:’,,,, are the components of the z"-images of the curvature tensors of the
first, second and third kinds” with the local components R/, Pihi Sihx
respectively and a’k correspond to C/,.

Now, for any curve C given by f: I= [0, 1]— T4X) such that C=:C
is of class C', we can define its length s by the integral along C

1 1
s = S (g 00 67)7 (1.12)
0
The author proved the following theorems.

Theorem 1.2 In order that a curve C of class C* in ToX) has its
length relative minimum as a sensed curve such that its image in X
under the projection To(X) — X has two fixed end points, it is necessary
that the following equations hold good along C :

A2 401 % L T T Dy =0 (1.13)
ds ¥ds wgs oY ’ '
—~ ¢ J
Cijk % % =0, : (1- 14:)

Furthermore, in order that it is so in a family C. of class C*including
C=C,, it must be

(260’15 = 0 (1.15)
where 6 are the forms corresponding to the variation Je.

Especially, when C is an a-curve®, the terms with coefficients Clu

6) See, [3], I, §6 and III, §24. Our symbols for the curvature tensors are slightly
different from the ones of E.Cartan [4], because the theory in [3] is treated in
a more general standpoint.

7) We also call them the basic, mixed and firmamental curvature tensors.

8 See [3], III, §32 and §3. This theorem is slightly modified from the one in
[3].

9) See [3], I, §7, that is, it is a curve piecewise composed of the tangent vectors
of curves in X or arcs in tangent spaces at some points of X.
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in (1. 13) vanish and (1.14) is satisfied automatically because I" is the
metric connection of E. Cartan. Thus we have

Theorem 2. In order that a proper a-curve of class C* has its
length relative minimum as a sensed curve in ToX) such that its image
in X under the projection has two fixed end points, it must be that C=
<C is a geodesic arc in the Finsler manifold (X, L).

Furthermore, the author obtzined the formula of the second variation
for the family C, of curves in T4(%) containing C = C, such that if is the
lift of C=<C in TX) and C is a geodesic arc in (X, L) :

s = (68" + 85 9]}

V2 DE® Dg*
+ So e ds ds

+ ﬁsiin_l Ei Ej )% dt, (1. 16)

where we consider the equation only on the submanifold of the points in

B at which gy = 0y and 3’ = ). If all C. are a-curves, then the above
equation is written as!V:

— — — 1 -1 —-— — -~ —
o°s = [o0™ + ¢ 6”], +S (E 6% 6% + R,y 0 a’) ds dt. (1.17)
0o \z=1 dt
2. For any 2-dimensional plane E in the fibre over any point
y € To(X) of the vector bundle ¥, we define the basic sectional curvature
R(y, E) and the firmamental sectional curvature S(y, E) -with respect to

Fby

- R(Jhk o' w! " w® 2.1
R(y E) = — Rt ot (2.1)
and
i J 40 k
S(y E) = — S LU0, (2.2)

where {v S A — g_u‘} is a base of E and A(v, w) = gi; v v/ g

ou’
w" w* — (g v' w’)’, that is the square of the area of the parallelogam made
by v and w in the fibre over y of ¥ When E contains y, it is clear that
S(y, E) vanishes'®, ,
Now, let E,, a =1, 2, -, #— 1, be a set of 2-dimensional planes

10) See, [3], III, §33.

1) This formula is equivalent to the first one in the proof of Theorem 4.3 in [1]
but the terms in connection with Py must vanish since the metric connection of E.
Cartan is a-proper, that is £ CyJi =0, & Pipr =0 by Theorem 25.2 in [3], IIL

12) Strictly speaking, let y be the natural cross section of & defined in [3], I, §3,
that is, u(y)={(y,y). Here y is written in place of n(y).



NOTE ON CURVATURE OF FINSLER MANIFOLDS 111

over y, containing Y(y) and being mutually orthogonal, then we can define
the mean curvature at y by

M) = -7 3 R(3, Ba). (2.3)

For, if we take a unit vector v orthogonal to %(») in each E,, then we get
(@)

M(J’) = _1—‘ > R g:(g: «E‘ gk = = R sni g"‘ EE. (2.4)

1
(n—1)L*% (n—1)L*

This equation shows that M(y) is a scalar field of .
Now, we will prove a theorem which is a generalization of S. B.
Myers’ Theorem [5].

Theorem 3. A complete n-dimensional positive regular Finsler
manifold (%, L) whose mean curvature M= e° everywhere for some posi-
tive constant e is compact and has diameter less than or equal to =/e.

