A NOTE ON GALOIS THEORY OF DIVISION RINGS

MIiKAO MORIYA, TakAsI NAGAHARA
and HisaA0 TOMINAGA

In their previous paper [3]V, two of the present authors considered
Galois theory of division rings under the assumption that the total group
is I.f.d. and locally compact, and proved the existence of Galois corres-
pondence between closed regular subgroups of the total group and inter-
mediate subrings.

In this paper, we shall deal with a special class of Galois extensions
of which the total groups are l. f. d. but not locally compact and for which
there exists still Galois correspondence in the above sense. In §1, our
consideration proceeds somewhat systematically under several assump-
tions which will be added in order, and § 2 contains an example belong-
ing to the class considered in § 1.

As to terminologies used in this paper we follow [3].

1. Throughout this section, K be a division ring with the center C,
and M be a (fixed) maximal (commutative) subfield of K. For any non-
empty subset S of K, we shall denote by V. (S) the centralizer of S in K.

Lemma 1. Let M be the group of all inner automorphisms of K
generated by non-zero elements of M, and T be an intermediate divi-
sion subring of K/ M.

(i) T is Galois over M with MT(=the restriction of Mto T)as a
Galois group, that is, the fixed subring of MT inT is M.

(i) Vel(T)=Vo(T)= V. (T) for any intermediate subring T' of K/M.

(iii) If [T: Ml <oothen [T: Vo T)) =[T: MPP’=[M: Vo (T)]’<oo,

Proof. Evidently M C V,(M)C V(M) = M, thatis, Vy(M) =
M(=Vy(Vy,(M))). Further, from T D M, we obtain V(T) C V(M)
= M, whence Vi {(T) = Vu(T). This proves (ii). Finally, assume [T :
M] < oo, Then, as V,(M)= M and T/ M is Galois, we have [ Vo(M):
VelT)l = [M: Vz(T)] << oo, This proves that [T: Vo(T)] = [T : M]
« [M: Vi (T)] << oo, Accordingly we have also [T: M] = [T: V:(M)]
=[M: Vy(T)], which proves (iii).

Now we shall set the following assumption.

(a) Kislocally finite over M.

1) Numbers in brackets refer to the references cited at the end of this paper.
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Lemma 2. Under the assumption (a), any intermediate (division)
subring® T of K/M is Galois over M and the total group O&(T/ M) is
locally finite dimensional (I.f.d.).

Proof. T/ M is Galois and V(M) = M = V(M) by Lemma 1 (i).
Hence &(T/ M) is1.£.d. by [3, Theorem 3].

We shall add, besides (a), the next assumption :

(b) For any intermediate subfield M' of M/C with ([M: M'] <o
and for any intermediate division subring T of K/ M with M' D V(T),
there exists a division subring F of T such that [F: M] <<o and
M' D Ve(F),

Remark. If the assumption (b) is satisfied then V:(M’) is a central
division algebra of finite rank over M', for [F : Vg(F)] < oo by Lemma
1 (iii), accordingly M’ O Vg(F) implies V#(V,(M") = M'. Thus M'is
the center of some division subring F' of T with [F': M] < oo.

Lemma 3. Let M’ be a subfield of Mwith [M: M')] < oo and T
be an intermediate division subring of K|/ M with M' D Vi(T). Then
under the assumption (b), for any intemediate division subring T' of
K|/T, V(M) is a division subring which is finite over M and whose
center is M'.

Proof. By the above remark, there exists a division subring F’ of
T with [F': M) < oo and V. (F') = M’'. Now let 7" © 7, and we shall
prove that F' = V.. (M'). Since F' = Vn(M’) C Vp(M'), it follows that
M = VF'(VF’(M,)) = VVT,(M’) (VF’(Mf)) 2 VVT,(M’)(VT’(M,)) D M' by
Lemma 1 (ii), that iS, VVT,(M')(VF'(M')) =M = VVT,(MI)( VT'( M’) ) NOting
that Ve (M') = F' is finite over the center M’ ( = the center of Vi (M'))
by Lemma 1 (iii), we obtain oo > [F': M'] = [V (M"): M'] = [Vr
(M'): Vo (VeAM")] = [VeAM'): M']. As F'C Vn(M'"), the equa-
tion [F': M'] = [Vp(M'"): M'] implies F' = V..(M'), as desired.

Lemma 4. Under the assumptions (a) and (b), there holds Vi(Vy
(T)) =T for any intermediate (division) subring T of K/ M.

