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§ 24. Finsler manifolds.
When a positive valued function L on To(%X) such that

L-2x=kFkL k>0, (24.1)

where 1, are mappings defined in § 2, is given, we say (%, L) is a Finsler
manifold. This definition is slightly weaker than the ordinary one. If
the condition (24. 1) is replaced with L - 2, = |k | L for any &, then (%, L)
is a Finsler manifold in the ordinary sense.

Now, by means of (2.13), L - 7o, L - 7, L » 7 - 5?0 are the functions
with the same property as L on T(X) [X Tu(%), B, = B — B, B, — B, res-
pectively. We denote also these functions by the same symbol L. Then
we define a map f : To(X) — T«(X) which covers the identity transforma-
tion of X by

1=1L1:Af (24.2)

By the  same equation, we can define two bundle maps f;, f» on T(X) X
To(%X), 3B, respectively which cover the map f. Furthermore, by (24.1),
(2. 13), we have the equations

f’}‘k‘:f; fa';sszn- (243)
95
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Then, by the following equations

f= @ p, Jo = Ca * Pay (24. 4)

we can define uniquely the map ¢ : &(X) — T,(X) and the bundle maps
vs, @ =1, p, which cover ¢. As easily seen, we have

P'¢=1, Pm‘soa—;l. (24.5)
Conversely, when a map ¢ : &(X) = ToX), such that p:¢ =1, we
shall obtain the function L.
Nextly, we define # functions f'y By o R by

y=LJf\ (24.6)

Proposition 24. 1. For the induced connection I = p* I of
= {TE)X Tu(X), ToX)} from a connection T of {8, S(X)}, we have
I F = F, ¢‘¢F =1T.

Proof. This follows immediately from (24. 4), (24.5). We shall have

the same proposition for the affine connection (I, dp). For example,
with respect to the first equation, since

Tof=7%, ts*fo= Ta (24.7)
we have .
(fFRMEQMdp=(f°-7°QS* - t*)dp
= (z° @ 7*) dp.

Proposition 24.2. In order that a tensor field R of § is a p°-
image, it is necessary and sufficient that & is invariant under f.
Proof. The necessity is easily followed from (24. 4), (24.5) and

P'f=[); P«z‘fa:pu. (24.8)
The sufficiency can be proved by (24. 4).

Proposition 24.3. In order that a tensor field & of J is invariant
under f, it is necessary and sufficient that K is invariant under
A (B> 0).

Proof. The necessity is evident from (24. 3). If & is invariant
under 2 (k > 0), then & is considered as a p°-image. Accordingly, it
is invariant under f by Proposition 24. 2.

Now, for the canonical local coordinates (x/, &) of T(X), we define
I by
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g =11, ’ (24.9)

/7 are the local components of the vector field Y/L of §. f? defined by
(24. 6) are the components of the 7%image of /L. We have éasily

DE) = LDI’ + PdL, Dy’ = LDf’ + fdL. (24.10)
Accordingly, we have for F = p% I' the equations
o) = T*J du* + LCY MEDI* = f*ol (24. 11)
from (3. 8) and (4. 10).

Proposition 24.4. For an f-invartant tensor field & of ¥, D8 is
also f-invariant, that is

(f° ® f*) DK = DK.
Proof. This is evident from the assumption and the formula (1.17).

Now, since L is a scalar, if we put

oL oL 6L
L/u =L, = _;ui - oE" O E I = L;= 'g;éi (24.12)
(L<ﬁt =Ly, fi =Ly on By),
we have
L'=1 (fift =1 on By), (24.13)

since 1,* L = kL. For the connection T of %, we have locally from
(24, 9) and the above equations
dL = L_i du' =+ L;k M’: DE‘
= Ly, du' + Ly MY (LDI* + I'dL),
that is

pdut + L MiDIE =0 (g 6° + fo M}Df' = 0).  (24.14)

Proposition 24. 5. The covariant derivative of the first kind and
the one of the second kind multiplied with L of an f-invariant tensor
field & of §F are also f-invariant.

Proof. Let K;;:z;,‘; be the local components of £. Since we have
f*M{ = M{, f*& = [’ by Proposition 24. 4,
DKjijr = Kjitje, du™ + Kjjs  MiDE*
= fYKje,) du" + f*(K ;’i:::,‘-g;n)M;: DI*,
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Since & is f-invariant, we have
£ 0K [0E" = 0,
hence we get from (3. 8) and (9. 8)
K }'11:::,‘5m g = 0.
Accordingly, we have the equation
{r*(Kjie,) — Kje b du" + { FHKjge,) — LKjze } Mi DI* = 0.

On the other hand, there exists only the relation (24. 14) between du’
and D!/’ and we have

(i (Kie,) — LK 1 = fY(Kjmje 1") = 0.

23
Considering (24. 13), we have

K, = Kitje,, FYER,) = LKje,. (24. 15)
Since
*L=1 =10, (24. 16)
we have
(LK j;:::;gm) - LK}iI};’;n- q.e. d.

Lastly, the curvature forms of I are written as

o= % Riw du™ /\ du® + L P2y MEdu” N\ DI -.L‘-%—LZ Sis My, Mi DI* \DI*

by means of (9. 15), (9.16) and (24. 10). Accordingly, we see easily that
Rihs, LPfw, L?Sfw are f-invariant. In order to denote them in terms
of the f-invariant quantities, it is sufficient to cover (9. 4), (9.5’), (9. 6"
with f*. In fact, if we put

Al = f*Ch = LCS, (24.17)
these are f-invariant. Then, we have

f LCovx = Adwi — Adh 1,

,~ Lgctjn;x: = LA'LJIZ;R: - Aijh- l;:- (24' 18)
Substituting them in (9. 5*) and (9. 6'), we get
. AT J *T
LPiy=— L ";;; b Aln — Ade g — A&L—f”ggizs (24.19)
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L’ Stjhk = LAijk;h - LAijh.;k - Atjh Atzk + -Atjk Alt}z

24, 20
AN A= A AL — A L, (24.20)

The following formulas are also easily proved :
Py = —Um, Ll = &L —V1,. (24. 21)

§ 25. Metric connections.

