ON GENERATING ELEMENTS OF GALOIS EXTENSIONS OF DIVISION RINGS III #### TAKASI NAGAHARA In his previous papers [4], [5] and [3]¹⁾, the author has investigated mainly finding two conjugate generating elements of Galois extensions, while in the present paper he will consider simple extensions²⁾, and prove that a division ring K which is Galois and finite over L is simple over L if and only if either L is not contained in the center of K or K is commutative. (Further Theorem 2 is proved for certain intermediate subrings.) Moreover we may remark here in passing that the results in [3] are of no use for the present purpose. Finally, as to notations and terminologies used in this paper we follow the previous ones [4], [5] and [3]. ### 1. Preliminaries. Throughout this note, K will be a division ring and L a division subring of K. We set here $V = V_K(L)$ and $\mathfrak{V} = V_{\mathfrak{A}}(L_r)$, where \mathfrak{A} is the absolute endomorphism ring of K. Then we obtain the following: **Lemma 1.** For a subset \mathfrak{S} of \mathfrak{V} , \mathfrak{S} is linearly independent over V_r if and only if it is linearly independent over K_r . Proof. Let \otimes be linearly independent over V_r . If \otimes is not linearly independent over K_r , then there exists a minimal (finite) subset $\mathfrak{T} = \{\alpha_1, \dots, \alpha_n\}$ of \otimes which is linearly dependent over K_r . Hence there holds $\alpha_1 = \sum_{i=2}^n \alpha_i a_{ir}$ with some $a_i \in K$ $(i=2,\dots,n)$. Clearly there exists some a_j $(j \geq 2)$ which does not belong to V, that is, there exists an element $b \in L$ such that $a_j b \neq b a_j$. Since $\alpha_i (i=1,2,\dots,n)$ are in \mathfrak{T} , we have $0 = \alpha_1 - b_r \alpha_1 b_r^{-1} = \sum_{i=2}^n \alpha_i (a_{ir} - b_r a_{ir} b_r^{-1}) = \sum_{i=2}^n \alpha_i (a_i - b a_i b^{-1})_r$. But, as $(a_j - b a_j b^{-1})_r \neq 0$, this contradicts the minimality of \mathfrak{T} , whence \mathfrak{S} is linearly independent over K_r . The converse is trivial. **Corollary 1.** Let \mathfrak{M} , \mathfrak{N} be arbitrary K_r , V_r -submodules of \mathfrak{A} and \mathfrak{B} respectively. Then there hold the following facts: ¹⁾ Numbers in brackets refer to references cited at the end of this paper. ²⁾ K is said to be simple over L if K=L[k] with some k ([3, p. 89]). - $(1) \quad [V_{\mathfrak{M}}(L_r):V_r] \leq [\mathfrak{M}:K_r].$ - (2) $[\mathfrak{R}: V_r] = [\mathfrak{R}K_r: K_r] \text{ and } V_{\mathfrak{R}K_r}(L_r) = \mathfrak{R}^3$. *Proof.* (1) and the first part of (2) are easy consequences of Lemma 1. Thus, it suffices to prove the latter part of (2). Let $\mathfrak{R} = \sum \oplus \alpha_i V_r$. If there exists some $\beta = \sum_{i=1}^n \alpha_i \ a_{ir} \in V_{\mathfrak{R}K_r}(L_r) \setminus \mathfrak{R}$, then some of a_i 's, say a_1 , is not in V. Hence there exists an elment b in L such that $a_1b \neq ba_1$. And so $0 = b_r\beta - \beta b_r = \sum_{i=1}^n \alpha_i (ba_i - a_i b)_r$, which contradicts Lemma 1. As evidently $V_{\mathfrak{R}K_r}(L_r) \supset \mathfrak{R}$, our proof is complete. **Corollary 2.** Let K be Galois over L, and S a group of automorphism with L as its fixring. Then there hold the following facts: - (1) $[\otimes V_r : V_r] = [\otimes K_r : K_r]$ and $\otimes V_r = V_{\otimes K_r}(L_r)$. - (2) In particular, if $[K:L] \subset \infty$ then $[\mathfrak{G}V_r:V_r] = [K:L]$. *Proof.