This theorem was proved firstly by L. Auslander [1] but his
mean curvature is defined by means of some local cross sections of
% and so it appers to the author that the non fine conditions (a) and
(b) in connection with the assumption for his mean curvature in this
theorem were written in [1]. Furthermore, generally speaking, the con-
cept of geodesic coordinates along a geodesic is essentially different from
the one in Riemannian manifolds, that is to say, such coordinates can
be considered only in the Finsler manifolds which satisfy some condi
tions.’® In order to prove this theorem, it may be desirable to do not use
such coordinates. But we can prove this theorem analogously to those in
[1] as follows:

Proof of Theorem 3. Let us suppose that diameter of (¥, L)>n=/e.
Then, there exist two point x,, x; € ¥ and a geodesic are C joining x, to
x, such that dist (x,, ;) = length of C =1[> z/e, because the Finsler
manifold (¥, L) is complete. For any family C. of class C* joining x, to
%;, in which C = C,, using only the orthonormal frames such that y’ =
d1, we obtain from (1. 17) the equation

1/m-1_ _ D~ o
o*Jel, = 18° J(C)l, = SD(% 0% 0 + Ry 0° af) -gj— dt, (2.5)

where J(C.) = length of C..
On the other hand, (1. 16) is written as

de’ + 6l N6 = —Cd 0' AN\ 0F

13) See, Theorem 1 in [2], which is also true for n=3. It will be shown in a note.
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for the above mentioned frames, because Dy* = ¢% y' = g%, Hence, for
the family C. which is the lift of C,, we get
d§’ — 30° + 645 — §lg" = — C/s (6" B8 — " 6°
= anﬂ 6‘/ 05:

because we have 6% = 0 along each C. and a’k ¥ = a{a = 0. Along C,,
we have 0, = 0 since C is a geodesic arc, hence the above equations follow

d7* + 655° — g% ds = 0,
{ # s (2. 6)

dg" — 87" = 0,

For each fixed a, we can take a family C. such that we have along C
(@)

hence we get from (2. 6)

0 ds = df* = "3% cos TR ds, Phds = 057" = 0.

The second variation [6* J.].-, with respect to C. is written as
(e}

1ty 2 -
[6*J(CH] = r‘}s"’g (i 08> Z2 4 R una sin’ —) ds
@) " e=0 a\/ {

1 2 9

" 4 . o TS x >y

= erS sin® 2> (—- + Rogne ) ds.
a / A

Summing over all &, we get by (2. 4)

n—1 i — — 2 ~
S (e = eS sin“—f—((’—’% +35 Rmm) ds

a= l

= 5 5 2 TS ((n l_l)"r ]_2 ~

=t 5 PO

/ L

= S (n—1) sin® ‘Lls (Tl—z — M(y))ds

2
By our assumption, we have 7;«_ < ¢* £ M(y), thus it must be
2 [62 ]((gs)] gm0 < 0.

Hence we have [6%] (C:)]ea0 << 0 for at least one «. C is not relative
(@)

minimum in this family C.. This contradicts to our assumption that dist
(@)
(%, ;) = length of C.
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3. In this section, we shall investigate the relation between L. Aus-
lander’s definition and the author’s one of mean curvature.

Let X, be a submanifold in T4(X) which is a local cross section of B
over =(%;) and let ¢; : ¥, = Ty (X) be the imbedding map. It is clear that

the induced affine connection (I'y, 4n) = o*(I", db) of the induced vector
bundle $; =% is metric with respect to the induced metric tensor g, of
%, from g, where +n = ((z+¢)° ® (z+a)*) dp.'”. Since % is a local cross
section, the natural homomorphism #: T(X;) — $ = {8, X1, =1} given by

X = (z-0) ((zo0)x X1), X € T(%,) 3.1)

is an isomorphism. Using local coordinates u' = u'(v), &' = £'(v), the
homomorphism % is written generally as

j
h’?\_l:g_u_i(r.‘]):a_' (3.2)
B v

Furthermore, we have
dp, = (BS @ 1) v = the identity transformation of 7T'(%,)™.