Proof. Set T, = Ve(Ve(T)). Then evidently Vi(T,) = Vi(T).
Further Vi (T) = Vi (T,) = Vi(T) = Vx(T) by Lemma 1 (ii). Now let k
be an arbitrary element in 7, Then [ M(k) : M] < oo by (a), and oo >
Mk : M] = [M: Vg, (MR)] = [M: Vy (M(k))] by Lemma 1 (ii1)

2) As K is locally finite over M, any intermediate subring of K/M is necessarily
a division subring.
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and (ii). Since Vr (M(k)) D Vi (To)= Vi(T), we obtain [ V,(Vy, ( M(k))):
M] <o, [Vr (Vr (M(k)): M] << oo and that V, (M(k)) is the center
of Vi(Vr, (M (k))) as well as of Vr (Vg (M(k))) by Lemma 3. Hence, by
Lemma 1 (iii), it follows [VT(VT“ (M(R)): M)l =[M: Vi, (M) =
[Ve,(Vr, (M(k))): M]. As obviously Vi(Vy (M(k))) C Va, (Va, (M(k))),
the last equation shows Vi(Vy (M(k))) = Vr (Vy (M(k))) S k, whence k&
is contained in 7. We have proved therefore T, = T.

Lemma 5, Let {M,; a € A} be a set of intermediate subfields
M,s of M/ Cwith [M: M, <oco, and let M' = N\ M,. If the assump-
L1]

tion (b) is satisfied then Ve(Vi(M'")) = M'.

Proof. Since [M: M,] << oo and M, D Vx(K), M, is the center of
Ve(M,) by Lemma 3, which coincides also with Vx(Vx(M,)) by Lemma 1
(ii). Hence Vi(Vx(M,)) = M, for all a € A. Accordingly we have M' C
Vel(Vi(M")) C ‘Ql Vil V(M) = a@ M, = M', whence our assertion

Vel(Ve(M")) = M’ follows.

Here, besides (a) and (b), we shall add the last assumption:

(e) Given any intermediate subfield M' of M/C, there exists a set
{M,; o € A} of intermediate subfields M,'s of M/C such that M' =
QA M, and [M: M,] < oo for all a« € A.

From Lemmas 4 and 5, we obtain the following :

Theorem 1. If the assumptions (a), (b) and (¢) are satisfied then,
between intermediate subfields M' of M/ C and intermediate (division)
subrings T of K/ M, there exist the following mutally inverse one-to-
one corvespondences :

T — V(T), M — Vi(M).

Lemma 6. Suppose that the assumptions (a), (b) and (¢) are satis-
fied. If [M': M'MN\ M,] <<oo for any intermediate subfields M', M, of
M/ Cwith {M: M,] << oo then K is totally locally finite over M, that
is, K is locally finite over any intermediate division subring of K/ M.

Proof. Let T be an arbitrary intermediate (division) subring of
K/M, and S be a finite subset of K. If we denote by M’ and M, the
centers of 7 and M(S) respectively, we have V (T) = M’ and Vi (M(S))
= M, by Lemma 1 (ii), and further [M: M,] << co by Lemma 1 (iii).
Hence, by assumption, [M': M’'MN M,] << co. Noting that Vi g g

(Ve M' N\ M) = Vel V(M N M) = M' N\ M, by Lemma 1 (ii) and
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Lemma 5, we obtain [Ve(M' M My): Vi, ar wp(M)N] = [M': M'N\M,].
On the other hand, noting that Vi(M' N M,) D V(M"Y = V(Vi(T)) =
T by Lemma 4, we have T = V(M') = VVK(M',-\MO)( M’). It follows there-
fore [Va(M'N\ M) : T = [M': M\ M,] < oo. Clearly Vi(M' N M)
D Vx(M,) = M(S) by Lemma 4, whence [T(S): T] <[M': M'N\ M,]
<< oo, This proves that K is totally locally finite over M.

In case the total group &(K/M) is L.f. d., we can introduce into
&(K/ M) the Krull's topology [2]. Further, if K is totally locally finite
over M then we can prove, by making use of the standard method as in
the proof of [4, Theorem 7], that any closed regular subgroup of &K/ M)
is a total subgroup. Thus, the following theorem is an easy consequence
of Lemmas 2, 6 and Theorem 1.

Theorem 2. Under the same assumptions as in Lemma 6, there
exists a one-to-one dual correspondence between closed regular sub-
groups of &(K/M) and intermediate subrings of K| M, in the usual
sense of Galois theory.

