GALOIS THEORY OF SIMPLE RINGS III

NouO NOBUSAWA and Hisao TOMINAGA

For Galois theory of simple rings, one of the present authors put for-
ward his consideration under the assumption that the total group is L. f. d.
and locally compact ([2]and [3]), P and obtained a somewhat satisfactory
extension of Krull's theory given for fields, which contains Nakayama’s
for the case of finite degree as well.

Now, as is noted in [1], our next attention should be directed towards
considering the theory only assuming that the total group islL f.d. Re-
garding this problem, Prof. D. Zelinsky tried once to construct his theory,
but his trial was not successful at that time. In this note, we shall present
a slight generalization of the previous theory under the assumption that
the total group is L. f. d.

§ 1 contains previous results as preliminaries, and our generalization
will be found in § 2. As to notations and terminologies used in this
paper, we follow the previous ones [2] and [3].

1. Preliminaries

Throughout this section we assume that R is a simple ring which is
Galois over a simple subring S, and & will mean the total group G(R/S).

In [3], essentially in [1], the notion of L f.d. was introduced, and
the following facts were obtained :

(A) Let R be locally finite over S. Then & is 1. {.d. if and only if
either & is outer or [Vz(S) : V5(S)] < 02 ([3; (b¥)]).

(B) If ® is 1.f.d. then H = Vx(Vx(S)) is simple and @(R/ H) =
&(HYis L.£.d. ([3; (£9]).

(C) Let @ bel. f. d. and non-outer, and F be an arbitrary finite subset
of R. If N is a regular subring which is normal, finite over S and con-
tains S(F, Vi(S)) then T = Vz(Vx(N)) is a regular subring normal over
S such that [T : H] < =% and [V:(S): Vo(T)] < o ([2; Lemma 11]).

We set here the following definition which, in case [Va(S): Va(R)]

1) Numbers in brackets refer to the references cited at the end of this paper.

2) Ve(S)={r€R|rx =xr for all x€S}.

3) H)={0€® | x = x for all x € H}.

4) Throughout the paper, the dimension means the left dimension, and we alway
consider left modules.
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oo, coincides with that of (x)-regularity defined in [3].

Definition 1. Let $ be a subgroup of &, and set Vg = Vi(J(9,
R)®. © is said to be (*,)-regu{_al: if Vg is a simple subring over which
Vz(S) is finite and © contains V.9

In the rest of this section, we assume further that 8 is 1.1.d., and @
be considered as a topological group in the sense of [2] and [3]. Then
also the following facts will be found in [2] and [3].

(D) If S’ is an arbitrary regular subring of R that is finite over S
then there holds S’ = J(&(S’), R), and any S-(ring) isomorphism p of S’
into R can be extended to an automorphism contained in ®, where we
assume S” is regular ([2 ; Lemma 10] and [3; (e*)]).

(E) ® is compact if and only if it is locally finite, or if it is almost
outer. While it is discrete if and only if R is finite over S ([3; (d%)]).

(F) G is locally compact if and only if [Vi(S): Va(R)] < oo ([3;
(h™*)]).

(G) If © is locally compact then there exists a 1-1 dual correspon-
dence between closed (*)-regular subgroups © of & and intermediate
regular subrings R’ of R/S in the usual sense of Galois theory, and &(R/R')
isLf.d. ([3; (k*), (e**) and Theorem 4]).

(H) If @ is locally compact then, for any intermediate regular sub-
ring R', each S-(ring) isomorphism pof R' into R can be extended to an
automorphism contained in &, where we asume V;(R") is simple ([3; 1*)]).

It will be almost clear that the following lemma can be proved in the
same way as in the proof of [3; Theorem 6], and the details may be left
to readers.

Lemma 1. Any (x)-regular subgroup of ® is a regular subgroup.

Further noting that, in the proof of [2; Theorem 7], the essential
assumption is not [Vz(S) : Vz(R)] < o but [Ve(S): Vg] < oo, the proof
and Lemma 1 give at once the next corollary.

Corollary 1. Any closed (x,)-regular subgroup of ® is a regular
total subgroup.

2. Galeois correspondence and extension theorem

It is the purpose of this section to generalize (G) and (H) of § 1. In
the sequel, we assume again that R is a simple ring which is Galois over

 J® R)={x€R|x7 =x for all €Q}.

; ? V@ means the totality of inner automorphisms generated by regular elements
of Vg.
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a simple subring S and that the total group ®=&(R/S) is L. f. d. Further,
as H= Vx(Vy(S)) is simple by (B), we set H = > %; Cdn. where dy.'s
are matric units and C = Vy({d.}) is a division ring.

Now we shall begin our course with introducing a new (not necessarily
separable) topology -7 into & :

A fundamental system of neighborhoods of the identity is{®&( H")}
(9) where H’ runs over all the subrings of H which are normal,
finite over S and contain {dx.}.

