ON GENERATING ELEMENTS OF GALOIS
EXTENSIONS OF DIVISION RINGS II

MikAO MORIYA and TAKASI NAGAHARA

1. In his previous paper [4], the latter of the present authors proved
that if K is a division ring which is Galois and finite over a division
subring L then K = L[k, wuku™'] with some 2, # & K. In this note, we
shall present several precisions of this fact. Our principal results are
stated as follows: 1) If a division ring K is Galois and finite over L, then
K = L[k, vkv™?] for some k = K, v € V(L) (Theorem 1), 2) Moreover,
if Vx(L) is commutative then K = L[k] for some k & K (Theorem 3).

All the results in this note have been obtained originally by the
latter and the appendix is added by the former of the present authors.

Finally as to notations and terminologies, we follow [4].

2. Throughout this note, K be a division ring which is Galois and
finite over a division subring L, and C, Z and C, be the centers of K, L
and H = Vi(V,(L)) respectively. As we have already proved, V. (H) =
V«(L) and the center of Vi(L) coincides with C,. Moreover, H is outer
Galois over L, further, C, D C\UZ and C is finite and Galois over CM\

Z. In the following we shall say that K/L is simple if K = L[k] for
some k.

Theorem 1. K = L[k, vkv™"] for some k= K, v = V(). Par-
ticularly, in case K/L is not simple, K = L[k, vkv™'] for some k= K,
ve Cifand only if L Z C.

Proof. Incase L C C, Vix(L) = Vi(C) = K. As K = L[k, uku™"]
for some k, « K by [4, Theorem 4], our assertion is clear. If K/L is
simple then trivially K = L[k, vkv™'] for a primitive element k of K/L
and for v € V.(L). We shall assume therefore that K/L is not simple
and L Z C. Inthiscase, C, 2 Z[C] by [4, Theorem 2]. And CNZ
is an infinite set, for, if not, C is finite and so V(L) is also finite, that
is, the totall Galois group of K/L is almost outer so that K/L is simple
[3, Corollary 2]. Now set L, = L[(,]. Then, L, = L X , C, Therefore
Vi(L) = G[Z] = Cy, and L € L, C H implies Vi(H) C Vi(L) C
V(L) whence Vi(L,) = Vx(L). Since L, Z C and Vi(L) = G = Vrpup

(V(L))) we obtain K = L,[k] (= H[k]) by [4, Theorem 2]. Further,
we have C = Vi(HI[k]) = Ve(H) N Vi ({k}) = V(L) N Vi ({k}) =
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V(L [k]). This shows that the total Galois group of K/L [k] is outer.
Hence, there exists only a finite number of intermediate division subrings
of K/L[k] different from K: K,,..., K, (n > 0). As C,/ Z is Galois so
that separable, we have C, = Z{[v] for some ». Hence, K = L,[k] =
Liv, k]. If vk = kv then v = C, N\ Vx({k}) C V(H) N Ve ({k}) =
Vx(HI[k]) =Vx(K)=C and hence, Z[C]=C, which is contrary to our
assumption C, 2 Z[C]. Sincev & K, ¢ = 1, 2,..., #n), we obtain from
[4, Lemmal]l: K= L[k (v+¢c) k @®+c)']with some c € CN Z. (Note
herethat C/MN\Z is an infinite set.) Finally, in case L C C, C, coincides
with C. Accordingly our second assertion is clear from the above proof.

Lemma 1. For any a = K\ H, there exists some k with K=La, k].
Proof. Obviously, it suffices to prove the Lemma in case K/L is not
simple. If L C Cthen L[a] is commutative, but not contained in C. For,
if Llalc C, then e CC C, = V,(H) C H. Therefore, by [4,
Lemma 7], K = L[a][k] = L([a, k] for some k. Accordingly, we should
consider only the case L ¢Z C. Then, Theorem 1 proves K = L[k, vkv™]
= L[k, v] forsome k€ K, v € C.. We note here that CN\ Z is in-
finite. Evidently C C Vi (L[k]) = Vx(L) N\ V.({k}) C Vi (L[E, v]) =
Vx(K), thatis, the total Galois group of K/L([k] is outer. Therefore,
there exists only a finite number of intermediate division subrings K,
Koy..., K, (n>0) of K/L[F] different from K.
Since V.(L)/Z is finite and Galois and C,/Z is separable, we can
readily see from the proof of [1, Satz 5] that, for some %, y € Vyx(L),
Ve(l) = Z[x, yxy~'] D Z [x] D C,. Noting that Z[yxy~'] = yZ[x]y™!
D Cyand H = Vi(Vi(L)) = Vi(Z[x, yxy']), we may assume without
loss of generality that ax = xa'. Now, L[k, x] D Z[x] D C, = v so
that K = L[k, v] = L[k, x}, whence x € K, ¢ =1, 2,..., n). There-
fore, we can choose by [4, Lemma 1] some ¢ = C N\ Z such that (x + ¢)
alx+ )& K, (i =1,2...,n). Hence K= L[k (x +c)alx ~¢)]
=Llx+ )7k (x + ¢), al.