For any Finsler manifold (X, L), we define a symmetric tensor field
g of the type (0, 2) by

g = gudu' Q du’,
OF
du'on’’

gy = F= % L (25.1)

We put g = 7°g = giy3' ® 3’. Since 4* F = kF*F(k >0), g is f-invariant.

Define the inner product of any two vectors in a fibre of § or {%“—5&,
%o} by virtue of

7] 9 -
gu=%'w» 8y = 3t 35, (25.2)
then we get easily
p-y=L" or g,l'l’ =1 (25. 3)

When ¢ is non singular or positive definite everywhere, the Finsler
manifold (%, L) is called to be regular or positive regular respectively.

Now, with respect to a regular connection r= p*I of §, if g is
parallel, that is Dg = 0, we say that I' is metric with respect to g (or
(X, L)). This is locally written as gi;,» = giya = 0, that is

08y _

o gul v+ guly, (25. 4)
%ﬁ_y = guCli+gu,Clh. (25.5)
We get easily
L=gyl’  fi=guf. (25. 6)
It follows from (25. 3), (25.4) and (25. 5) that
I, DI' = 0, (25.7)

Accordingly, making use of (24. 14), we have
pe =0, L My =1,. (25. 8)
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These equations are equivalent to

g—f;i = LI*M",, Ald*, = 0, (25. 8')
Lemma 25.1. For a regular metric connection T' with respect to
a regular Finsler manifold (X, L), if we have

a;k = §' Jr Eihk = a}ik .
then (bp =1,
Proof. We get from (25. 5) the equation

_ i a(iF
Cip = > b—af‘agfaf" , (25.9)

hence C)}; = 0.

Theorem 25.2. The metric connection of E. Cartan’ with respect
to a regular Finsler manifold (%, L) is a-proper, thatis *I'=T".

Proof. As is well known, the metric connection of E. Cartan is
uniquely determined by means of (25.4), (25.5) and the conditions

Cis = Ciu, *o=T*h (25. 10)

Hence, by virtue of Lemma 25.1, we get & =1, According to the
book of E. Cartan, putting

oF
2G, = ag*a 8- = G'=g"Cy, (25.11)
we get
3
Etpi”:! — &ir*ﬁ = aag, ' (25, 12)
and
¢ 170 ogn 0g, 8G* aG*
Finj = ghkF{§ = ‘2—( agz-:;l + 5gultj —_ 6%:,‘: ) + CUkF‘_ ank Tgi"v
(25.13)
X
F*m; = gml"*fj = Iyp;— Cine agj ,
*1 ~2 A h
O "k TG par a2, (25.14)

g’ = oE'oE’

1) Cf. E. Cartan, Les espace de Finsler, Hermann, Paris, 1934.
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Now, making use of these equations, (24. 9) is written as

ar*,
oE"

Then, from (25.9) and (25. 10), we get the equation

LP’w=—L + Adin— AP Ar e (24. 15)

Cijh;k = Cuk;n-

Hence, (24. 20) is written as

LSt = — AWALA Al A (25. 16)
(24. 21) and (25. 8) imply the equations
P.=0, L= 20—l (25.17)
Thus, we obtain the equation '
Pluk = — 6’(,;5; b A ol — AL Aol

= AL A" = 0.

By means of Theorem 15.4, I' is A-proper and ®p = 1, hence it must
be a-proper by the definition.

§ 26. a-proper metric connections.

In this section, we shall investigate the order of freedom of «-proper
metric connections for a regular Finsler manifold (X, L). Let I' be the
metric connection of E. Cartan and I" be any a-proper metric connection.
Let I" and I' be given locally by the Pfaffian forms

(Ut ]_" ,.du"’—%— C( y,,d (T)l’ = I'_gj;,du"—i—C_ifth’”.

Then we have

?)’i Y = i+ T, aa‘if,f = Cin+Cin, (26.1)
C/ =0, PJ,=0. (26.2)
Putting
I*% = I'é—CAT = I+ Nih, (26.3)
Coh = CAH+ED, (26. 4)

N/, E/ are the components of tensor fields of the type (1.2) of §
We get easily from these equations
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-Fuh =TI *ijh + N+ ( Cipt EUR:)(P * 5 N5
= [+ EUkPakh, + stn + ( Cux,- + Etjk) Noa.

Accordingly, (26.1) is equivalent to

Nin+N sun+2Ciu N = 0, (26. 5)
Eip+Eu =0, (26. 6)

The first part of (26. 2) is written as
El,=E/ = (26.7)

By means of (9.5'), the second part of (26. 2) is equivalent to

= 6C/ aC/’ R -
F*1j/c = 65" ( 61:’:: Eh (;E;k F* ¥ +Ctnkp*nja—cnjkr*thu
= carrd) oo (ke — i) (26.8)

[ »

If we denote the covariant derivatives with respect to I by “, and
“; 7, and substitute (26. 3), (26. 4) into (26. 8), then we get

— *J J — — —
r*, = agg,: O—I-aé;:;o —Clo + Ogéhk N/, —C NJo+Ci/ N/,
+C Nt +C/, 61615: 2E P*o('k)
o~
= agflj 2 + (Niju);k _(Cijk,o+ Ei"k,o) + % Nona
- Elhk NhJo -+ Ehjk. Ninn +Cijn Nthn
_ *t ¢
+CA (2 — e+ L o )

Furthermore, using Theorem 25. 2 and (25. 12), we get

= T*A+ (N )u— Edut "acg Nto— EA N,
+ Edu N2 +Ch N, + CF, "’é‘g”;" g )

_*{Jk +(Nt_jo);k_‘ Ediot (Clin+Cl Ch
+ gt e Cén—Ci%Cil) NG o_ElnA:Nhjo'l" E}« N,
+ CthN +Ctjt((Nn o) Nohochck_ Nozk);

that is
Nth = ( tho);ta - El.jk.,o + (C_tjx;h_‘*‘ cr,jx; ?n - g_ick Czjn)
- En'cl Nhjk + E)ij Nzho + Ctjn( Nnho);k - Cijh Nonk- (26- 9)
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Now, putting
N+ CoA N, = Ko, (26. 10)

we have
Kajs; = Nojk) Kijo = tho"' Ctjz NS (26. 11)
Substituting these into (26.9), we get
Ki"k = tjz Ko‘k + (Kf o t"z Kozo);k_ Eijk.o

+ (C—'L"k.;h + chk Cl— C—ltk Czjn) K

- E tnf:( Kh"o— Chjt Kolo) + Enjk( Kino - Clht Koto)

+ C—ijh( Kono);k—' C—ijh, Kohk

= (Kijo);k + Eijn( Koho);x;_‘ Eithhjo + Enijtho - EthKonk.

