THEORY OF AFFINE CONNECTIONS OF THE
SPACE OF TANGENT DIRECTIONS OF
A DIFFERENTIABLE MANIFOLD I, II

TomiNosUKE OTSUKI

It seems to the author that theories of affine connections on the space
of tangent directions of a differentiable manifold have been mainly stu-
died by many authors in connection with Finsler manifolds and within
the limits of metric connections. But, if we wish to generalize some the-
orems of Riemann manifolds in Finsler manifolds and try it only utilizing

metric connections in the classical sense, we shall encounter various dif-
ficulties.

In the present paper, the author will study a general theory of af-
fine connections on the space &(X) of tangent directions of a differen-
tiable manifold ¥ based on the theory of connections of vector bundles.
Firstly we shall study it from the standpoint of holonomy groups then in-
vestigate metric connections in the case Finsler metrics are given on &(%).
For a connection I' given on & (X), we can define holonomy groups in two
senses as follow. If we regard &(X) merely as a differentiable manifold
and I" as an affine connection of the vector bundle {3, &%)}, we can

obtain the homogeneous holonomy group H and the affine holonomy

group AH by means of parallel displacements alongs curves in &(¥). On
the other hand, since &(X) is in fact a space as defined above, in order
to define the holonomy groups of I' it must be natural that we utilize
only the family of curves in &(X) which are curves piecewise consisting
of tangent directions of curves in X or curves in fibres of the sphere bun-
dle {& (%), X}. Thus we obtain the homogeneous holonomy group H and
the affine holonomy group AH of I' as subgroups of H and AH respec-
tively. We call ﬁ, AH especially the holonomy groups of I" in a wide sense.

In Part I, we shall study mainly the relations between H and H.
For any regular connection I" on &(X), we shall reach a concept of derived
connection 'I" of I" (§ 15) and shall show that the homogeneous holonomy
group Hp of I coincides with the homogeneous holonomy group Hpof
'I" in a wide sense (Theorem 15. 1).

In Part II, we shall deal with the analogous problems for affine ho-
lonomy groups of I'. For I" and its derived connectien 'I", in order that

their affine holonomy groups AHr and AH.¢ coincide with each others, it
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must be necessary some condition (Theorem 22. 3). In order to remove
the condition, we shall introduce a concept of modified connection “I" of
I’ for any regular connection on &(%X) and show that making use of *I"'=

(', AHp is isomorphic with ;1\[17@ (Theorem 23.5). In Parts I, II, we
shall also prove a theorem on the structure of holonomy groups which is
a generalization of a theorem of A. Nijenhuis? in affinely connected ma-
nifolds in the ordinary sense and shall investigate the properties of the
‘groups which occur under the circumstances that we treat connections
‘on &(X) in place of connections on X itself (Theorems13.5, 14.1, 20.7,
20. 8 and 21. 1).

In Part III, we shall investigate Finsler metrics in connection with
the theory of Parts I, II. Contracting the projection map = of the tangent
bundle {T(%), X} on T(X) — X = Ty(X) and denoting it by =, we shall
‘investigate connection I" on &(%X) by means of the induced connection I’
of the induced vector bundle 7% {T(X), X} which is induced by the map
T,(¥)—€®) from I. Taking the associated principal bundle {8, %} of
{T®), x} and putting 7%{®B, %} = [B,, Ty«X)}, we can define a natural
imbedding of B into B,? and therefore discuss the theory of connections
on &(%) by means of B only®, We shall investigate the relations between
this stand point of view and the above mentioned one. Lastly we shall
discuss the affine connections in a general sense induced on submanifolds
of &(X) from I', taking the applications of them in the cases with metrics

into consideration.
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§ 1. Preliminary (I).

Let ¥ be an n-dimensional differentable manifold and ¥ be an m-di-
mensional vecor space over the real field. Consider a vector bundle § =
{8, X, =, P} with 3, X, =, ¥ as its total space, base space, projection
map and fibre respectively. In the following, we assume that all spaces
and maps have suitable differentiablity. Let a subgroup G of the m-
dimensional full linear group GL (m) be the group of bundle of ¥, for a
coordinate neighborhood system {U, | 2 € A}, ¢a: Ux X 9 — =7 (U,) be
the coordinate function of ¥ and for U,N U, 5% O

gul: U)\mUu'_)G

be the coordinate transformation of . By definition, we have for U,N\
UFnUz_/_Lg

Zultigu(x)=gun(x). (1.2)
We denote the associated principal fibre bundle of $ by % = {B, ¥, 7
G} and theone by 3 = {B, %, %, GL(m)} when we replace the group
of bundle G of § by GL(m). As is well known, if we put the coodinate
functions of fﬁ, %

52'-,\ H U)‘ X G— ;‘T_I(UA), ‘:f-h: UA X GL("Z)—);C-I(UA),

then we may put ¢» = &, | Ux X G and hence we may consider that % is

a subbundle of .