Theorem 2. If L 2 Z and somel = L\Z is algebraic over Z then
K/L is simple.

Proof. We shall denote by I, the group of inner automorphisms
of K which are generated by all non-zero elements in Z[/]. Clearly, the
fixed subring of J, in L is V.(Z[!])) = V;({!}) which will be denoted
by L, Then, we have L, C J(G (L), K) C J{&(K/L) U}, K) =

1) If a € Vi{{x, yxy~1}) then a & Vx(Z), and so az=za for some z € Z. We can
take here x + z instead of =x.
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JK/ID, KxYNJ(Ge K) = LN J(Je K)Y = J(Zny L) = Ly As
1< [Z[!]: Z] < o=, wehavel < [L: L] < o, Hence K is Galois
and finite over L,. Let ¢ be any element in L belonging to Vi(Vx(Ly)).
Then ¢+ € L N VK(VK (Ly)) C LN VK(VIL(LO)) e VL(VJ.(L-))) = Ly
Therefore, if/’ = L\L,, K = Ly[!, k] = L[k] for some » by Lemma 1.

Lemma 2. If V(L) is commutative, then there exists an element k

in K such that k and F° are linearly independent over H for all v =
VilI\ C where v is the inner automorphism of K generated by v.

Proof. We shall denote by H, the ring of all right multiplications
generated by H, and by V(L) the group of inner automorphisms of K
generated by all non-zero elements of V,(L). Consider the ring & of
endomorphisms of K generated by Vx(L) and H,. Then, & = V,(L)-
because V(L) = Vx(H). Since V(L) is commutative, H = Vg(Vg(L})
D V(L) and & is $-isomorphic to K as a right & module?. We denote
this isomorphism by ¢, and let & be the image of the identity 1 of & by
¢. Now we can choose an C-basis of V(L) {v,, vs ..., v,} such thats, =
1, »» = ». Then, as is well.known, {v,, vs ..., 0.} are H,-independent.
Since [K: H] = [Vx(L): C], {#, ¥s..., 0.} is an H,-basis of & by
[2, Satz 10]. Therefore, {o(3) = ¢(1+3) =k; i =1, 2,..., n} forms
an H-basis of K.

Theorem 3. If Vi(L) is commutative, then K is simple over L.

Proof. If Vi(L) = C[Z], then K is simple over L by [4, Corol-
lary 4]. We may therefore consider only the case where Vi (L) 2 C[Z].
Accordingly L is infinite and K 22 H 2 L. By [3, Corollary 3], H =
L[#] with some 7 € H. On the other hand, by Lemma 2, there exists
an element % € K such that & and %° are linearly independent over H
(and so k = k") for sll v € Vi(L)\C. This fact means evidently K =
H(k]. Now weset O = UU, where &, = & (K/L[k(h -+ x)]). Noting
that VK L[k ’t - .T)]) = eru;) ({k(ll + x)]') = VVKlH)({k(h + ‘L’)}) =
Vi(H{RE(E +2)]) = Ve(K) = C, it follows that K is outer Galois over
L[k(h + x)], whence each &, is a finite outer subgroup of &(K/L). Ac-
cordingly we have: order of @, = order of @ ®, where ©, is the restrlctlon

of &, to H. If x:, x.are different in L then L[k(: + x)), k(k + x)] =
consequently &; M O,, is the identity group.

Now we shall prove that £ is finite. Suppose, on the contrary, that

2) See [2, Satz 9].
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H is infinite. Then, from the preceding remarks, we can find such dif-
ferent x,, x.in L that @, @,, are both different from the identity group

and @,l = @—Lz since the total Galois group of H/L has only a finite
number of subgroups. If 8, = {oy,..., on} then ®,, = {o:0s, ..., om Vu}
with »,’s in Vi(L), where some of vs’s, say »,, is not in C. Since k(i +
%) = Kk +x)° and kG + 1) = K50 + £)7% (that is, £ (e + )
= k(h + x)%), we obtain k(h + x) ((h + 2))7' = k%1 and kB (h +
x) (B + x)°1)7" = k%1, Hence we have k(h + x) (I + x)7)7" — k;l—l(lz
4+ x2) ((h + x)°1)7' = 0. Recalling that H is normal over L, (I + x)
((h + x2)"07" and (& + x0) ((h + x)%)7" are both i in H. Accordingly the

last equation contradicts the fact that & and B are linearly indepen-
dent over H. Hence 9 is a finite set. Since L is infinite and &, N &, is
the identity group for any different x, y in L, there exists some x, = L
stich that &, itself is the identity group. Then evidently K = L[k(h +

z0)].