* (1) is an easy consequence of Corollary 1 (2). In case $[K:L] < \infty$, $\mathfrak{G}K_r = V_{\mathfrak{A}}(L_l)$ and $[V_{\mathfrak{A}}(L_l):K_r] = [K:L]$ by [1, Proposition 7.2.1]. Hence (2) is also a consequence of the above corollary. ## 2. Simple Galois extensions. We shall use the following conventions throughout this section: K will be Galois and finite over L, and \mathfrak{G} , \mathfrak{F} mean the Galois group of K/L, and the totality of L-inner automorphisms of K respectively. C, Z will be the centers of K, L respectively, and we shall set $V = V_K(L)$ and $H = V_K(V)$. Further, D will be an arbitrary intermediate subring of K/L, and for any set \mathfrak{F} of automorphisms of K we say that D is \mathfrak{F} -normal when $D^{\sigma} = D$ for all $\sigma \in \mathfrak{F}$. **Lemma 2.** Let X be a subset of L which is linearly independent over Z (and so over V^{4}), and $X = \bigcup_{\lambda} X_{\lambda}$ be an arbitrary partition of X into non-empty finite subsets. Then, given $k_1, k_2 \in K$, the number of X_{λ} 's such that $k_1(k_2 \otimes V_r) \cap X_{\lambda} V \neq \{0\}^{5}$ never exceeds [K:L] (and so finite). *Proof.* If, on the contrary, there holds $k_1(k_2 \otimes V_r) \cap X_i V \neq \{0\}$ for $i = 1, \dots, m > [K:L]$, then there exist $\varepsilon_i \in \otimes V_r$ and $y_i \in X_i V$ such that $k_1(k_2\varepsilon_i) = y_i \neq 0$ $(i = 1, \dots, m)$. Noting that $\{\varepsilon_1, \dots, \varepsilon_m\}$ is linearly dependent ³⁾ We always consider right-modules and right-dimensions, where the dimension $[\mathfrak{M}:K_r]$ is to be defined as the cardinal number of a right-basis of \mathfrak{M} over K_r . ⁴⁾ Recall that $L[V] = L \times_{z} V$ ([5, p. 183]). ⁵⁾ $X_{\lambda}V$ is the V-module generated by X_{λ} over V. over V_r by Corollary 2 (2), there holds $\sum_{i=1}^m \varepsilon_i v_{ir} = 0$ with not all zero $v_i \in V$. Thus we have $0 = \sum_{i=1}^m (k_1(k_2\varepsilon_i) - y_i)v_i = -\sum_{i=1}^m y_i v_i$, but this is a contradiction, because y_1, \dots, y_m are linearly independent over V by our assumption. **Corollary 3.** Let $[L:Z] = \infty$. Then there hold the following facts: (1) If $L_0 = L[v_1, \dots, v_n, k]$ with some v_i 's $\in V$ and $k \in K$ then L_0/L is simple. (2) If $L_0 = L[h, k]$ with some $h \in H$ and $k \in K$ then L_0/L is simple. *Proof.* Choose a countably infinite subset $\{x_i\}$ of L which is linearly independent over Z. (1) We set $L\left[\sum_{i=1}^{n} x_{jn+i}v_{i}+k\right] = L_{j}(j=1,2,1)$...). Now suppose that the assertion of (1) is not true. Then for each j, one of v_i 's, say $v_{j'}$, is not contained in L_j and there exists an automorphism $\sigma_j \in \mathfrak{G}(K/L_j)$ such that $v_j^{\sigma_j} \neq v_{j'}$. As $x_{j_{n+1}}v_i + k$ is contained in L_{j} , we have $(\sum_{i=1}^{n} x_{j_{n+i}} v_i + k)^{\sigma_j} = \sum_{i=1}^{n} x_{j_{n+i}} v_j^{\sigma_j} + k^{\sigma_j} = \sum_{i=1}^{n} x_{j_{n+i}} v_i + k$, whence $\sum_{i=1}^{n} x_{j_{n+i}} (v_i^{\sigma_j} - v_i) = k(1_r - \sigma_j) \neq 0 \text{ for each } j. \text{ But this contradicts Lemma 2.}$ Hence L_0 is simple over L. (2) We set here $L_i = L[hx_i + k]$ and $\mathfrak{G}_i =$ $\mathfrak{G}(K/L_i)$. If an infinite number of L_i 's does not contain h then $\{h\}^{\mathfrak{G}_i} \neq$ $\{h\}$ for infinitely many i's. As $\{h\}^{G}$ is a finite set, there exists an infinite subset $\{x_{i_1}, x_{i_2}, \dots\}$ of $\{x_i\}$ such that all $\{h\}^{\emptyset i_j}$'s are the same. Thus, without loss of generality, we may assume from the beginning that all $\{h\}^{\emptyset_i}$'s are the same. We choose some $h' \neq h$ from $\{h\}^{\emptyset_i}$, then $h' = h^{\sigma_i}$ with some $\sigma_i \in \mathcal{G}_i$. Now $(hx_i + k)^{\sigma_i} = hx_i + k$ implies $(h' - h) x_i =$ $k(1_r-\sigma_i)$, that is, $0 \neq x_i = (h'-h)^{-1}\{k(1_r-\sigma_i)\}$ for all i. But this contradicts Lemma 2. Hence, for almost all i, L_i contains h, consequently coincides with L_0 . Corollary 4. Let $[L:Z] = \infty$. If $V_{\kappa}(V_{\kappa}(L[f])) \supset D \supset L[f]$ for some f then D/L is simple. *Proof.