And so, the affine connection A¥(I';, «n) = (h¥I;, dp,) of T(¥;) is an
ordinary metric affine connection with respect to the metric tensor g in-
duced from g; by % Accordingly, we may identify §, with 7(%,) and (I,
yn) with A3#(I";, ). Let us denote the restrictions of ¢°, Dy’, 6/ on
F7(4(%)) C B by =, ¢, =l

On the other hand, let {®,, X;, =;} be the associated principal bundle

of the tangent bundle 7(X,), then % induces a natural isomorphism #; :
B; — 771(4(%,)) such that

h(eddr)) = (z-01) (ezp hul(by))). (3.3)

Now, let f, be the metric connection of the vector bundle %, whose
induced connection h# J:] is the connection of Levi-Civita of the induced
Riemannian manifold (X,, g)'®. We denote the differential forms on
77(4(X,)) for the metric affine connection (I, yr) by 77, Zi. It is clear
that we may also consider =7, =] and @/, @} as differential forms on B,. As
is well known, _F; is uniquely determined by the conditions that I is
metric and symmetric and has no torsion. Hence we have

14) See (3], III, §31, Prop/o\sition 31.1.
15) On the definition of h™ for a bundle map %4, see [3], I, §1 and III, §31.

Auh k
oul Qu
G0t Gv dviR dvi,

16) g is locally written as g = gn(u(), £(2))
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dgy + 7t du + =5 du = O, (3.4)
dgy + 75 gy + 7180 = 0, (3.5)
2 =7 = bl dut'. (3.6)

From (1. 10), the equations of structure of I'; are written as

dz’ + mi Art = —Chr* A gt ‘
3.7

drl + sl Nz = % Eijhk ANt E’M AN —;—5,’,“ " Ng*
and the ones of I'; are written as
dn? + ,::'f/\r:1 = 0,
{d;z +HAR = 5 Rbur A, (3.8)

where IE’M are the components of the Riemannian curvature of ]-"1. Then
we get from the first equations of (3. 7) and (3. 8)

@ - Axt = Cha Agh
If we put
¢t = Li’ (3.9
and substitute them into the above equations, we get
FH - = Cle LE o* A,

hence by a E. Cartan’s lemma 7{ can be written as

11

7

.

{ =l — ChLia"+ Fha", (3. 10)
Fo—Fdi=0 (3.11)
On the other hand, we get from (3. 4) and (3. 5) the equations :
& — 2Dz + @ — 25)gu = 0,

and substituting (3. 10) into these equations, we get

Ft;n + Fﬂn = E{Jk Lﬁ + ajtk sz. = Zaﬂc Lﬁ- (3- 12)
From (3. 11) and (3. 12), we obtain

Fuy = ahk L+ Ejhk L — Etjk Li (3.13)
or

Fihj = Cihk L’j + thk L? - Cuk é’nm Lfn (3 13')

17) In this case, we may consider u! as local coordinates of x5
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Thus 7{ can be written as

=l + a}x L:z* — Cou gmLE =" (3.14)
Now, if we use only the orthonormal frames of &, such that y' = i, then
we have the relations

P =ak=Lkx, Ly=0, Cn =0. (3.15)
Hence from (3.14), we get

78 = nf + Cfu L2 " = (LE+Clu LI,
d7t = dab + d(Cf LY A= + Gf, L2 dn, (3.16)
= &5 +Ch L= —Cup Ly =) Al + Clu LT %),

where greek indices a, 3, 7, - runover 1,2, -, n—1.
Now, we assume that %, contains the lift C in TX) of a geodesic
arc C of the Finsler manifold (%, L) Along C, we have 6% = 6% = 0,
hence it follows that
L= 0 on z7(C). 3.17)
Accordingly, at any point of =7%(C), (3.16) is written as
S =ab =L

d7f = d=f + CF dL2 N7

AT = (& + Cf Ly 2 — Coop Ly =) AL
Hence, at any point of Z~(C), we have
08 = 08 + CLo AL A" + (CFo Ly — Cop LB LY 2° A A7
and

9'81 = % R;Iﬂhlc :h/\zk + P:xﬂhm m h/\ + 5 Su it ;L,t‘nh/\_[k

Furthermore, if we put dL% = M ', then M® = 0 at any point of z7(C)
because we have dL2? = 0 along = '(C) and z7'(C) is given by §* =0, ¢%=
0. Hence, it must hold at any point of 7~ (C)

Enanj‘ = Ensrﬂ + ﬁnﬁ'nk Lk + Eyﬂm M:’ = «Euﬁuﬂ
since ﬁ;",.k = M% = 0. Thus, we obtain the following
Theorem 4. For any local cross section X, of T(X) which contains
the lift C of a geodesic arc C of the Finsler manifold (X, L), the sec-

tional curvatures R(y, E) and R (3, E) with respect to I' and ]:1 for any
two dimentional plane E containing the tangent divection y at any
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point of C coincide with each other.
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