A NOTE ON GALOIS EXTENSIONS OF DIVISION RINGS ## NOBUO NOBUSAWA The purpose of this note is to prove a generalization of one of the theorems in Galois theory of commutative fields. Let a division ring P be Galois and locally finite¹⁾ over its subring Φ . If Λ is a division subring of $V(V(\Phi))$ containing Φ such that it is a Galois extension of Φ and if Σ is an arbitrary division subring of P containing Φ , then $\Sigma \Lambda$, the division subring of P generated by Σ and Λ , is an outer Galois extension of Σ and its Galois group is isomorphic to that of $\Lambda/\Sigma \cap \Lambda$. In § 1, it will be proved that, if a division ring P is locally finite over a division subring \emptyset , then P is also locally finite over $V(V(\emptyset))$. In § 2, we shall prove that if P is Galois and locally finite over \emptyset then P is also Galois over any division subring which is finite over \emptyset . And finally in § 3, the above-mentioned theorem will be proved. 1. Throughout the present note, let P be a division ring and \emptyset a division subring of P. For any non-zero element ρ of P, we denote by $\widetilde{\rho}$ the inner automorphism induced by $\rho: \widetilde{\rho} = \rho_l \, \rho_r^{-1}$. Similarly $\widetilde{\Gamma}$ will mean the totality of inner automorphisms induced by non-zero elements of Γ where Γ is a subset of P. For a subring Σ of P, $(\widetilde{\rho})_{\Sigma}$ and $\widetilde{\Gamma}_{\Sigma}$ mean the restrictions of $\widetilde{\rho}$ and $\widetilde{\Gamma}$ onto Σ . $V(\Sigma)$ means as usual the centralizer of Σ in P. Then $\widetilde{V(\psi)_{\Sigma}} \, P_r$ is naturally a P_r -right module. **Lemma 1.** Let $\alpha_1, \dots, \alpha_n$ be non-zero elements of $V(\Phi)$. Then $(\widetilde{\alpha}_1)_{\Sigma}$, \dots , $(\widetilde{\alpha}_n)_{\Sigma}$ are linearly right-independent over P, if and only if $\alpha_1, \dots, \alpha_n$ are linearly right-independent over $V(\Sigma)$. Proof. If $\alpha_1, \dots, \alpha_n$ are linearly right-dependent over $V(\Sigma)$, we have a non-trivial relation $\sum_{i=1}^n \alpha_i \pi_i = 0$ with $\pi_i \in V(\Sigma)$. Then $\sum_{i=1}^n \tilde{\alpha}_i \tilde{\alpha}_i \alpha_{ir} \pi_{ir} = 0$, where we put $\tilde{\pi}_i = 0$ in case $\pi_i = 0$. Since $(\tilde{\pi}_i)_{\Sigma} = 1$, we have a non-trivial relation $\sum_{i=1}^n (\tilde{\alpha}_i)_{\Sigma} (\alpha_i \pi_i)_r = 0$, which implies that $(\tilde{\alpha}_1)_{\Sigma}, \dots, (\tilde{\alpha}_n)_{\Sigma}$ are linearly right-dependent over P_r . Conversely suppose that $(\tilde{\alpha}_1)_{\Sigma}, \dots, (\tilde{\alpha}_n)_{\Sigma}$ are linearly right-dependent over P_r . Then we have their non-trivial relations and let one of the shortest relations among them be, for instance, ¹⁾ As to notations and terminologies used in this note we follow [3] and [4]. $\sum_{i=1}^{s} (\tilde{\alpha}_{i})_{\Sigma} \ \rho_{ir} = 0 \text{ with non-zero } \rho_{i} \in P. \text{ From this we have } \sum_{i=1}^{s} (\alpha_{il})_{\Sigma} \rho'_{ir} = 0 \text{ where } \rho'_{i} = \alpha_{i}^{-1} \ \rho_{i}. \text{ In the above relation we may assume } \rho'_{1} = 1 \text{ from the beginning. Then we shall show that each } \rho'_{i} \text{ is in } V(\Sigma). \text{ For, if not, } \rho'_{j} \notin V(\Sigma) \text{ for some } j, \text{ that is, there exists an element } \sigma \text{ of } \Sigma \text{ such that } \sigma \rho'_{j} \neq \rho'_{j} \sigma. \text{ Clearly we have } \sum_{i=1}^{s} (\sigma_{r}(\alpha_{ii}))_{\Sigma} \rho'_{ir} - \sum_{i=1}^{s} (\alpha_{il})_{\Sigma} \rho'_{ir} \sigma_{r} = 0, \text{ whence we have } \sum_{i=2}^{s} (\alpha_{ii})_{\Sigma} (\sigma_{r} \rho'_{ir} - \rho'_{ir} \sigma_{r}) = 0. \text{ Thus we obtain a shorter nontrivial relation } \sum_{i=2}^{s} (\alpha_{ii})_{\Sigma} \theta_{ir} = 0 \text{ with } \theta_{i} = \sigma \rho'_{i} - \rho'_{i}\sigma, \text{ being a contradiction. Accordingly we have shown } \rho'_{i} \in V(\Sigma). \text{ Then } 0 = \sum_{i=1}^{s} (\alpha_{ii}\rho'_{ir})_{\Sigma} = \sum_{i=1}^{s} (\rho'_{ii}\alpha_{ii})_{\Sigma}, \text{ that is, } \sum_{i=1}^{s} \alpha_{i} \rho'_{i} = 0 \text{ with } \rho'_{i} \in V(\Sigma), \text{ which completes our proof.}$ **Lemma 2.** Let Σ be a subring of P containing Φ . Then $[\Sigma : \Phi]_t \ge [V(\Phi) : V(\Sigma)]_r^2$. Moreover, if $V(V(\Phi)) = \Phi$, equality holds in the above relation. *Proof.* Let \mathfrak{M} be the set of all homomorphisms of \emptyset_t -module Σ into P. Then \mathfrak{M} is a P_r -right module and $[\Sigma:\emptyset]_t=[\mathfrak{M}:P_r]_r$. Clearly $\mathfrak{M}\supseteq \widetilde{V(\emptyset)}_\Sigma P_r$. Since $[\widetilde{V(\emptyset)}_\Sigma P_r:P_r]_r=[V(\emptyset):V(\Sigma)]_r$ by Lemma 1, we have $[\Sigma:\emptyset]_t\geqq [V(\emptyset):V(\Sigma)]_r$. If, moreover, $V(V(\emptyset))=\emptyset$, \mathfrak{M} is the topological closure of $\widetilde{V(\emptyset)}_\Sigma P_r$ by Jacobson's density theorem [1, p. 31]. Then $[\Sigma:\emptyset]_t=[\mathfrak{M}:P_r]_r=[\widetilde{V(\emptyset)}_\Sigma P_r:P_r]_r=[V(\emptyset):V(\Sigma)]_r$. **Theorem 1.** If P is locally finite over Φ , then P is also locally finite over $V(V(\Phi))$. *Proof.* Let ψ_0 be $V(V(\psi))$ and $\psi_0(\alpha_1, \dots, \alpha_n)$ a subring generated by ψ_0 and a finite number of elements $\alpha_1, \dots, \alpha_n$ of P. Then $\infty > [\psi(\alpha_1, \dots, \alpha_n) : \psi]_t \ge [V(\psi) : V(\psi(\alpha_1, \dots, \alpha_n))]_r = [V(V(\psi(\alpha_1, \dots, \alpha_n))) : V(V(\psi))]_t = [\psi_0(\alpha_1, \dots, \alpha_n) : \psi_0]_t$ by Lemma 2.³⁾ 2. When a subring ψ of P is the fixring of an automorphism group of P, that is, when ψ consists of all the elements left invariant by an automorphism group of P, we say that P is Galois over ψ or P/ψ is Galois. ²⁾ Provided that we do not distinguish between two infinite dimensions. ³⁾ Note that $V(\Phi(\alpha_1, \dots, \alpha_n)) = V(\Phi_0(\alpha_1, \dots, \alpha_n))$ and $V(V(\Phi(\alpha_1, \dots, \alpha_n))) \supseteq \Phi_0(\alpha_1, \dots, \alpha_n)$. **Theorem 2.** Let P/Φ be locally finite and Galois. Then P/Σ is Galois for each subring Σ of P containing Φ which is finite over Φ . *Proof.* We may assume here $P \neq \Sigma$. Let ρ be an arbitrary element of P not contained in Σ , and Σ' a subring of P generated by Σ and ρ . We denote by \mathfrak{M}' the set of all homomorphisms of ϕ_{i} -module Σ' into P. \mathfrak{M}' is a Σ'_{r} - P_{r} two-sided module. Then, by Jacobson's density theorem, $\mathfrak{M}' = \mathfrak{G}_{\Sigma'} P_r$ where \mathfrak{G} is a regular automorphism group of P/Ψ . Similarly let \mathfrak{M} be the set of all homomorphisms of Σ_t -module Σ' into P. Clearly $\mathfrak{M}'\supseteq \mathfrak{M}$. Since \mathfrak{M}' is a completely reducible Σ'_r - P_r two-sided module, \mathfrak{M} is also a completely reducible Σ'_r - P_r two-sided