3. Appendix
In the sequel, we wish to present an alternative proof of Theorem 3.

Proposition 1. The group I of all the L-inner automorphisms of
K is commutative if and only if Vx(L) is commutative.
Proof. If Vg(L) is commutative then so is ¥ evidently. Conversely

suppose J is commutative. If there exist some a, b € V(L) such that
ab # ba then, as a b = ba, ab = bac for some ¢ (s£1) in C, that is,

aba™' = bc. Further, for any non-zero ¢* € C, there holds a(b + cx)a™! =
(b + c*)c’ with some ¢/ € C. As alb+cx)a™ = aba™ + ¢* = bc + ¢* and
alb + c¥)a™! = b’ + cxc', we obtain b(c — ¢’) = cx(c’ — 1). Noting
that b €C, we have ¢ = ¢’ = 1. But this is a contradiction, and conse-

quently Vi(L) must be commutative.

Proposition 2. Let ¢, ¢, ¢y be inner automorphisms of K and c,,
Cs, €y be non-zero elements in C. If es¢1r + o€y + (363, = 0 then ¢'s are
not all different.

Proof. Let x, be elements in K such that ;; = %, = 1, 2, 3). Then,
from the assumption, we have xy; + % ¥or + Xy ¥ir = 0, where y, =
2 'eixie™t (1 = 2, 3). Further, there holds 2z (yo,k, — Brye,) + Xul(ysk,

3) For x € K, x» and x: mean the right- and left-multiplications by x respec-
tively.
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— k.y:,) =0 forall k = K. If x4 and xy are K,-independent then y.k —
ky, = 0 = y:k — ky;. Hence, in this case, both y,and y; arein C. As
vy = x"'cixe” (1= 2, 3), we have x,7'x; € C, whence ¢, = ¢z = ¢z
On the other hand, if x. and x; are K,-dependent then xy -+ x4 3. = 0
for some y € K, from which we readily see ¢. = ¢

Now we shall prove the following theorem which is equivalent to
Theorem 3.

Theorem 3'. Let K be Galois and finite over L. If the group I of
all the L-inner automorphisms in K is commutative then K/L is simple.

Proof. Since Vx(L) (= Vi (H)) is commutative by Proposition 1,
H contains Vi (H). And so [2, Satz 7] shows that K has a normal basis
{kPi; i =1,2,..., n} over H where n = [Vig(L): C] and p; € J. In
case O (K/L) is almost outer, our theorem is obviously true. We shall
therefore, in the rest, restrict out attention to the case where & (K/L) is
not almost outer. Accordingly C N\ Z is an infinite field. Since H/L is
outer Galois, H = L[/] for some /.. Then we can prove that K = L{zxk
+ k] with some x & C/MN Z. This fact is obviously involved in the
following lemma.

Lemma 3. Let & be commutative, H=L[h) and {k*;i=1,2,...,n}
be an H-basis of K where o's in J. If {x;; 7 =1,2,..... } is any
infinite subset of CM\ Z then almost all L[x;h + k] coincide with K.

Proof. We shall denote by &; the total group & (K/L[x k2 + k]).

i) ©®,is outer. Let ¢ bein &; NJ. Then x;h + k* = (x;h + k) =
x;h + k, whence k* = k. Hence ¢ is contained in & (K/ H[k]) = G&(K/K),
that is,  is the identity.

Now suppose that the assertion of the lemma is not true. Then there
exists an infinite number of ;s different from the identity group. Ac-
cordingly, without loss of generality, we may assume that all &,s are
different from the identity group.

ii) There is an infinite subset S of {®;; j = 1,2,....} such that
the restriction of each member of S to H is the same subgroup of the
total group © of H/L. Since H is normal over L, and each @, is outer
by i), the restriction of &; to H is a subgroup of £ which is isomorphic
to @, As 9 is outer, it contains only a finite number of subgroups.
Accordingly, there exists an infinite subset S of {&;; 7 = 1,2,...} such
that the restriction of each member of S to H is the same subgroup of 9.

We may assume therefore, without loss of generality, further that
the restriction of each &; to H is the same subgroup of %, which is evi-
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dently different from the identity group. Then there exist «/’s in ®,'s
such that 2" = K54 h(j =1,2,...). Hence (x;h -+ k)% = x;h + &
implies (x; — x) (A%t — I - k1 — ks =0 (7 = 2,3,4). As g0,' =
t;-1 € 5, we obtain

(%) () — %) W — BT ) + B — k5 =0 (7 = 1,2 3.

Now, as is well-known, there exist non-zero c¢,, ¢, ¢z € C M\ Z such

that ¢+ ¢ + ¢y = Oand?“_,‘ (1 — x34+0¢; = 0. Then from (x), we have
=]

2 i

;EI k' ¢; = 0, which means that k « (3}, ¢;) = 0. Noting that I is

- J=1

n 3 n
commutative, we can easily see (>3 kB /) - (2] ¢5¢5) = k - (2] pitiy)
=1 =1

i=1

u

i 3
(jz‘; eici) = (k- _E]e,c.,,) ({E oh,) =0 for any #'’s in H. As each ele-
= <

ment of K is of the form é k' he with h, € H, we have proved that
o =

2‘ ¢5¢5- is the zero-endomorphism of K. Accordingly, by Proposition 2, at

J=1
least two of ¢,'s, say ¢, and ¢,, must coincide. Then, again from (*), we

obtain (x; — x.) (h — il = 0, which leads to a contradiction x, = x;.
This completes the proof.
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