A NOTE ON GALOIS EXTENSIONS OF
' DIVISION RINGS

NoBuo NOBUSAWA

The purpose of this note is to prove a generalization of one of the
theorems in Galois theory of commutative fields. Let a division ring P
be Galois and locally finite® over its subring @. If A is a division subring
of V(V(#)) containing ¢ such that it is a Galois extension of ¢ and if ¥
is an arbitrary division subring of P containing #, then X.l, the division
subring of P generated by ¥ and ., is an outer Galois extension of ¥
and its Galois group is isomorphic to that of A/3 N A.

In § 1, it will be proved that, if a division ring P is locally finite
over a division subring #, then P is also locally finite over V(V(#)). In
§ 2, we shall prove that if P is Galois and locally finite over @ then P
is also Galois over any division subring which is finite over @. And
finally in § 3, the above-mentioned theorem will be proved.

1. Throughout the present note, let P be a division ring and @ a
division subring of P. For any non-zero element p of P, we denote by

p the inner automorphism induced by p : p = pip;'. Similarly T will
mean the totality of inner automorphisms induced by non-zero elements
of I where I' is a subset of P. For a subring Y of P, (p)s and [’y mean

the restrictions of p and I onto 3. V(Y') means as usual the centralizer
of ¥ in P. Then V(#):z P, is naturally a P,-right module.

Lemma 1. Let a,, -+, @, be non-zero elements of V(#). Then (@,)s,
woo, (@n)s are linearly vight-independent over P, if and only if ay, **+,a,
are linearly right-independent over V(X).

Proof. If ay, ***, «, are linearly right-dependent over V(X), we have
a non-trivial relatioﬂ 2 aysT; = 0 with m E V(;‘:). Then 2 ;l'g a'{ Ay T =

lem} t=1
0, where we put 7z; = 0 in case =; = 0. Since (%,)s = 1, we have a non-
trivial relation 3 (av)s (ai =) = 0, which implies that (a1)s, >+, (a.)z are
i=1
linearly right-dependent over P,. Conversely suppose that (a)s, -+, (@)
are linearly right-dependent over P.. Then we have their non-trivial
relations and let one of the shortest relations among them be, for instance,

1) As to nolations and terminologies used in this note we follow [3] and [4].
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8 F
‘Z‘I, (@)s pwr = 0 with non-zero p; € P. From this we have ‘2,: (aw)z pler=
0 where p; = ai' pi. In the above relation we may assume p’y = 1 from
the beginning, Then we shall show that each p'; is in V(X). For, if
not, p'y & V(X) for some j, thatis, there exists an element ¢ of ¥ such

$§ x
that o p’; 5~ p'; 0. Clearly we have > (oran))s p'e — 23 (aw)z p'iv6r = 0,
whence we have ‘2 (e12)z (0, p'v—p' ;) =0. Thus we obtain a shorter non-
trivial relation Z (@q)s 6 = 0 with 6 = o p'c — p'is, being a contradic-
i=2

tion. Accordingly we have shown py & V(Y). Then 0 = 1}; (aup's)s =

42:’ (p'wan)s, thatis, 2} ai p's = 0 with p’s € V(X), which completes our
= is1
proof. .

Lemma 2. Let X be a subring of P containing @. Then [Y : &),
= (V@) : V(X)),®. Moreover, if VI(V(¥)) = @, equality holds in the
above relation.

Proof. Let I be the set of all homomorphisms of #;-module ¥ into
P. Then M is a P,right module and [¥: @], = [WM: P.],. Clearly
M D V(&) P,. Since [V(@)s P,: P,), = [V(®): V(3)], by Lemma 1,
we have [Y: ¢}, = [V(@): V(3)]. If, moreover, V(V(®)) = &, M
is the topological closure of V(#)sP, by Jacobson’s density theorem [1,
p. 31]. Then [¥: @], = [M: P, = [V(@)s P, : P, = [V(@):
V(E)]n

Theorem 1. If P is locally finite over &, then P is also locally
Ffinite over V(V(®)).

Proof. Let @, be V(V(®#)) and @y(as, **+, an) a subring generated
by @, and a finite number of elements ay, ***, a, of P. Then oo > [@
(ar, =+, aw): @1, Z [V(@): V(#ay, -+, a))] = [V(V(¢(a), -, an))):
V(V(ON: = [@ay, ***, an): @) by Lemma 2.3

2. When a subring @ of P is the fixring of an automorphism group
of P, that is, when ¢ consists of all the elements left invariant by an
automorphism group of P, we say that P is Galois over ¢ or P/® is
Galois,

2) Provided that we do not distinguish between two infinite dimensions.
3) Note that V(@(e;, -, @) = V(lay, -, ) and V(V(a;, -, @) 2 Pofas,

e, @)
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Theorem 2. Let P/® be locally finite and Galois. Then P|XY is
Galois for each subring X of P containing @ which is finite over @.