+ (Ef,jk;h._ Cijh;k'*' Cijk;h"_ Ctjk Cih—Ch Czjn)Ko"o—'E:jk,a .
Hence, using the equation Cih= Cih, we have

Kijk = (Kljo);k + E'Ljh( Koho); [ Elhx: Knju + Eh.ijino - E'tjh Konk

+ (Eiji:;n+ Ctjk Ctth"‘ Czjkvcilk)Koho_Eth.u . (26. 12)
On the other hand, by means of (26. 10), (26.5) is equivalent to
I(Un'i‘ Kj(h = 0. (26. 13)

Furthermore, from (26.12) and (26.7), we get

Kojk = (Kojo);k_ chjo'l' Ehjk.Koho + Eijkm EiKano
= (Koja);k— Kkjo . (26. 14)
If we put K/ =K7&", K = K,.&E" then (26.12) is written as

K = Kij;k —EMNKY + ES K+ ES KL
+(Eden+ CAHClh— ChACH) K" — Ed nE" (26.15)

Hence, K. can be written in terms of K¢, K’ and E/.
Conversely, if there exist E;, which satisfy (26.6), (26.7) and
W¥ES, = B'ES(E>0), and K/, K’ such that

Ky+Ku=0, K& =K (26. 16)
and 2*K? = kKJ/(k>0), then for K defined by (26. 15) we have
K& = K+ ES KL+ Edak" K",
that is
K& — K/ = E(KMEF— K™) = 0.

Furthermore, it is easily seen that K, satisfy (26.13). From (26. 15), we
get
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Ktjkf‘ = (Ktjfi);k— Kkj-
Substituting these into (26. 15), it follows immediately (26. 12). Thus, we
obtain the following

Theorem 26.1. For any a-proper metric connection I with respect
to a regular Finsler manifold (X,L), the following f-invariant tensor
Sfields

@:%Lglﬁh(aii A1) @ s (26. 17)

ou ou

of the type (FNAY) Q F whose inner products with the canonical vector
field v vanish and

= _14 ¥) 6 8
%= 51 K A @19
of the type F /NG are determined by (26.4) and (26.3), (26.10) and
Ky = g K E* respectively. Conversely, from such & and &, we can uni-
quely determine an a-proper metric connection I' by means of (26.4),
(26.15), (26.11), (26.10), (26.3) and the metric connection I' of E.Cartan.

§ 27. Metric connections and their holonomy groups.

In this section, we shall classify the g-proper metric connections for
a regular Finsler manifold (%, L) by means of the tensor fields & and &
in connection with their holonomy groups.

For any a-proper connection, (11.12) becomes generally B, = B,
E, =Y,. Therefore, we shall use the notations in Part I, II for the metric
connection I' of E. Cartan with respect to (%, L) and the same notations
with bars for any a-proper metric connection I" without any confusions.
Since the basic tangent vector fields B, E; Q{ are locally written by
(5.1), (5.2), (5.3) respectively, using the formulas in the last section, we
get from (5. 1), (5. 6) the equations

i P 0
— — AT‘ ana!" —_—
a&h m 3 60;?,

= B,— ]‘\Zwki( Y+ é‘nijﬁ) - ﬁ:zle?)
and using (26. 10) we get

R X R
B, = Bi—ai N5

B, = B, — KX Y:— KXQL. (27.1)

Nextly, we get from (5. 2) the equation
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E = 7. =Y.—EXQL. (27.2)
For the connection I', V}n, W}n defined by (13. 11) become
. Vjthk = Rjthkp Wi = Pjne, (27. 3)

since I' is ag-proper. Accordingly, the Lie algebra 1l over %0 defined
in § 13 becomes the subalgebra of I which is generated by the elements
obtained from Ry, Pu, S operating B, Y; on them. Then, according
to the same process in §§ 13—15; we shall obtain from (27. 1) and (27. 2)
the following

Theorem 27.1. For the metric connection I' of E. Cartan and any
a-proper metric connection I' with respect to a regular Finsler mani-
Jold (%, L), the necessary and sufficient condition in order that

Hy(y) = Ho(y), y € ToX),
ts that E,= (E}»), Kr = ((K}»)ED belong to Ur.

By (27. 1), the canonical horizontal tangent vector field of I’ is given
by
B = y'B.= B-K\Y— K5 QL. (27. 4)-

We get from the equation the following

Theorem 27.2. For any a-proper metric connection I’ whose cano-
nical horisontal tangent vector field on §B~\1 coincides with the one of the
metric connection of E. Cartan, the tensor field S of § in Theorem
26.1 vanishes everywhere and

K:"n = Et"n.k‘fk (27- 5)

Furthermore, for any two a-proper metric connection I'y and T, in
order that I’y and T. have the same canonical horizontal tangent bec-
tor field, it is necessary and sufficient that §t = &,.

Corollary 27.3. If an a-proper metric connection I' for a regular
Finsler manifold (X, L) have the same canonical horizontal tangent
vector field of the metric connection I' of E. Cartan and C/=C¢,,
then T =T.