For another differentiable manifold ¥’ anda map f : X' — %, taking
{f~(U) = U} as a coordinate neighborhood system and putting the
coordinate transformation for U, N\ U, % @

g =g * (flUN T,
we get a vector bundle {3', X', =, 9§} with its group of bundle G that
is called the induced bundle of § by f. We denote this by < & It can
be easily verifield that the associated principal fibre bundles of < ¥ are

F%§ and £oF.
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For two fibre bundles § = {8. %, =, 9}, &' = {8, %, «', 9} with
the same base space ¥, putting their coordinate transformations g..: U,
NU.— G and gu: UsN\U.— G', we define the map g'w: UiN\ U,
— G X G' by

g"a(x) = (gux), glalx)) (1. 4)

and we denote the product fibre bundle which have g'.. as its coor-
dinate transformations and ) X %)’ as its fibre and its total space by §
X & and B3 [X] 8’ respectively. When § and %' are vector bundles,
furthermore we can define ¥ @ § as follows. Putting G C GL(m),
G'C GL(m"), m = dim ¥, m' = dim ¥, we define the maps g''..n: U,
NU.— GQ G'c GL(m X m') by

') = gu)@gux): IXY—-IRY (1.5)

then we obtain a vector bundle with g'/.. as its coordinate transformation
and denote it and its total space by Q@ F and 3 @ 3’ respectively.

Now, we consider a vector bundle & = {8, %, =, 9}. Any element
g of GL(m) is represented by a square matrix («?) of degree m which
may operate on ) as follows, taking a fixed base (y;,..., yn}of 9

gy) = al(g)v%ys, y=10"ys, g E GL(m). (1.6)

We regard covariant differentiation of §§ as a linear operator over the
real field which transforms the vecor space #(%) of cross sections of &
over the algebra of scalar fields on X into #(F & T*(X))

D: (R - r@FQR T*X)) 1.7

where T*(X) is the co-tangent vector bundle of ¥ which is dual to T(X).
As is well known, taking the local cross sections za(%) = ¢al%, ¥a), ¥ €
U, of %, we have

Dzaye = 2 @ wnb (1.8)
where the differential forms w,? on U, have the properties
(i) (wwh is L(G)-valued, (1.9)

G) in Uh\ Uuo~ O
ool = (@ + gn) (d (@ - gu) + wgl (@ - guh)) (1. 10)

where L(G) denote the Lie algebra of G and (i) is required since the
group of bundle of § is G. Conversely, if we have wq, g satisfying (1. 9)
and (1. 10), we can define a covariant differetiation D of ¥. We say the
system wa,f define a connection I' of §. When a differentiabe manifold
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%' and a map f: ¥ — ¥ are given, we can define a connection I'' = f%TI"
of ¢ which is given by f*waf on each U= f""(U). f*wal
satisfy clearly (1.9) and (1.10), where we denote by f*: T*(X)— T*
(X') in general the dual map of the differential map fx: TX)—T (%) of f.

Now let § = {8, X,=, 9} be a vector bundle with a connection 7.
Let i;s and ;‘? be the associated principal fibre bundles of ¥ above men-
tioned, For the induced vector bundle ¢ § = {%, ;i-%, 5D, leth: B> 3
be the induced bundle map. On the other hand, since any point b & B is
a base of the fibre ¥), of §, x = =(b), we denote this by (2, (b), ..., 2n(d))
which is called a frame at x. Then, we obtain » natural cross sections

Bt ;i;"')sl; by

h(3.(0)) = z4(b). (1. 11)
The induced connection ¢ I" determine m® differential froms 62 on B by
D3, = 3 @ 0% (1.12)

and they are written on Z7'(U,) as
gk ¢f = bi(dal + waph ab)
where b5(g) = af(g™"), g = GL(m). As is well known, for any right-
translation r, : B— B, g €& GL(m),
ro(b) = (2p(D) a¥(g), ..., za(b)alig)), (1.13)
6% have the property
(ro)* 65 = b5(2)6} ablg). (1.14)

It can easily seen that if we restrict (£ on B C B, they become L(G)-
valued.