Proof. We may assume here P 5= X. Let p be an arbitrary element
of P not contained in ¥, and X' asubring of P generated by X and p.
We denote by D' the set of all homomorphisms of #;-module X' into P.
M is a I',- P, two-sided module. Then, by Jacobson’s density theorem,
M = By, P, where @ is a regular automorphism group of P/®. Similarly
let I be the set of all homomorphisms of X, -module I’ into P. Clearly
I D M Since MW is a completely reducible I',-P, two-sided module,
M is also a completely reducible Y',- P, two-sided module. Now we shall
show that M = (B N M)P,. Suppose, on the contrary, M =* (G N
M)P,. Then P contains an irreducible X'-P, two-sided submodule R
which is not wholly contained in (& N M)P,. As RN is contained in
M' = Gy, P,, a similar argument as in the proof of {4, Lemma 3] proves
that ® = T P, where T is an element of &. This implies that N = Ty P,
C (G N\M)P,, which is a contradiction. Thus, setting Py = SN M
with a subgroup 9 of &, we have M=95 P,. Naturally 9 is identical on
Y. We shall show p9 = p. In fact, p = p implies sz = 1, that is,
9% = 1P,. But this contradicts [M: P,], = [X': ¥], > 1. Since pis an
arbitrary element of P not contained in ¥, we have proved P/ZX is Galois.

As is easily seen from the above proof, we may restate Theorem 2
in the following way.

Theorem 2'. Let P/¢ be Galois and locally finite, and let © be a
regular automorphism group of P|®. If X is an intermediate subring
of Plo with [X: @), { oo then there exists a subgroup 9 of & such
that ¥ is the fixring of O.

We may remark here the following : Let P/# be Galois. Then
Theorem 2 shows that the assumtions (a) — () introduced in [2; §3] are
fulfilled when and only when P is locally finite over @ and [ V(¢): V(P)]
oo,

3. For subrings Y and I' of P, we denote V(V(ZX)) by X, and denote
by XI' the subring of P generated by 2 and I.

Lemma 3. Let P/# be Galois and locally finite and let X be a
subring of P containing & such that [X¥y: Py). L oo, Then Xy= X,
and Xo] X is Galois and locally finite with Galois group which is isomor-
phic to that of ®y]d, M X.

Proof. Since V(X)) = V(X#,), we obtain ¥, € V(V(X %)) and
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Lemma 2 shows o > [3@: @), = [V(®,) : V()] = [V(#,):
V(X1 = [Yo: ®).. Hence we have 3, = Y ¢ = @ay, *+, a,) with
some aj, ***, a, of ¥. Then P/@(ay, -, a,) is Galois by Lemma 2,
further V(V(#(ay, -+, an))) = ¥, implies that 3,/#(ay, -, a,) is and
hence ¥,/3 is outer Galois.” Since the Galois group &' of Xy/d(ay, ***, a.
is locally finite, that of ¥,/Y is so, whence 3, is locally finite over X.%
Further, noting that ©'is the topological closure of ®'5 where ®' is the
Galois group of P/@(ay, **+, an) [4, Theorem 4], we readily see that
®y ©' = @,. In virtue of this fact, we shall prove that the Galois group
9 of X,/X is isomorphic with that of &/@, M X. Evidently o, is an
automorphism group of @ /# M X, and so Sg% is dense in the Galois
group £, of &,/®, M\ X by [4, Theorem 4]. Moreover, recalling that
o = @oar, *+, ay), it is easy to see that T — To, (T € D) is a con-
tinuous isomorphism of the compact group $ into the compact group 9.
Hence © is isomorphic to 9o, = ..

Lemma 4. Let P/¢ be Galois and locally finite. Then, for any
subring 3 of P containing @, @2 [X is outer Galois and locally finite
with the Galois group isomorphic with that of @y/PaM 2.

Proof. Since P/&, is locally finite by Theorem 1, #, X = KvJ r,

where I'y are all the subrings of the form I'y = &(a,, ‘-, o) for some
o€ 3. Put¥,=TI,NZX. Then it is easy to see that I, = #, ¥, and
SN @ =3XN&, If Tisan element of the Galois group 9, of @/®, N
Y then, as is seen from the proof of Lemma 3, T can be uniquely extended
to an element T of the Galois group ©* of I',/ X, and D¢, = Dy Now
if I'y © 'y then I'T™ = (%T) (¥,T*) = & X, =T, thatis, T = T,
Thus we can define an automorphism 7°® of ¢, X in the following way :
pT® =pTYif p e I',. We denote here by &' the totality of these ex-
tended automorphisms of automorphisms in $,. Then evidently (#,X)&'
= (y r,)s = kyj I', = @, Y and the fixring of &' is ky) Y, = X, Clearly

V(3) =V(#, Y), and hence ®,¥/Y is outer Galois. Noting that &' is
identical on ¥, we readily see that &' is a locally finite group of #%,Y/Y,
whence #,X¥/Y is locally finite [4, p.43] and the Galois group & of
#,X | X is the topological closure of &' [4, Theorem 4]. Accordingly #& =
@y and I''S = [°,, and so our assertion will be easily seen by considering
the mapping S — So, (S € &). (In fact, &' coincides with &.)

4) See [1, Proposition 7.6.3].Cf. also [2], [3] and [4].
5) See [4, p.43].
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Finally we shall prove the following :

Theorem 3. Let P/® be Galois and locally finite. If Aisa subring
of @, containing @, and A[® is Galois and if X is any subring of P
containing @, then AX[Y is outer Galois and locally finite with the
Galois group which is isomorphic to that of AJ]AMN X.

Proof. Noting that A is normal over @ as a subring of &, by [4,
Theorem 5], our assertion will be easily seen from the proof of Lemma 4.
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