* Set $H' = V_K(V_K(L[f]))$, then we readily see that H' = H[f], because $V_K(L[f]) = V_K(H[f])$ and K/H is inner Galois. And so, for any $\sigma \in \mathfrak{G}(H'/L[f])$, σ_H is the identity when and only when σ is so. Then recalling that H'/L[f] and H/L are outer Galois and that any $\sigma \in \mathfrak{G}(H'/L[f])$ is in $\mathfrak{G}(K/L[f])_{H'}$, we obtain [H':L[f]] = order of $\mathfrak{G}(H'/L[f]) = \text{order}$ of $\mathfrak{G}(H'/L[f]) = \text{order}$ of $\mathfrak{G}(H'/L[f])$. Now, as is well-known, $H \cap D = L[h]$ for some h ([4, Corollary 3]), and then we shall prove D = L[f, h], from which our corollary is clear by Corollary 3 (2). Noting that $H' \supset D \supset L[f, h] \supset L[f]$, the above method proves that [H':D] = order of $\mathfrak{G}(H'/D) =$ order of $\mathfrak{G}(H/H \cap D) = [H:H \cap D]$, and [H':L[f,h]] = order of $\mathfrak{G}(H'/L[f,h]) =$ order of $\mathfrak{G}(H/H \cap L[f,h]) = [H:H \cap L[f,h]]$. Accordingly, it suffices to show that $H \cap D$ ($=L[h]) = H \cap L[f,h]$, however it is evident. **Theorem 1.** If V is commutative then D is simple over L. *Proof.* Since V is commutative, from the proof of [5, Theorem 3], we can select in any rate an element $f \in D$ such that $V_{\kappa}(V_{\kappa}(L[f])) \supset D \supset L[f]$. If $[L:Z] = \infty$ then D is simple over L by Corollary 3. On the other hand, if $[L:Z] < \infty$ then D is also simple by [5, Corollary 5 (1)]. **Lemma 3.** Let $L \supseteq Z$, and D be \Im -normal. Then D is simple over L. *Proof.* By [4, Lemma 3], either $D \subset H$ or $D \supset V$. In case $D \subset H$, our assertion is clear by [4, Corollary 3]. Thus we may, and shall, assume $D \supset V$. Now we consider a subring $L_1 = L[V] = L \times_Z V$ of D. Noting that $V_K(L_1) \subset V \subset L_1$, we have $V_K(L_1) = V_{L_1}(L_1)$, whence, by [5, Corollary 4], we obtain $D = L_1[k] = L[v_1, \cdots, v_n, k]$ for some k, where $\{v_1, \cdots, v_n\}$ is a basis of V/Z. Hence, in case $[L:Z] = \infty$, D/L is simple by Lemma 3 (1). Accordingly, it remains only to prove our assertion for the case $[L:Z] < \infty$. Let $[L:Z] < \infty$ hereafter. Then K is finite over C by [1, Theorem 7.9.1], and so K/C is inner Galois. Since $V_K(L_1) = V_K(L[V]) = C[Z]$ (see the proof of [5, Corollary 5]), we obtain $V_K(Z) = V_K(C[Z]) = L_1 \subset D$, and so $V_D(Z) = V_K(Z)$. Hence $V_D(Z)$ is Galois over L, whence we have $V_D(Z) = L[k]$ for some k by [5, Corollary 5 (2)]. Then [5, Theorem 1] implies that there exists some element d in D such that $L[d] \ni k$ and $V_D(Z)[d] = D$. Hence we have $L[d] = L[d, k] = V_D(Z)[d] = D$. **Lemma 4.** Let L=Z, and D be \Im -normal. If $L \not\subset V_D(D)$ then D is simple over L. *Proof.