Then, we take two vector bunde § = {8, %, =, 9}, § = {8, ¥/,
=’', 9} with the same fibre ¥), a map f: X' — ¥ and a bundle map #: 3’
— 8 such that = - 2 = f-='. For any cross section £ € # (§), we can
define an element £ = A9 E of #(§') by

') = (B ]| D) (E(f(2N)), x'EX. (1.15)

When especially §' = f< & and £ is its induced bundle map, we denote
A by f° in the following. If we put 2'pe = 22 zae on f~(U,), then
for UuN U, @ we have

Zove = Zuwe S ¥ak gu).

By virtue of the relations and (1.9), (1.10), we can define a connection
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I’ of §' from a connection I" of § by
Dzine = Zap @ F* wae (1.16)

We denote this by I'"=A#I" and call it the induced connection from I' by
. When # is the induced bundle map of f, we have clearly A I'=f<T".
Now we assume that & is written locally as £z, then we have by
(1.15) &' = Za E® E® = f*£%  Accordingly for I'' = k¥ I’ we have

D ¥ = e ® Do = 2 ® (dUF ) + Froai (£ E)
= kOxn . @ f* D7,
that is |
DO E)=(© Q f*)DE, Ec T (P (1.17)
This formula may be generalized in the following sense. Denoting the
vector bundle over ¥ with fibres TX(X) A - A TXX) which are the
exterior products of # TX(X) by {A* (X), X} (or simply A* (X)), we ex-
tend the operator D as follows :
V: F@EQ A4 (X)) = 7 (TR A+ (%)), (1.18)
VY = D when 7 = 0 and
@) for# FRAF X)) DE, =EQ w, EE T (B), 0. € ¥ (4 X))
v E,=DENw,+E ® dew, (1.19)

where the first term of the right hand side is written in the sense (£ &

@) /N w,=EQ (w0 /N w,), and
(ii) for ¥ (FQ A*(X)) 2 £, any scalar field ¢ of X

V (¢€,) = ¢ VE + (—1VE Ndg. o (1.19)

We can easily prove that ¥ is uniquely determined by (1. 19) and (1. 19").
Now, denoting A" f*: # (A* (X)) — #(4*"(X')) by f*, we can determine
the map

BORf*: F(FRAYE)) = ¥ (FQ A* (X)) (1. 20)-
By virtue of (1.17) and the relation d - f* = f* - d, we can prove that
VIHEHORfMNE)=HCQ f*) VE. (1. 21)

for any integer » >0 and & € (FQ A4*"(X) ).
Now, we say a pair (I', +) of a connection I" of % and a cross-sec-
tion « of F ® T* (X) define an affine connection of F Then the affine

connection
(L, )= (h# T, (hS ®f.*) ) (1.22)
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of §' is also called the induce affine connection from (I, yr) by k and
we denote A¥ by f <% when / is the induced bundle map of f.

Lastly, for a vector bundle ¥, we define its dual vector bundle &*
= {8, % =, '}, 9 =P* (the dual vector space of ), by its coordi-
nate transformation g'ua: UnNM U, — L(Y*) = GL (m)

gur (X) = (g (2))%. (1.23)

Its coordinate transformations ¢} : U, X 9* — z/"(U,) are given by ¢},
= (s " 1 D* = (D))", ¢asd) = ¢llx, ¥). Putting (y', -, »™) the
dual base of (i, =+, ¥.), ex(x, ¥ = 2z, then (2w}, =* zn,*) is a local
field of dual base of (2, *** Zam). For a connection I" of ¥ given by (1. 8)
— (1. 10), we can define a connection I'* of F* by

Dzaf = — 2o @ wnk. (1.24)

Then we can naturally define connections by means of I' and I'* for
various product bundles of ¥ and #F*. But we denote them by the same
symbol I'.

§ 2. Preliminary (II).