Proof. From the assumption, we have Eix = Eij;. Considering
(26.6), it follows that Eix = 0. By virtue of Theorem 27.2, we have
KJ, =0, and hence " =T

Lastly, we shall investigate the analogy with Theorem 27.1 for the
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group AH. For the metric connection I' of E. Cartan, (19.10) and
(19. 11) become clearly

Vie = @R, Wi =w'Pdu—Cih. (27.6)
For the basic horizontal tangent vector fields ﬁi, E;, and §,, E; on B of
the connections I'y and I, (§18), we get from (27.1), (27.2), (18.1) and
(18. 2) the equations
§£ = Et— Wi = éi_ E&Yk—lz&Qi‘
= ét“— I;:okiEi:_ w"Kh“}QZ— K;ﬁéﬁ,
E—; = Ei_u’hghkiéz—'Ehkiéf{f .
Let K, E,=t be the elements defined by
K, = ((wkl‘i‘n, Iz:jin)), E, = ((wké;tn, E‘Jln)).

Then, we have the following

Theorem 27.4. For any a-proper metric connection I and the
metric connection I' of E. Cartan with respect to a regular Finsler
manifold (X, L), a necessary and sufficient condition in ovder that

AH(y) = AHz(y), yE T(X)

is that K,, E, belong to the Lie algebra Ur defined in §20.

§ 28. The cannical imbedding of B into %0.
We have regarded B as a submanifold of B by a natural imbedding

—~

(§2) and put B, = B—B. In this section, we shall define a canonical
imbedding? ::B— B, by

b= (b) = (B, e.(b)) = (ex(b), -, e.(B) ; e (B)). (28.1)

For any y < ToX), #7'(») M ¢ (B) is the set of points & = (b, ¥) such
that e.(b) = y. Hence, {:(B), To(X)} may be considered as a principal
fibre bundle whose group of bundle is the subgroup AX., of the elements
of GL(n) such that

@ = =g71=0, a"=1. (28. 2)

2) Cf. Footnote 2) in Introduction.
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In order to make clear the relation between right translations of B,
B and the map ¢, we shall prepare some formulas. For any g & GL(n),
let Al B— B be the map defined by

4rolD) = (ei(bg) s ex(bg)y"(B))

b = (5, ) =(eb); exb)B). (28.3)
We get easily
dror - 4roB) = (ei(bgg") ; enlbagy"(b)) = yray (B),
that is
Vo = g * Yo, &, 8 E GL(n). (28. 4)
Then, we have
roiro®)) = (edbgg”) ; e(68)y"(D))
= (ebg'g''gg"); enbg'g' " gg")y"(bg")
= Vo tuledbg’); enbg’)y(bg")
= ot (ebg") ; €x(B)Y(B)) =rp=1g0r + 74/ (B),
that is
Fo* e = Yrg=loy * ¥or, 8,8 E GL(n). (28.5)

Lemma 28.1. For any g€ GL(n), the two maps r, and <, are
identical only on the uion of B (C B) and the subset

B, = (616D, ad@y'®) = y©)}. (28. 6)

Proof. By (28.3), \;,a,(B) = 7,(b) is equivalent to eu(bg)y"(b) = en(b)
a(g)y"(b) = en(b)y"(b), that is ai(g)y*(h) = y"(b).

Now, for any point ¢ = (¢, -*+, ¢*) of R", we put
B, = (b beB, ¥(b) =}, 28.7)
G. = {g 'g € GL(n), a¥{(g)c’ = c'}. (28. 8)

B, is the locus of the points of B whose second component is ¢, when

we regard B as B=BVXR". We have easily the following lemma.

Lemma 28.2. The set of g & GL(n) such that v, | B. = 4, | B; s
G. and we have
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By =B,  Gp.n = GL(n)

Bio, 0 = ¢(B), G0y = A (28.9)
G = G, k0,

%,, = Usea, cx 0,00 B

Now, from the definitions of 1+, and ¢, we get
€T =yt oy g € GL(n). (28.10)
" Hence, from Lemma 28. 2 we have easily the following
Lemma 28. 3. We have the relation
Vg =¥yt (28. 11)

only for g € A¥..
Now, for a connection I' = p®I' of &, since we have

* Dy = *dy! + 6Ly = * 4}, (28.12)

only (*¢’, *¢] are linearly independent each others at each point of ((B).
For any tangent vector V & T,(B), if we put (b)) = 6 and

tx V= 2%'B, + 'E, + 2} Qf,
then we have x' = { (,V, 6! >, 2 = { &V, 65> and o' = { .V,
Dy > =<V, XDy) > = LV, *6,> = Z. and hence
*V = 2'B, + 25(Q] + 5] E). (28.13)
Accordingly, if we take a system of differential forms and its dual
system of tangent vector fields on %, such that

{0, Dy’ — 0}, 0i} and {B., Ei, Q! + & Ei}, (28.14)

then we have Dy’ — ¢} = O on «(B) and that B,, Q! + #,E, are tangent
to ¢(B) at each point of :(B). Hence, we can write the torsion forms &’
and &f on ((B) as follows

* o= — % aztjk AN A Eijh 117’;2 6" /\ 0, (28.15)

P

* 0] = 5 R 0" N0 + Pl Mt 0 N 05 + 5 S 10 ML 0k N 0%
(28.16)
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§ 29. The canonical imbedding and connections.

The differential forms 6/ restricted on the bundle space (B) of the
principal fibre bundle {8, T\X), = ¢, AX,} = {(B), T,(X)} satisfy the
equation

() 76l = bli(g)ox ai(g), g € Al (29. 1)

by (1. 14) and (28 11). For any coordinate neighborhood (U, #)and y =

Guoy = {g | al(g) = E(y), g = GL(n)}, (29.2)

which is a left coset of GL(n) by A¥,. Furthermore, we define a mani-
fold Gy by

GU = Uf;mgjy X Glf'-y C T—](U) X GL(”) (29- 3)
and a map gy : G, — z(U) C B by

P 8) = o (8) = (@i(8) 52 (). (29. )
In the following, we assume that «, 3, y, - runover 1, 2, -+, n—1.

