ON GENERATING ELEMENTS OF GALOIS
EXTENSIONS OF DIVISION RINGS III

TAKAST NAGAHARA

In his previous papers [4], [5] and [3]", the author has investigated
mainly finding two conjugate generating elements of Galois extensions,
while in the present paper he will consider simple extensions®, and prove
that a division ring K which is Galois and finite over L is simple over
L if and only if either L is not contained in the center of K or K is
commutative. (Further Theorem 2 is proved for certain intermediate
subrings.) Moreover we may remark here in passing that the results in
3] are of no use for the present purpose.

Finally, as to notations and terminologies used in this paper we follow
the previous ones [4], [5] and [3].

1. Preliminaries.

Throughout this note, K will be a division ring and L a division
subring -of K. We set here V="V,(L) and 8= Vy(L,), where U is the
absolute endomorphism ring of K. Then we obtain the following:

Lemma 1. For a subset & of B, & islinearly independent over
V., if and only if it is linealry independent over K..

Proof. Let & be linearly independent over V,. If & is not linear-
ly independent over K,, then there exists a minimal (finite) subset ¥ =
{a, »+, a,} of & which is linearly dependent over K,. Hence there

k3
holds a; = 3] aya;, with some a;€ K (i =2, -+, n). Clearly there exists
1=2
some a;(j >>2) which does not belong to V, that is, there exists an
element 6 L such that a;b 7~ ba; Since ay(i=1,2, «-, n) are in B,
we have 0=a,—b,a;b;' = ‘E ala, —b.a,b7") = 120 ai(a;—bab™),. But,
as (a,—ba;b™"), 5~ 0, this contradicts the minimality of ¥, whence & is
linearly independent over K,. The converse is trivial.

Corollary 1. Let M, N be arbitrary K,.-, V-submodules of A and
B respectively. Then there hold the following facts :

1) Numbers in brackets refer to references cited at the end of this paper.
2) K is said to be simple over L if K=L[k] with some & ([3, p. 89]).
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(1) [Vg(L): V.1 < [M: K.

(2) N :V,]=[RNK.: K] and Vyu (L) =N

Proof. (1) and the first part of (2) are easy consequences of Lemma
1. Thus, it suffices to prove the latter part of (2). Let N = >ipa.V..

If there exists some f#= ﬁa‘. a.= Vg, (L)\R, then some of a’s, say
a;, is not in V. Hence ti:ére exists an elment ¥ in L such that a0~
ba. And o0 =b,3— @b, = 3 a(ba,—ab), which contradicts Lemma 1.
As evidently Vg K,(Lr) -] ER,‘_;)ur proof is complete.

Corollary 2. Let K be Galois over L, and & a group of auto-
morphism with L as its fixving. Then there hold the following facts :

(1) [BV,:V.]=[BK,: K] and BV, =V, (L.).

(2) In particular, if [K:L]< oo then [BV,:V,]=[K:L].

Proof. (1) is an easy consequence of Corollary 1 (2). Incase [K:
L] oo, BK,=Vy(L) and [Vy(L): K]=[K:L] by [1, Proposition
7.2.1]. Hence (2) is also a consequence of the above corollary.

2. Simple Galois extensions.

We shall use the following conventions throughout this section: K
will be Galois and finite over L, and &, ¥ mean the Galois group of
K/L, and the totality of L-inner automorphisms of K respectively. C, Z
will be the centers of K, L respectively, and we shall set V = Vi(L)
and H=Vx(V). Further, D will be an arbitrary intermediate subring
of K/L, and for any set © of automorphisms of K we say that D is
O-normal when D°=D forall s 9.

Lemma 2. Let X be a subset of L which is linearly independent
over Z (and so over V), and X =\U X\ be an arbitrary partition of
X into non-empty finite subsets. Then, given ky, k2= K, the number
of Xy's such that k(kSV,) N XiV 5= {0} never exceeds [K:L) (and
so finite).

Proof. 1If, on the contrary, there holds k(2@ V,) N X.V 5= {0} for 1=
1, -+, m >[K: L], then there exist e,=®V, and y & X,V such that
Ei(keed) = 5~ 0 (=1, ---, m). Noting that {e,, **-, e,.} is linearly dependent

3) We always consider right-modules and right-dimensions, where the dimension
[9M: K| is to be defined as the cardinal number of a right-basis of I over K.

