A NOTE ON CONJUGATES

HISAO TOMINAGA

Recently in his paper [1] I. N. Herstein proved the following: If in a division ring D an element $d \in D$ has only a finite number of conjugates then it has only one, that is, d is in the center of D. On the other hand, relating to Galois theory of infinite degree, F. Kasch has obtained the following ([2, Satz 4]): Let U be an arbitrary ring, and D be an infinite division subring of U. If D is an element of D not contained in D then it has an infinite number of conjugates by non-zero elements in D. Noting that any finite division ring is commutative by a well-known theorem of Wedderburn, one will readily see that Herstein's theorem is an easy consequence of Kasch's.

In what follows, we shall prove a theorem which is a sharpening as well as a generalization of Kasch's theorem. And one will see also that Herstein's theorem can be shown without making use of Cartan's theorem.

We use the following conventions throughout: By a ring we mean a ring with an identity, and by a subring we mean one which contains this identity. By a simple ring we shall mean a two-sided simple ring with minimum condition for one-sided ideals. For any non-empty subset B in a ring A, $V_A(B)$ will denote the centralizer of B in A. If K is a division ring then K^* will be the group of its non-zero elements under the multiplication of K. And for any set S, \overline{S} will signify the cardinal number of S.

Now we shall begin our course with the following sharpening of Kasch's theorem.

Lemma. Let D be an infinite division subring of a ring U, and T be the set of conjugates of an element $t \in U$ by all non-zero elements in D. Then $\overline{\overline{T}} = \overline{\overline{D}}$ or 1.

Proof. Clearly \overline{T} coincides with the index of $V_D(t)^*$ in D^* . Hence we have $\overline{D} = \overline{T} \cdot \overline{V_D(t)}$. Now we assume $V_D(t) \subseteq D$. Then there exists some $d \in D$ with $dt \neq td$. And for any different v, v' in $V_D(t)$, there holds (d+v) t $(d+v)^{-1} \neq (d+v')$ t $(d+v')^{-1}$. For, if not, (d+v) t $(d+v)^{-1} = t' = (d+v')$ t $(d+v')^{-1}$ implies t=t', from which we can readily obtain a contradiction dt = td. The last fact shows evidently $\overline{V_D(t)} \leq \overline{T}$, accordingly we have $\overline{D} = \overline{T} \cdot \overline{V_D(t)} = \overline{T}$, as desired.

Our principal theorem is stated as follows.

Theorem. Let R be an infinite simple subring of a ring U, and T be the set of conjugates of an element $t \in U$ by all regular elements in R. Then $\overline{T} = \overline{R}$ or 1.

Proof. We set, throughout the proof, $R = \sum_{i,j=1}^n De_{ij}$ where e_{ij} 's are matric units and $D = V_R(\{e_{ij}\})$ is a division ring. Then, as is well-known, $U = \sum_{i,j=1}^n Ve_{ij}$, where $V = V_U(\{e_{ij}\})$. Since our assertion for n = 1 is the above lemma itself, we shall assume n > 1, and set $t = \sum_{i,j=1}^n c_{ij}e_{ij}$ with $c_{ij} \in V$. Now we shall prove that if $\overline{T} < \overline{R}$ then t is in $V_U(R)$. By assumption $\overline{\{dtd^{-1}: d \in D^*\}} \le \overline{T} < \overline{R} = \overline{D}$, a fortiori, $\overline{\{dc_{ij}d^{-1}: d \in D^*\}} < \overline{D}$ for any i, j. Hence all c_{ij} 's are contained in $V_V(D) = V_U(R)$ by the above lemma. If $c_{pq} \neq 0$ for some $p \neq q$ then there holds

$$(1 - de_{qp}) t (1 - de_{qp})^{-1} = (1 - de_{qp}) t (1 + de_{qp})$$

$$= \sum_{i,j=1}^{n} c_{ij}e_{ij} - \sum_{j=1}^{n} dc_{pj}e_{qj} + \sum_{i=1}^{n} dc_{iq}e_{ip} - d^{2}c_{pq}e_{qp}$$

for any $d \in D$. Noting that the coefficient of e_{pp} in the last equation is $c_{pp} + dc_{pq}$, we have a contradiction $\overline{T} \geq \overline{\overline{D}} = \overline{\overline{R}}$. Hence $t = \sum_{i=1}^{n} c_{ii} e_{ii}$. Again for any $p \neq q$ and $d \in D$, there holds

$$(1-de_{qp}) t (1-de_{qp})^{-1} = \sum_{i=1}^{n} c_{ii}e_{ii} - dc_{pp}e_{qp} + dc_{qq}e_{qp}$$

As the coefficient of e_{qp} is $d(c_{qq} - c_{pp})$, we must have $c_{qq} - c_{pp} = 0$, that is, $t = c_{pp} \in V_U(R)$. This completes the proof.

The next is only a restatement of our theorem.

Corollary. Let R be an infinite simple subring of a ring U, and T be a subset of U which is transformed into itself by all regular elements in R. If $\overline{\overline{T}} < \overline{\overline{R}}$ then $T \subset V_U(R)$.

REFERENCES

- [1] I.N. HERSTEIN, Conjugates in division rings, Proc. Amer. Math. Soc., 7 (1956) 1021-1022.
- [2] F. KASCH, Eine Bemerkung über innere Automorphismen, Math. J. Okayama Univ., 6 (1957) 131-133.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received June 22, 1957)