For another coordinate neighborhood (U, #) such that UN U s£ @, since
we have

EN(y) = al(gae(x)E(y), <(») = x, (29. 5)
we get from (29. 2) the equation
Gzy = gov(*)Gr,y (29. 6)

Since we have furthermore

7o ) = (D2 L), #0) 24 25 ()

= (eXea®)e) I, BO) o= )

we get
ooy, g) = ¢u(y, 2), 2 = gov(x)g, & € Gy (29.7)
Now, if we denote the coordinate functions of {®, X} by &, according to
(2.3), weget
¢vw = ¢v | Guy (29. 8)
and hence
(ii) (gu)* 0 = bldal on Gy,. (29.9)
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Theorem 29.1. If forthe principal fibre bundle{B, T(%), 7+, A¥,},
differential forms 6} on B satisfy the conditions (i), (ii), then the

system determine a connection F of § and it define the connection
(- )%T.

Proof. By means of (ii), for the coordinate neighborhood (U, #),
0 are written as

0l = bi(g) {dal(g) + o} ai(g)},
wi = wlu, £, g; du, dE).

Hence, for any g' € A¥,, we have

re 01 = bl(g"bi(g) {dai(g) + 7¥ ol a(g)}ai(g").
Furthermore, supposing (ii), we get

ré ol = ol(u, & gg';du, db) = ol(u, & g; du, dE)
g e GD’.?I’ g’ IS A*v;—lo
Accordingly, «i{(u, &, g; du, dE), g € Gy,,, depends only on Gy,, and

hence it must be of the form wi(v, £; du, dE). For any coordinate
neighborhood (U, #) such that UN U %= @&, we get by (29.7)

0] = bi(g) {dai(g) + i ai(@)}
= bi(g)bi(gov){akgor)dai(g) + dai(giv)al(g)
+ wr ak(gmv)ar (g)}
and hence
ol = bi{giv) {dagss) + @ ai(giv)}

— 6“" a—Z;n + ;_)h, 85" )
on" ou' “F out )

Accordingly, the system of «{ define a connection T of & = {T(&)
ToX), Tu(%)}. It is clear that the images of the differential forms on

%o for I" under * may become #{. q.e.d.
Theorem 29.2. If a connection I'' of the vector bundle {%,.—%,., %0}
is given by Dy = 3; @ 0 and 6] satisfy
(i) r¥ 6l = bl(g)or allg), g = GL(n),
(ii) (@v)* 6] = b daf,

then I'' is derived from a connection r of & by the projection map =
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of {Bo, To(%)} .

We can prove this theorem by an analogous method to the verifica
tion of Theorem 29. 1.

We have also the following theorem in connection with the equation
of structure analogous to the theorem in the ordinary cases.

Let %?; be the induced vector bundle of § by the natural map «+:
To(X) = B/ A%, — TX) = B/A¥%, and 7 : B — T,(X) be the natural pro-
jection, where A¥% = {g|lal(g) | >0, g € A%,}.

Theorem 29.3.> If an affine connection (I'!, db) (§§ 2, 3) of the
vector bundle {B,, B} is given by De; = ¢; R 01, db = ¢; Q 6(=(@= B
x*)dp, dp = 5\% Q@ du') and its torsion forms and curvature forms

& = Do’ =deo’ + ol NG, 0 =dol + ol /N 6F

can be written only in terms of 6 and 0], then it is induced from an
affine connection of § by the map 3.
Proof. By the assumption, the system of Pfaffian equations

¢’ =0, 65 =0
is completely integrable. Since locally ¢/ = 6! du' and
0 = dbl /\ du' + 0] /N0 = (0] — bidal) /\ 0,

0 — bl dal, especially bi da* must be linear combinations of ¢* and 4.
Accordingly we may regard ) = £’ and #’ as integrals of the above men-
tioned Pfaffian equations. Nextly, if we write locally 0f as ¢ = bi(daf +
wf al), then we have 8/ = (8{ — bi dal) /N 8" = bl wi /\ du". Hence, !
must be linear combinations of du" dE*. Furthermore, we have #] =
bidwk + i A\ o) at, and hence dwj + wk /\ o) must be written in terms
of du', d& only. Accordingly, doj must be so. If we put

(UiJ = i"k, du'“ - C{Jk dgk: g e GU‘”’ y= Ei %u‘

then I'., C/. depend only on the connected components of G, for a
fixed y. On the other hand, the connected components of AX , are A¥Y
and A¥5 = {g||aig) | <0, g€ AX}. I'’. and C/. must be local func-

3) This theorem is a generalization of a theorem in p. 102 of S.S. Chern's book,
Lecture note on differential geometry, Chicago (1952), which must be slightly cor-
rected.
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tions on To(%) = B/ A¥". Thus we see easily that «f define a connection
I of §= ¢*F. Accordingly, we can easily prove that (I, dp) is the
induced affine connection from (I, (4-° @ 4*)dp) of the vector bundle K=
1[1"()% by 7.

Theorem 29.4. Let an affine connection (I'', db), dp = (" Q 1*)
dp, of the vector bundlie {%, — B, %u} be given by D3 = 3,Q 0] and
assume that the components Dy’ of D3 =3;QDy’ are every where indepen-
dent of each other with 6. If its torsion forms O’ and curvature forms
0] are written in terms of 0°, Dy’ only and 6’ = 0 (mod 8Y), then (I"!, dp)
can be induced from an affine connection of the vector bundle % by the
natural map 7 : By — %u/ GL*(n) =~ ToX) = BJ A%,

Proof. Making use of local canonical coordinates (#’, &/, af), if we
put 0 = bi(daf + ok a¥), then we can set Dy’ = dy’ + 0f y* = b/ DZ,
DE' = dE' + o E". Accordingly, 67, ©{ can be written locally in terms
of du", DE" only and #’ = 0 (mod du'). Since &’ = bl wi /N du", ! are
of the forms

wl = I'Y. du* + CJ; DEY,
where I'%’; and C/ are functions on z'(U) and are uniquely determined
by virtue of the linear independency of ¢, Dy’. Since we have