4) Recall that L[V] =L X zV ([5, p.183)).

5) X,V is the V-module generated by X over V.
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over V, by Corollary 2 (2), there holds 3] e, =0 with not all zero
i=1

v,€V. Thus we have 0= Z (ky(bue) — y)vi=— i‘.yivi, but this is a
i=1 i=

contradiction, because ¥, **-, ¥ are linearly independent over V by our
assumption.

Corollary 3. Let [L:Z]=oo, Then there hold the following facts:

(1) If Lo=Llvy, -, v., k) with some visSV and k=K then
Lo/ L is simple.

(2) If Ly=LI[h k] with some h= H and k< K then Lo/L is
simple.

Proof. Choose a countably infinite subset {x;} of L which is

linearly independent over Z. (1) We set L[Z] Tmutitk]l=L;(j=1,2,

..). Now suppose that the assertion of (1) is not true. Then for each j,
one of v;’s, say vy, is not contained in L; and there exists an automor-
phism ¢;E ®&(K/L;) such that »755~vy. As xj,.0:+k is contained in

ki A1 K
L, we have ) xpuvi+k)™ = 3 x5,.4057 +E7 = 3 X540 + k, whence
i=1 =] i=1

3 xjore Wi —v)=k(1,—0;) 5= 0 for each j. But this contradicts Lemma 2.
i=1

Hence L, is simple over L. (2) We set here L; = L[kx, + k] and &;=
®&(K/L;). If an infinite number of L;s does not contain 2 then {A}S; =+
{n} for infinitely many ’s. As {A}® is a finite set, there exists an
infinite subset {x;, xy, -~} of {x} such that all {h}®rs are the same.

Thus, without loss of generality, we may assume from the beginning that
all {#}®’s are the same. We choose some /' ==k from {A}®;, then
B=h" with some o &E®, Now (hx;+k)t = hx,—Fk implies (h'—h) x;=
E(l,—a;), that is, Q%= x;, = (' — 1) {k(1,—0;)} for all i{. But this con-
tradicts Lemma 2. Hence, for almost all ¢, L; contains /, consequently
coincides with L,.

Corollary 4. Let [L:Z]=oo. If Vi (VL[ F1)) DD DL[f] for
some f then DJL is simple.

Proof., Set H'=V (Vi {(L[f])), then we readily see that H' =
H[ f1, because Vi(L[f])=V(H[f]) and K/ H is inner Galois. And
so, for any ¢=&(H'/L[f]), ox is the identity when and only when ¢
is so. Then recalling that H'/L[ f] and H/L are outer Galois and that
any o =&(H/L[f])is in S(K/L{ f1)u-, we obtain [ H' : L[ f]] = order
of &( H'/L[f]) = order of & H/ HN\L[f])=[H: HNL[ f]). Now, as
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is well-known, HN\D = L[#%] for some 4 ([4, Corollary 3]), and then we
shall prove D = L[ f, 4], from which our corollary is clear by Corollary 3
(2). Noting that H/D D D L[f, k]l DL[f], the above method proves
that [ H': D] = order of &( H'/D) = order of & H/ HN\D) = [ H: HND],
and [H':L|f, h]] = order of G(H'/L[f, k]) = order of & (H/ HN\L| f,
R)=[H: HNLI[ f, h]]. Accordingly, it suffices to show that HN D
(=L[h]))=HN LI f, 1], however it is evident.

Theorem 1. If V is commutative then D is simple over L.

Proof. Since V is commutative, from the proof of [5, Theorem 3],
we can select in any rate an element f& D such that V. (V(L{f])) D
DDOL(f]). If [L:Z]=cc then D is simple over L by Corollary 3. On
the other hand, if [L:Z] <o then D is also simple by [5, Corollary 5
(D].

Lemma 3. Let L22Z, and D be F-normal. Then D is simple
over L.