module. Now we shall show that $\mathfrak{M} = (\mathfrak{G}_{\Sigma'} \cap \mathfrak{M})P_{r}$. Suppose, on the contrary, $\mathfrak{M} \neq (\mathfrak{G}_{\Sigma'} \cap \mathfrak{M})$ $\mathfrak{M})P_r$. Then \mathfrak{M} contains an irreducible $\Sigma'_r P_r$ two-sided submodule \mathfrak{N} which is not wholly contained in $(\mathfrak{G}_{\Sigma'} \cap \mathfrak{M})P_r$. As \mathfrak{N} is contained in $\mathfrak{M}' = \mathfrak{G}_{\Sigma'}P_r$, a similar argument as in the proof of [4, Lemma 3] proves that $\mathfrak{N} = T_{\Sigma'}P_r$ where T is an element of \mathfrak{G} . This implies that $\mathfrak{N} = T_{\Sigma'}P_r$ $\subseteq (\mathfrak{G}_{\Sigma'} \cap \mathfrak{M})P_r$, which is a contradiction. Thus, setting $\mathfrak{G}_{\Sigma'} = \mathfrak{G}_{\Sigma'} \cap \mathfrak{M}$ with a subgroup \mathfrak{P} of \mathfrak{G} , we have $\mathfrak{M} = \mathfrak{P}_{\mathbf{Z}'} P_r$. Naturally \mathfrak{P} is identical on Σ . We shall show $\rho \mathfrak{H} \neq \rho$. In fact, $\rho \mathfrak{H} = \rho$ implies $\mathfrak{H}_{\Sigma'} = 1$, that is, $\mathfrak{M}=1P_r$. But this contradicts $[\mathfrak{M}:P_r]_r=[\Sigma':\Sigma]_t>1$. Since ρ is an arbitrary element of P not contained in Σ , we have proved P/Σ is Galois. As is easily seen from the above proof, we may restate Theorem 2 in the following way. **Theorem 2'.** Let P/Ψ be Galois and locally finite, and let \mathfrak{G} be a regular automorphism group of P/Ψ . If Σ is an intermediate subring of P/Ψ with $[\Sigma:\Psi]_{\iota} \subset \infty$ then there exists a subgroup \mathfrak{P} of \mathfrak{G} such that Σ is the fixring of \mathfrak{P} . We may remark here the following: Let P/Φ be Galois. Then Theorem 2 shows that the assumtions (α) — (δ) introduced in $[2; \S 3]$ are fulfilled when and only when P is locally finite over Φ and $[V(\Phi): V(P)] < \infty$. - 3. For subrings Σ and Γ of P, we denote $V(V(\Sigma))$ by Σ_0 and denote by $\Sigma\Gamma$ the subring of P generated by Σ and Γ . - **Lemma 3.** Let P/Φ be Galois and locally finite and let Σ be a subring of P containing Φ such that $[\Sigma \Phi_0 : \Phi_0]_t < \infty$. Then $\Sigma_0 = \Sigma \Phi_0$, and Σ_0/Σ is Galois and locally finite with Galois group which is isomorphic to that of $\Phi_0/\Phi_0 \cap \Sigma$. *Proof.* Since $V(\Sigma_0) = V(\Sigma \Phi_0)$, we obtain $\Sigma_0 \subseteq V(V(\Sigma \Phi_0))$ and Lemma 2 shows $\infty > [\Sigma \psi_0: \psi_0]_t = [V(\psi_0): V(\Sigma \psi_0)]_r = [V(\psi_0): V(\Sigma_0)]_r = [\Sigma_0: \psi_0]_t$. Hence we have $\Sigma_0 = \Sigma \psi_0 = \psi_0(\alpha_1, \dots, \alpha_n)$ with some $\alpha_1, \dots, \alpha_n$ of Σ . Then $P/\phi(\alpha_1, \dots, \alpha_n)$ is Galois by Lemma 2, further $V(V(\phi(\alpha_1, \dots, \alpha_n))) = \Sigma_0$ implies that $\Sigma_0/\phi(\alpha_1, \dots, \alpha_n)$ is and hence Σ_0/Σ is outer Galois. Since the Galois group of $\Sigma_0/\phi(\alpha_1, \dots, \alpha_n)$ is locally finite, that of Σ_0/Σ is so, whence Σ_0 is locally finite over Σ_0 . Further, noting that Σ_0 is the topological closure of Σ_0 where Σ_0 is the Galois group of Σ_0/Σ is the topological closure of Σ_0 where Σ_0 is the Galois group of Σ_0/Σ . In virtue of this fact, we shall prove that the Galois group of Σ_0/Σ is isomorphic with that of Σ_0/Σ . Evidently Σ_0 is an automorphism group of Σ_0/Σ by [4, Theorem 4]. Moreover, recalling that $\Sigma_0 = \Sigma_0/\Sigma$ is easy to see that $\Sigma_0 = \Sigma_0/\Sigma$ is a continuous isomorphism of the compact group Σ_0 into the compact group Σ_0 . Hence Σ_0 is isomorphic to Σ_0 is into the compact group Σ_0 . **Lemma 4.