0l = b;{(d(uﬁ + wf /A m;)af’,

dw! must be differential forms of degree 2 in du*, D¥*. Furthermore,

since we have
dDE* + wf N DE* = E(dof + of /N ol),

dDE’ are also differential forms of degree 2 in du®, DE*. Now, we have
d(t){ = d]”ﬁ’k /\ du® + ngj,e /\ ng‘k
—or ® h & aCHh ; %
= od dai /\ du” + rra dai /\ D&
(mod forms of degree 2 in du" and d&"),

hence we have
ar%, acCh

oar =~ o4l

Accordingly, with respect to g, I'%% and C¢. depend only on the connected
components of GL(»n), that is they are locally regarded as functions on

%—0/ GL*(n). We can easily prove that I'’ must be induced from a connec-
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tion of the induced vector bundle, which is induced from § by the map
%0/ GL*(n) — ;f%o/ GL(3#) = Ty(X), by the natural map %ﬂ - %0/ GL*(n).
Now, since A*", = GL*(n) N A¥,, GL*(n)]A¥" =R"— 0and «(B)GL*(n)
= 580 we have

B/ GL*(n) = (B A%% =~ B[ A¥Y = T(3).

Thus, the theorem has been proved.

Corollary 29.5. In this theorem, in order that (I', db) can be in-
duced from an affine connection (I', dp) of T, it is sufficient that for
some g € GL™(n), we have

r¥ ol = bi(g) ok al(e).

§ 30. Geodesics.

In §6, we have shown that the condition in order that the supporting
curve C' of a development of a curve C in T,(¥) be a straight line is that
for C there exists a function y» of ¢ such that in local coordinates

L" 3 (r)g du = du 30
a2 " ar e T var (30-1)
Let C be given by f: I — T(%) and put f - f. If C is a proper
a-curve, we have a function X of ¢ such that &« f = X = (u - f), X~

0. Considering to take the parameter in the opposite dnectmn, we may
put X > 0. The left hand side of the above equation become by means of
(3.7), (3.8), (4. 2) and (4. 11)

% _7*((12 w - w{ du

dt‘( ) (d2 I+ i dul)
= dt2( ) {®L(d** + ¥, du' du™)} = ’\lr——(u N

Hence C = ¢ C is locally given by the differential equations

& » i\ dut dut _ | d
g T ( ’ ar dr ~ Var. (30.2)

Accordingly, for the lift C in T«(%) of C, we have
FRE) = f* du’dt, f* DE'[dt = 4 F* . (30. 3)

Therefore, the submanifold 77'(C) in %., is a solution of the system
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of Pfaffian equations (in B, X R)

0 = y’ dit, Dj’j =l yj dt, (39. 4)
This solution clearly satisfies also the equations
Y6 — yi9? =0, 3 Dy* — 3 Dy’ = 0, (30. 5)

Proposition 30.1. The system of Pfaffian equations (30.5) in B,
1S completely integrable and its integral manifolds are the connected
components of the inverse images of the lifts of geodesics in X with
respect to T under the mvap 71 By o To(%).

Proof We denote by “="” the equality mod the ideal of the algebra
'/f(A*(Bo)) of differential forms on 60 geflerated by the left hand sides of
(30. 5) with coefficients in 2 ( = the algebla of scalar fields on B(.) Since
we have ‘

y'6° = y* 0%, 3’ Dy* = 3* Dy,
there exist differential forms 4, « such that
’'=3y9, Dy =y o (30. 6)
Accordingly, we get from (4. 10), (6. 10), (6.11), (9.13) and (30. 6)
=0 =0
Hence, we have

d(y’ 60" — ¥ 07) = Dy AN 65 — Dy N0 + 3 0F — yF @' =,

d(y’Dy* — y*Dy’) = Dy’ N\ Dy*— Dy* N\ Dy’ + y'y"0; — y*y" 01 = 0.
According to a theorem of Frobenius, the equation (30.5) is completely
integrable, Now, for any g € GL(n), r¥ 3y’ = bi(g)y', r¥ o’ = bi(g)d",
r¥ Dy’ = b{(g)Dy', hence (30.5) is invariant under any right translation
of B,. Accordingly, its integral manifolds are transformed each others
by the right translations. Onthe other hand, ¢’ and Dy’ vanish on the

fibres of {ﬁn, To(X)}. Accordingly, any_integral manifold P of (30, 5)
may be considered as a locus of fibres of {5, To®)}. Let #(P)=C thenC
satisfies locally

Edu* — Edu’ = 0, EDEF — E¥DE = 0.

Since I is regular, C must be a curve in T,(X).

Proposition 30. 2. For the principal bundle {(B), T(%)}, the
equations characterizing the geodesics are

p* =0, 02 =0, (30.7)
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Proof. Covering ¢* on (30.5), we get (30.7) by means of (28.12).

Since (V) is a submanifold of B,, (30.7) is also completely integrable.
Accordingly, the integral manifolds of (30.7) are the intersection of the
integral manifolds of (30. 5) and ¢ (B).

§ 31. Submanifolds of T(X) and the induced connections.

Let us consider an »n-dimensional submanifold %; of T((X), such that
p | X, is a one-one map. Putting B, = 7(%), B, = 77'(X)), we denote
by the same symbol ¢, the imbedding of ¥,, 3,, B, into T,,(¥), 3, 53-0. Then,
we get from an affine connection (I, (° & z*)dp) of ¥ the induced affine
connection (I, ) of the induced vector bundle ¥, = {3, ¥} = 0% &
by the fnbedding ¢, thatis I'y = 0¥ T, 4 = ((z + 0)° @ (c - o)) dp
(E Q@ T*(X,)). With respect to the local coordinate neighborhood (U, ),
we have

(- a) @ (- a)dp = (- 0)’ 2 @dluws- =) (3L.1)

Now, for any point y €%,, we define the order of singularity at y by
m(y) = n — dim (T, &)). (31.2)

We say especially y is an ordinary point when m(y) = 0. Let (2’) be local

coordinates of ¥, near y and put #’ = #’(v*), £/ =£7(»*), then we have at y

_ _ ou’ )
n — m(y) = rank ( o)

Example. Let X be a Euclidean plane and let x, y be its Descartes
coordinates, then we can represent any point (vector) of T(X) by (x, y;
v, ¢) where v is the length of this vector and ¢ is its argument. Let ¥, be
the submanifold defined by

y—xtang = 0,

2
X, is clearly a regular submanifold of dimension 2. Save for the points
such that x = 0, the points of X, and ¥ are in one-one correspondence
under the projection.