Proof. By [4, Lemma 3], either DC H or DDV. In case DC H,
our assertion is clear by [4, Corollary 3]. Thus we may, and shall,
assume DDV, Now we consider a subring L= L|V]=LX;V of D.
Noting that Vx(L,)C VCL, we have Vi(L,)=V,(L,), whence, by [5,
Corollary 4], we obtain D=L,[k]=L[», -, v,, k] for some k, where
{vy, ++, v,} is a basis of V/Z. Hence, in case [L:Z]=o0, D/L is
simple by Lemma 3 (1). Accordingly, it remains only to prove our asser-
tion for the case [L :Z]<eo. Let [L:Z]< oo hereafter. Then K is
finite over C by [1, Theorem 7.9.1], and so K/C is inner Galois.
Since Vi(L,)= V(L[ V])= C[Z](see the proof of [5, Corollary 5]), we obtain
Ve(Z)=V(C[Z])=L,CD, and so V,(Z)=V.(Z). Hence V,(Z) is Galois
over L, whence we have V,(Z)=L[k] for some %k by |5, Corollary 5 (2)].
Then [5, Theorem 1] implies that there exists some element d in D
such that L{d]=k and V,(Z)[d]=D. Hence we have L[d]=L|d, k]=
VD(Z)[d] =D.

Lemma 4. Let L=Z, and D be JFnormal. If L V(D) then
D is simple over L.

Proof. By the remark in [5, p.188], C[Z]=H. 1If DC H then
LcD=V,(D), being contradictory to L @ Vu(D). Thus D ¢ H, whence
the f-normal D contains V by {4, Lemma 2]. And then there holds
Vo(D)© DN\ HCC[Z). Recalling [K:ZNC]< oo in the present case,
we see that D is Galois and finite over E, where E=J( D) and €
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is the group of C M\ Z-automorphisms of D. Of course, we have then
DDV,D)DE from Vu,(D)DCNZ. Now, as Z Z Vy(D), there exists
some z € Z\V,(D). Noting that the field E[z] is not contained in V(D)
and D/E[z] is Galois, D=E[z][d]=E[z d] with some d €D by [5,
Lemma 7], and evidently D=E|[z d]= H[d]. Now, set &=8(K/Z[d]).
Then, as D= H[d] is &-normal, J(§p, D)=Z[d]. And so, Z[d1DZNC
implies Z[d] DE, whence Z[d]DEl[z, d]l=D. We have proved there-
fore D=Z[d].
Now we are at the position to prove our principal theorem.

Theorem 2. Let D be an intermediate division subring of K/L such
that for each x € D, {x}3\D is a finite set. Then D is simple over L if
and only if either L V(D) or D is commutative.

Proof. Incase & is almost outer, our assertion is clear by [4,
Corollary 2]. On the other hand, in case & is not almost outer, by
making use of the same method as in the proof [4, Principal Theorem],
we readily see that D is J-normal. Then, if L ZVy(D), then D is
simple over L by Lemmas 3 and 4. While, if D is commutative then
we have DC V. (D)CV. Since D is J-normal, either DC H or DDV.
Hence, in either cases, DC H, whence D is simple over L. The con-
verse part will be trivial.

Theorem 3. K is simple over L when and only when either L Z C
or K is commutative.

Proof. Our theorem is only an easy corollary of Theorem 2, however
we shall present here another proof.

It suffices to show that if L ¢Z C then K/L is simple. By [2, Satz
14], K=L[v, k] for some v=V and k= K. Hence, incase [L:Z]=oco,
K is simple over L by Corollary 3 (1). On the other hand, in case [L:
Z]1 < o, K is Galois and finite over LN\ C®. And so, for any a
I\LNC, (LNC)[a] is a field and (LN C)[a]l € C. And then K/L is
simple by [5, Lemma 7].

Remark. Let K, K. be central non-commutative division algebras
over the rational number field C with degrees prime to each other. (The
existence of such algebras is well-known.) Now we set K = K; X K.
Then, as is well-known, K is a central division algebra over C too.
Given a= K\C, Cla] is a field and K/C[a] is inner Galois. Hence

6 [K:C|<eo by [1, Theorem 7.9.1], and [C:L~C]<= by J(®, C)=L~C.
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K/ Cl[a] is simple by [5, Corollary 7]. On the other hand, as the center
of the non-commutative algebra D= Vx(C[a])= Vg (Cla])X K- coincides
with C[a], D is not simple over Cl[a] evidently.
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