** Let P/Ψ be Galois and locally finite. Then, for any subring Σ of P containing Ψ , $\Psi_0 \Sigma/\Sigma$ is outer Galois and locally finite with the Galois group isomorphic with that of $\Psi_0/\Psi_0 \cap \Sigma$. Since P/Φ_0 is locally finite by Theorem 1, $\Phi_0 \Sigma = \bigcup_{\nu} \Gamma_{\nu}$ where Γ_{ν} are all the subrings of the form $\Gamma_{\nu} = \Psi_0(\sigma_1, \dots, \sigma_n)$ for some $\sigma_i \in \Sigma$. Put $\Sigma_{\nu} = \Gamma_{\nu} \cap \Sigma$. Then it is easy to see that $\Gamma_{\nu} = \emptyset_0 \Sigma_{\nu}$ and $\Sigma_{\nu} \cap \Psi_0 = \Sigma \cap \Psi_0$. If T is an element of the Galois group \mathfrak{P}_0 of $\Psi_0/\Psi_0 \cap \Psi_0$ Σ then, as is seen from the proof of Lemma 3, T can be uniquely extended to an element $T^{(\nu)}$ of the Galois group $\mathfrak{D}^{(\nu)}$ of $\Gamma_{\nu}/\Sigma_{\nu}$ and $\mathfrak{D}_{\Phi_0}^{(\nu)} = \mathfrak{D}_{0}$. Now if $\Gamma_{\nu} \subseteq \Gamma_{\mu}$ then $\Gamma_{\nu}T^{(\mu)} = (\mathscr{P}_0T)(\Sigma_{\nu}T^{(\mu)}) = \mathscr{P}_0\Sigma_{\nu} = \Gamma_{\nu}$, that is, $T_{\Gamma_{\nu}}^{(\mu)} = T^{(\nu)}$. Thus we can define an automorphism $T^{(0)}$ of $\psi_0 \Sigma$ in the following way: $\rho T^{(0)} = \rho T^{(v)}$ if $\rho \in \Gamma_v$. We denote here by \mathfrak{S}' the totality of these extended automorphisms of automorphisms in \mathfrak{H}_0 . Then evidently $(\mathscr{O}_0 \Sigma) \mathfrak{S}'$ = $(\bigcup \Gamma_{\nu}) \otimes' = \bigcup \Gamma_{\nu} = \emptyset_0 \Sigma$ and the fixring of \otimes' is $\bigcup \Sigma_{\nu} = \Sigma$. Clearly $V(\Sigma) = V(\Phi_0 \Sigma)$, and hence $\Phi_0 \Sigma / \Sigma$ is outer Galois. Noting that \mathfrak{S}' is identical on Σ , we readily see that \mathfrak{S}' is a locally finite group of $\Phi_0\Sigma/\Sigma$, whence $\psi_0 \Sigma / \Sigma$ is locally finite [4, p. 43] and the Galois group \mathfrak{S} of $\psi_0 \Sigma / \Sigma$ is the topological closure of \mathfrak{S}' [4, Theorem 4]. Accordingly $\psi_0 \mathfrak{S} =$ ψ_0 and $\Gamma_y \mathfrak{S} = \Gamma_y$, and so our assertion will be easily seen by considering the mapping $S \to S_{\Phi_0}$ $(S \in \mathfrak{S})$. (In fact, \mathfrak{S}' coincides with \mathfrak{S} .) ⁴⁾ See [1, Proposition 7.6.3]. Cf. also [2], [3] and [4]. ⁵⁾ See [4, p. 43]. Finally we shall prove the following: **Theorem 3.** Let P/Φ be Galois and locally finite. If Λ is a subring of Φ_0 containing Φ , and Λ/Φ is Galois and if Σ is any subring of P containing Φ , then $\Lambda\Sigma/\Sigma$ is outer Galois and locally finite with the Galois group which is isomorphic to that of $\Lambda/\Lambda \cap \Sigma$. *Proof.* Noting that Λ is normal over Φ as a subring of Φ_0 by [4, Theorem 5], our assertion will be easily seen from the proof of Lemma 4. ## REFERENCES - [1] N. JACOBSON, Structure of rings, New York, (1956). - [2] T. NAGAHARA and H. TOMINAGA, On Galois theory of division rings, Math. J. Okayama Univ., 6 (1956) 1—26. - [3] N. NOBUSAWA, An extension of Krull's Galois theory to division rings, Osaka Math. J., 7 (1955) 1-6. - [4] _____, On compact Galois groups of division rings, Osaka Math. J., 8 (1956) 43-50. DEPARTMENT OF MATHEMATICS, OSAKA UNIVERSITY (Received December 2, 1957)