Evidently, in case & is outer, the topology .7 coincides with the
finite topology considered in § 1, and so & is compact by (E). On the
other hand, if ® is non-outer then [Vi(S): Vs(S)] < o by (A), and so
we have R = \U, R, where R, runs over all the simple subrings which are
normal, finite over S and contain V3(S) as well as {d.:}. Here we set &, =
®&(R./S), and topologize them in the following way :

A fundamental system of neighborhoods of the identity is {&.( H")}
(%) where H' runs over all the subrings of H M\ R, which are normal,
finite over S and contain {d.}.

Noting that H/M\ R,/S is outer Galois and ®&,(H N R,) is the least
neighborhood of the identity, one can readily see that there exists only a
finite number of open subsets of &,. Hence &, is compact. Since ® may
be considered naturally as the inverse limit of the compact groups &,'s,
it is compact tco. While we can readily see that the last topology of ® is
equivalent to .7, we have proved therefore the following lemma.

Lemma 2. ® is compact with respect to the topology 7.
Now we can prove the next lemma which is essential in the present
investigation.

Lemma 3. &(H/S) = 8,7

Proof. We set H = \U, H, where H,runs over all the subrings of H
which are normal, finite over S and contain {d.}. Given any ¢ &
®(H/S), as Ve( HY) = V&(S), s, can be extended to an automorphism con-
tained in & by (D). We shall denote here by 9, the totality of these
extensions of #,, Then clearly R, is closed (with respect to .7), and

7 @z means the restriction of ® onto H, Similarly, for ¢ € @ and a subset 7,
¢, means the restriction of 6 onto 7. It may not be meaningless to remark here the
following : Combining (C) and (H), one will readily see that each S-automorphism
of H can be extended to an automorphism of any finite-demensional normal exten-
sion over H. Accordingly, in the particular case where R is of countably infinite
dimension over H, the assertion @§(H/S) = ®x is a consequence of (C) and (H).
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further the collection {J.} possesses the finite intersection property.
Since & is compact by Lemma 2, we obtain M., is non-empty. Evidently
any ¢* € NN is a desired extension of #, which proves &( H/S) C &,,.
As the converse inclusion is trivial, our proof is complete.

Lemma 4. Let R' be an intermediate regular subring of RS with
[Va(S): Va(R")] £ oo. Then J(&(R"), R) = R'.

Proof. By the assumption [Vg(S): Vi(R')] < oo, we can find a
simple subring S’ of R’ finite over S and satisfying Vz(R') = Vk(S'). By
(D), R/S' is Galois and & = G(R/S’) is 1. f.d. Noting that S'C R' C
Ve(Va(S") = H'(=Ve(Vi(H'))), the preceding lemma and (G) imply
J&(R"), R) = J(&'x(R"), H) = R'. ‘

In the rest of this section, & will be considered always as a topolo-
gical group in the sense of § 1. Combining Lemma 4 with Corollary 1,
we obtain the first part of the following theorem which contains (G).

Theorem 1. Let & be 1. f.d. Then there exists a 1-1 dual corres-
podence between closed (%;)-regular subgroups © of ® and intermediate
regular subrings R’ with [Vz(S): Ve(R)] < oo in the usual sense of
Galois theory, and &(R/R") is 1. f. d.

Proof. Since R/R’ is Galois by Lemma 4, it suffices to show that
R is locally finite over R’. In case & is outer, our assertion is contained
in (G). Thus hereafter we shall restrict our attention to the case where
® is non-outer. By our assumption, there exists a simple subring S’ of R’
finite over S with Vz(S') = Vx(R'). Now let F be an arbitrary finite sub-
setof R, and N a regular subring which is normal, finite over S and
contains S'(Vx(S), F). Then, by (C), T =Vx(Vx(N)) is a normal regular
subring such that [V,(S): Vz(T)] < . Noting that T = Vg(V:(T)) =
Va(V(N)) D Ve(V(S(F))) = Vr(V(R'(F))) D R'(F), our assertion is an
easy consequence of (G).

Our next task is to present a generalization of (H) corresponding to
Theorem 1, which is stated as follows :

Theorem 2. Let & be Il.f.d., and R, R. arbitrary intermediate
regular subrings of R[S with [V(S): Va(R)] L oo (i =1, 2). Then
any S-(ring) isomorphism p of R; onto R, can be extended to an auto-
morphism contained in &,

Proof. By our assumption, there exists a simple subring S, of R,
finite over S with Vi(S)) = Vi(R)) and Vz(S/') = Vx(X.). Then, by (D),

there exists some ¢ € & such that ps = a5. Clearly pe™' is an Sy
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isomorphism of R, into R and VR(RJ‘"’_I) = (VR(Rz))"_1 is a simple ring
over which Vx(S) is finite. If we can prove that psr™' = tr, for some ¢ €
&(S)), ©o is a required extension of p. Thus, noting that S,C R, C
Va(Ve(S), R/S; is Galois and that &(R/S,) is 1. f. d. by (D), it suffices to
prove our theorem for the case where R;is contained in H., Under this
situation, the argument in the proof of [2; Lemma 15] shows that R, C

H. Consequently p can be extended to an automorphism in & by (H) and
Lemma 3.
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