Now, between the tangent bundle 7(X,) and the vector bundle &, we
define a homomorphism /4 : T(X;) = 3, which covers the identity trans-
formation of %, by

PSR/ iy S U
v avt ou’ .

Clearly, this definition is independent of the choice of local coordinates.

<¢<%,v=L

(31.3)
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I is a generalized bundle map of vector bundles. The dual map 4> : Bf—
T*(X,) of & is given by

)
((z » 0) du’) = g% dvt = (v « o)* du’. (31. 4)

The set of points such that m(y) = 0 is an open subset of %X,. Since % is
an isomorphism in this set, we may identity & and T (X,) through A.
Then (¢ + ¢,)°du’ of ¥ may be identified to (z « ¢,)*du’ of T*(X,) by means
of (31.4). In this part of ¥,, we have

dpy = (hO @ 1) ym = % ® dv'.

Accordingly, the affine connection (I'y, 4Jrs) Of %, can determine an affine
connection A¥#(I";, 4 for ¥, in the ordinary sense.
Now, from any tensor field &, of %, of the type (0, g), we can mduce
uniquely and naturally a tensor field & of 7(%,) of the same type by A*.
Let us consider a Finsler manifold (X, L), let I be a metric connec-
tion of (X, L) and let g be its metric tensor. We put g, = ¢} g.

Proposition 31.1. The induced affine connection (I'y, +n) of B
Srom I by ¢, is @ metric connection with respect to .
Proof. By means of (1. 17), we have

Dg, = D(7g) = (5 @ F)Dg = 0.

Since g, is of the type (0,2), 2*g, = g is a symmetric, covariant
tensor field of 7(X,) of degree 2. The following proposition is evident.

Proposition 31. 2. If the torsion forms of I'y vanish in the open
subset of the ordinary points of X, then I'y can be regarded there as the
connection of Levi-Civita with respect to the metric g.

A development of a curve C, in ¥; with respect to (I"), ) is given
by a solution of the equations

dp’ = e} 6, del =e} ¥,
and it has a Euclidean length since I"; is metric with respect to ¢;. Since,
along C,, we have
ds”? = dp’ - dp' = (el - e))s* ¢’
= guu(v), £@)) du'du’ = g, (v)dv'dv’,
g = &y dv' @ dv',
the length of C, with respect to (I';, +~) is the length with respect to the
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non-negative metric tensor g of 7(X;). Accordingly, the metrical theory
of ¥, with the metric tensor § may be done in the vector bundle .

Theorem 31.3. Let C be a gevdesic of a Finsler manifold (X, L)
and X, be an n-dimensional submanifold of T«X) containing the lift C
of C such that = | X, is one-one. Then, C is a geodesic with respect to
the induced affine connection (I', ¥n) of B

Proof. By means of Proposition (30.5), it must be on 77(C)

yo* — 0’ =0, y Dy — 3Dy =0.

By the assumption of this theorem, = '(C) is also a submanifold of B,.
According to the definition of (I";, ) and 3, the equations above must
hold good for (B, %). We can prove also this theorem by the following
method. On (%), the above equations of Pfaffian forms become

6 =0, 67 =0

by (28.12). If we consider these equations in ¥;, then they are the condi-
tion that the developements of C with respect to the affine connection
(I'y, ) are straight lines.

§ 32. Geodesics and the first variations.

In the following sections, we shall investigate geodesics in a positive
regular Finsler manifold (X, L) from the stand point of the vector bundle
B.

Let C be a curve in To(X) given by f: I = T,X), I = [0, a]. Its
length for the interval [0, {] may be defined by

t 1
S = g (gu ¢ 0’,)? . (32. 1)
For simplicity, we will take only the points (frames) of %[, which are
orthonormal. Then, we have in the submanifold of these points
giy = O (32.2)

Since for the metric connection I of E. Cartan we have Dg = 0, we get
by means of (32. 2) the equation

0{1 + 0_;‘ = 0, (32. 3)
where we put ¢;; = g, 6f on ®B,. Now, we calculate the first variation of

the lengths of a family of curves C. in T,(¥) such that C, = C at ¢ = 0.
We get easily
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a 1
5s = S o 0 0T
0
a 1
= S oot eh) T 33,67 600,
[

Now, we shall denote the quantities corresponding to the variation e of
e by the symbols with bars, that is

60%6) = ¢, 6{(3) =0, Dy*d) = Dy’, etc., (32. 4)
For the connection F, (6.10) is written as

do’ + 0l N o' = 87 = — Cli8* A Dy (32.5)
Hence, we have

30’ — dg’ = 017" — Gl 6" — CA(s' Dy* — ¢* Dy").
Accordingly, making use of (32, 3), we get
367607 = 3 0°dp + 360880 — ) Clh 0°(5* Dyt — 6' Dy
J J J J

Substituting these into the right hand side of ds, we get

a:
I

¢ 7 0 oy =y 0 i = 00 R
g L{ds do 0F 0L — C dsoDy + Co s %’ Dy }’

" ds
that is
o - 67 ]“ S“ { 0’ o* = 0 k}—
_ J _ O 07 S J
o8 [120 ds b 07 dds+dsok+c“dSDy v
a@ ~ (]i 0,[ —
_ 32.6
* So Cise ds ds Dy" ds, ( )

where we put C’, = #"%im Ci'x, Cin = G C». The general formula
(32. 6) follows immediately

Theorem 32.1. For a regular Finsler manifold (X, L), in order
that a curve C in T\(X) have a relatively minimum length and further-
more it is so in a family of curves C., Co=C, it is necessary that we have
along C

ﬂJ .