* By the remark in [5, p. 188], C[Z] = H. If $D \subset H$ then $L \subset D = V_D(D)$, being contradictory to $L \not\subset V_D(D)$. Thus $D \not\subset H$, whence the \mathfrak{F} -normal D contains V by [4, Lemma 2]. And then there holds $V_D(D) \subset D \cap H \subset C[Z]$. Recalling $[K:Z \cap C] \subset M$ in the present case, we see that D is Galois and finite over E, where $E = J(\mathfrak{E}, D)$ and \mathfrak{E} is the group of $C \cap Z$ -automorphisms of D. Of course, we have then $D \supset V_D(D) \supset E$ from $V_D(D) \supset C \cap Z$. Now, as $Z \not\subset V_D(D)$, there exists some $z \in Z \setminus V_D(D)$. Noting that the field E[z] is not contained in $V_D(D)$ and D/E[z] is Galois, D = E[z][d] = E[z,d] with some $d \in D$ by [5, Lemma 7], and evidently D = E[z,d] = H[d]. Now, set $\mathfrak{C}' = \mathfrak{G}(K/Z[d])$. Then, as D = H[d] is \mathfrak{C}' -normal, $J(\mathfrak{C}'_D,D) = Z[d]$. And so, $Z[d] \supset Z \cap C$ implies $Z[d] \supset E$, whence $Z[d] \supset E[z,d] = D$. We have proved therefore D = Z[d]. Now we are at the position to prove our principal theorem. **Theorem 2.** Let D be an intermediate division subring of K/L such that for each $x \in D$, $\{x\}^{\Im} \setminus D$ is a finite set. Then D is simple over L if and only if either $L \not\subset V_D(D)$ or D is commutative. *Proof.* In case $\mathfrak G$ is almost outer, our assertion is clear by [4, Corollary 2]. On the other hand, in case $\mathfrak G$ is not almost outer, by making use of the same method as in the proof [4, Principal Theorem], we readily see that D is $\mathfrak F$ -normal. Then, if $L \not\subset V_D(D)$, then D is simple over L by Lemmas 3 and 4. While, if D is commutative then we have $D \subset V_K(D) \subset V$. Since D is $\mathfrak F$ -normal, either $D \subset H$ or $D \supset V$. Hence, in either cases, $D \subset H$, whence D is simple over L. The converse part will be trivial. **Theorem 3.** K is simple over L when and only when either $L \not\subset C$ or K is commutative. *Proof.* Our theorem is only an easy corollary of Theorem 2, however we shall present here another proof. It suffices to show that if $L \not\subset C$ then K/L is simple. By [2, Satz 14], K=L[v,k] for some $v \in V$ and $k \in K$. Hence, in case $[L:Z] = \infty$, K is simple over L by Corollary 3 (1). On the other hand, in case $[L:Z] < \infty$, K is Galois and finite over $L \cap C^{6}$. And so, for any $a \in L \setminus L \cap C$, $(L \cap C)[a]$ is a field and $(L \cap C)[a] \not\subset C$. And then K/L is simple by [5, Lemma 7]. **Remark.** Let K_1 , K_2 be central non-commutative division algebras over the rational number field C with degrees prime to each other. (The existence of such algebras is well-known.) Now we set $K = K_1 \times_{\mathcal{C}} K_2$. Then, as is well-known, K is a central division algebra over C too. Given $a \in K_1 \setminus C$, C[a] is a field and K/C[a] is inner Galois. Hence ⁶⁾ $[K:C] < \infty$ by [1, Theorem 7.9.1], and $[C:L \cap C] < \infty$ by $J(\mathfrak{G}_{\ell}, C) = L \cap C$. K/C[a] is simple by [5, Corollary 7]. On the other hand, as the center of the non-commutative algebra $D=V_{\kappa}(C[a])=V_{\kappa_1}(C[a])\times_c K_2$ coincides with C[a], D is not simple over C[a] evidently. #### REFERENCES - [1] N. JACOBSON, Structure of rings, Amer. Math. Soc. Colloq. Publ., Vol. 37 (1956). - [2] F. KASCH, Über den Endomorphismenring eines Vektorraumes und den Satz von der Normalbasis, Math. Ann., 129 (1953) 447-463. - [3] M. MORIYA and T. NAGAHARA. On generating elements of Galois extensions of division rings II, Math. J. Okayama Univ., 7 (1957) 89-94. - [4] T. NAGAHARA, On primitive elements of Galois extensions of division rings, Math. J. Okayama Univ., 6 (1956) 23-28. - [5] ——, On generating elements of Galois extensions of division rings, Math.J. Okayama Univ., 6 (1957) 181-190. DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY (Received November 25, 1957)