2. The object with which we shall deal in this section is a special
type of division rings which has been considered in [1] and [3, §4]. In
pp. 23—24 of [1], G. Kéthe proved that there exists a (countably) infinite
number of central division algebras over the rational number field C: {D,,
Dy, -} such that ([D,: C|, [D;: C]) =1 for is*j. Sinceeach D;isa
cyclic division algebra over C, D, contains a maximal subfield M, which
is cyclic over C. Clearly D% = D; X; D.X ¢+ X¢ Dy is a central division
algebra over C. If i << j, by the canonical isomorphism, D* may be

considered as a division subalgebra of D', and K = g D’ may be con-
sidered. Throughout this section, K will signify this division ring Q]
D™ and M will mean the maximal commutative subfield Ql M® of K where
M?® = M, X¢ M. X g+ X o M. Since M, M, -+, M, - are indepen-
dent over C as subfields of M, we shall set M =M, X M, X+ = .fll MP®.
Then MW = M, X M, X+ X M, = j]ill M,

In what follows, we shall show that the assumptions (a), (b) and (e)
in §1 are fulfilled with respect to this K and M.

3) This means that the intersection of any M; and the composite of all Mj’s ex-
cept M; is C and the composite of all M¢'s is M.
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A. Let S be an arbitrary finite subset of K. Then, there exists some
D™ containing S. Consider the division subring D'’ X R® of K where
R® = 1 M, Clearly D X¢R" D M(S) and [D" X0 R® : M] = [M*;
Ccl, :nd so [M(S): M] < oo, Thus, the assumption (a) is fulfilled.

B. The field M= M, X M, X+ X M, is cyclic over C and the Galois
group (the total group) & of M*/C can be represented as a direct pro-
duct of subgroups ®;, -+, &,: @ = §; X -+ X &, where &, is isomorphic
to the Galois group of M;/C and B® = @;X -+ X Gy X Gy X e+ X G, is
the Galois group of M/ M;. Let H be an intermediate subfield of M’/ C
and © be the Galois group of M/ H. Then the Galois group 9& of
M®{ HN\ M, is equal to £; X @ where £, = DN\ G As evidently i>=f\
(. x B8"), we obtain H= (HMN M,) XX (HMN M,). -

Now let W be any intermediate subfield of M/C. Then W C iliil (W
M M,) evidently. If w is an arbitrary element in W then there exists an
integer s such that w € M®. Hence, by the above remark, C(W) = (C

W) N M) X - X (C(w) N M) C (WA M) X X (WN M) C ﬁ (W
M\ M), whence it follows that W = ﬁ (WA M). Further, if [M: W]

<C oo then we can easily see that W D M, for almost all ;. These remarks
will be used very often in the sequel.

Now let T be an intermediate subring of K/ M, and M’ be an inter-
mediate subfield of M/C with [M: M’'] < oo and M’ D V.(T). Then,
by the above remark, there exists an integer j such that M' D RY=

1I M, If we set T, = (D™ X,R¥) N\ T, we readily see that T = Oj T..
y=

y=j+]

And so Vi(T)= VT(U1 T,) = f} Vo(T,) = U1 Vr (T,) by Lemma 1 (ii). By
Y= Y= V=

the above remark, VTV(T.,) = 4H1 M,;, where M,; = VTV(T Wi M. As

Ve (Ty) = ViTy) D Va(Tys1)= Vi, (T,1:) for all », we obtain the descend-
ing chain M; D M,, DD M,, D--D C. Noting that [M;: C] < oo and

O M= (Ve (TN M= V(T)N M, we can find an integer » such
that M,,= Vi(T)MN M; for all ' >, Hence, if o> max (v, «, vy)
then Vr (T,) = iﬁ] (M) C (V(T) N\ My) X+ X (Ve{T) N\ M) X R C M!

by the assumption M’ D V,(T). This fact together with [T,: M] < o
shows that the assumption (b) is satisfied.
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C. If W is an intermediate subfield of M/C then W = IT (W M,)
p=1

i

UL (W M) X

p

by the remark in B. Consider the set of subfields { W,

wuﬁmeTmmhm<mmmim5m=Wne

assumption (e¢) is therefore fulfilled.
D. Let W and M' be intermediate subfields of M/C with [M: M']

< oo, Then, again by the remarkin B, WM\ M’ = il (WN M N\ M).
i=1

Since [M: M'] < oo, there exists an integer j such that M'N\ M;= M,
for all i> j, whence WM M'N\ M, = WM M, We obtain therefore

J oo oo
WN M = il;I‘ (WN MM M) X g+(]Wﬂ M), over which W=‘H] (W

MM, is finite. This proves that Theorem 2 holds for K and M con
sidered in this section.
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