= 32.7
d—ds+ad +C“‘dsDy 0, (32.7)

~ 01 01
LA A 32.8
Cijk ds dS O; ( )

and Y

[Z‘, 6’ ] =0, (32.9)

where | is the length of C.
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If wo use the local coordinates (x’), the above conditions become

‘fl“ F TAls), B EE L cogus), (s 20 4E
Clu(uls), £(5) ‘j;; DE o, $2.79

Cunlu(s), E(s)) U 41 _ o, (32.8)

[ gutus), e %ow ] = o (32.9)

Especially, if C is a proper a-curve, we may consider that along C
we have generally

¢ = yds. (32. 10)

Accordingly, (32.9) will be automatically satisfied by (26.2) and the

third parts in the left hand side of (32. 8) vanish by (25. 10) since T is the
metric connection of E. Cartan.

Theorem 32. 2. For a positive regular Finsler manifold (%, L), in
order that a proper a-curve C in T(X) have a relatively minimum length
and furthermore it is so in a family of curves C., it is necessary that

PR s
ond dd + Ok s = 0, (32.11)
(336 5716 = 0. (32.12)
(32.11) is locally written as
d*u’ 5 du' du®
W-FPM ds 78—_0 (32.13)

which is essentially equivalent with (30.2). C may be regarded as the
lift in To(X) of a geodesic of the Finsler manifold (¥, L).

§ 33. Geodesics and the second variations.

We shall calculate the second variation of (32.1) when C is an «-
curve and C = zC is a geodesic of the Finsler manifold (¥, L).
In order to simplify the calculations, we shall utilize only the ortho-

normal frames in the image of B in 530 under the canonical imbedding
(§ 28). We have generally on ((B)

Dy’ =6, ¥ =), (33.1)
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and hence we have for C which is the lift of a geodesic

=0, o =ds, 02=0 (33.2)
by Proposition 30. 2 and (32.1). On the other hand, for any C in T«(X),
(32. 6) is written as

5 — —1_0’_“__5“ (L’ s 0 T L‘k)—f
oS [120 ds b . _12 d ds + 0,; ds -+ C{k dS 0,. /)
[ P 1 0_1 .
-+ S Cijk _— Uﬁ dS (33. 3)
0 s ds
using only such frames. From the our assumption for C and by (33. 2)
we get

20— _j“_ ¢ o 100 T 6° \as
s [ + 30 d] Sojza(dds“””‘d Cu 55 0-)0
+5“ac‘ 6 0 g g, (33. 4)

0 ds ds " :

We shall deform the equation into an equation which will have geometri-
cal significances in our standpoint. Firstly, we have

N L
6 Cix s ds (Cuk w0+ Cux a0+ Cux 0; + Cilk BJ + Ciﬁﬁu)y y

= Cijlc.h .:l’l y’ o + Eux:n y’y’ Eﬁ
= (Cisid I ¥ 0" + {(Cip 3)n — Crsl ¥’ s,

Accordingly, (33.4) is written as
s = -
0°s = [a‘a" + 20’5—1
ds
3 YT
K 2( +00,‘+0k0 )0
Making use of (32. 3), this is equivalent to
3 J _ - —
= [65"]§ + S > [5L (d9’ + 016") — o0] ﬂ"} (33.5)
] ds .
On the other hand, along C we have easily
6’ SR |
——=(20‘0k) 26
5 o’ _ o0’ s;ods _ 600 075 08508 _ 807 - 8L 00"

ds  ds g dst  ds ds? - ds
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and )
66, = dal — 6l6% + elok + ? R7u (7 08 — 6%

+ n ik (0 01} - 010 ) + 2 u ik(au 0:§ 0:15:)

= dgl + )8 + R7p.6°ds — Pj.p68ds.

Since I' is a- proper, Pl= Pg 'x " = 0, Substituting these into (33. 5), we
get

2

i

os = 09 + | {S 25 00" — S dRT — 34T+ Rosal 7 ds |
0 J

= d

I

o + 739% + | {525 po* — 7545 — 304787
+ Roymp 6 8% ds }
Along C, we have easily also
80% = d* + 0% F* — GL0° — CA ' 0% + CAOids
= Do* — 0% ds

and hence

Y- — - _ -
ZZ—ZD(/“ — 7 dy — Eagoﬁoi

o

]
> P”—d‘s 024dS pge _ G (457 + 617
D(I“ Db’
2 ds ds ds.

Thus, the second variation along C is written as

Ps = 67 + B
D7* DT° , & —i_,)
+ ([ (SPTDF o Ry 7), (33.6)

where [/ is the length of C.

When the curves of the family C. are all a-curves, we may put §’ =
y’ ds for each curve. Using the canonical imbedding of B and only the
orthonormal frames, we may put 6* = 0 along each C, and

D6® = do* + 056 = 60" + 656 = brds
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along C. Thus, in this case, the formala (33. 6) is written as

s = [0 + A + 5 (S8 + w7 0). (33.7)

Remark. In his paper?, L. Auslander investigated the geodesics in
Finsler manifolds and tried generalizations of a theorem of S.B. Myers
and some other grobal theorems in Riemann manifolds. The basis of his
arguments was that through the medium of the induced Riemann mani-
folds on local cross sections in the tangent sphere bundle &(%), the
grobal properties of the Riemann manifolds may be carried into the Fins-
ler manifold (%, L) and that Theorem 4.2 and Theorem 4.3 in his paper
are of importance. But, it is clear that his Theorem 4. 3 does not necessary
hold good because the range of the families of curves in T,(X) containing
the lift of a geodesic in Theorem 4. 3 different from the ones in Theorem
4.2 and his Theorem 4.2 and Theorem 4. 3 may be considered as inter-
pretations of the formulas (33. 7) and (33. 6) respectively.
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4) Cf. L. Auslander, On curvature in Finsler geometry, Trans. Amer. Math. Soc.,,
Vol. 79 (1955), 378—388, Theorems 4.2 and 4.3.