Let X be an n-dimensional differentiable manifold and consider its
tangent bundle {7(X), X, -, R"}, simply denote this by 7(X), where R"
is the n-dimensional coordinate space and is regarded as a vector space.
For any coordinate neighborhood (U, u) of X where w: U— R, u(x)
= (u'(x), -+, u’(x)), the coordinate function ¢, : U X R*— :~(U) of T(X)

is given by
0

e (x, &) = — (1), (2.1)
ou
where & = (a4}, --+, 6%). Taking another coordinate neighborhood (V, v),

UN V% &, we have the coordinate transformation of 7 (X) given by
P

gro = ov gu = (%) . UN V- GL(). (2.2)
Analogously, the dual vector bundle {T*(X), X} of {T(X), ¥} has its
coordinate function for (U, «) defined by

¢v (%, €)= du'(x) (2.1

where {é'} is the dual base of {&;}. We denote this vector bundle simply
by T*(X).

Let {3, X, =, GL(xz)} be the associated principal fibre bundle of
T(X), then B is, as is well known, the space of all admissible maps of
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.T(%). For (U, u), the coordinate function ¢, of the fibre bundle is given
by

~ Y R I D

poln g) = (al(g) 2 (), -, alle) 25 ), (2.3)

According to § 1, for any b € B, b=¢y(x, g), we have
mw=d@%7m (2. 4)

which become a base (frame) of T(¥) at =(b). Let =<{T(X), %, «r, R"} =
{B, B, X, R} and v: B,— T(X) be its induced bundle map from =.
Then, by means of (1.11), we determine the natural cross sections ¢;:
B — B, X-¢ =1 by the equations

v(e(B)) = eid). (2. 5)

Making use of these concepts, we shall consider the following fibre
bundles. Firstly, putting {7T(X) X T(%), ¥} = {T®), ¥} x {T(X), &},
define the maps

7, 71 ¢ T(X) K TEX)— T(X) (2.6)

by Z(w, y) =1y, =w, ) =w, w, y < T,(X), then we see easily that
(TE X T, TE), 7, Rt =« {T®X), %, -, R"} and r, is its induced
bundle map from r. As is stated in § 1, the associated principal fibre

bundle {%, T(X), 7, GL(n)} of {T(X) X] T(X), T(¥)} is the induced bundle
%{B, X, 7, GL(n)}. Let its induced bundle map be

0t BB, 2.7

If for any b e %, we put r,,(b~) =b, = (B) = y, we may consider b=
(b, y). Hence, we can easily prove that

{%, X, % GL(n) X R'} = {B, % =, GLn)} x {T(X), %, ¢, R.}. (2.8)
On the other hand, for any bhe 53', y is written as
=3 (B) = y'eud),
from which we obtain » natural functions
¥ : B> R (2.9)

Making use of the »# functions, we have the relation % =B X R". Let
2T X TE), TX), 7, R} = {B,, B, X, R"}, then its natural cross
sections 3;: B— 55,, X - % = 1 are given by

3 3:(D)) = (eulenld) )y 7 (B)) (2. 10)
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where » is the induced bundle map from = of %,. into T(X)[X] T(X). As
is easily seen, {%,., %, )~(, R,} is the induced vector bundle of {%,, B, X,

R”) from the map =, : B — B, its induced bundle map o, : % — B, is
given by

w(35:0)) = ez (D)) (2. 11)
By (2.5), (2.10) and (2.11), we have
(5 + 7+ 30() = w(een(B))) = elr0)) = (zs -  + 3) (B)
hence
V*Tan — 71 ° X-) (2. 12)

B,

'Xl v)ﬁs ( ’\3\

B 4————& §8>’R'~—>R
g /:l v

_‘{ ra ~T(':E)

1 *

T (%) T(X) [ T(X)

Diagram 1.

Let R* be the group of positive real numbers with respect to mul-
tiplication. For any % € R, we define an operator 1, on T(X), T(¥)[X] T(¥),

B such that

i (y) = ky, y € T.X)

xk(w y) = (w, ky), (w, y) € TA(X) X T(X) (2.13)

2 (B) = A (2ulB), (D)) = (z4(B), RFB))
and in some place we denote this simply by £k. Clearly, R* is regarded
as a transformation group opreating on T(X), T(X) [X T(X 23 We may
identify X, T(¥), B with the images of T(¥), T(¥) ] T(%), B under the
map A, respectlvely Classifying the spaces T,(X) = T(X) — X, T(¥)
X To(X), §Bo -B—B by the group R*, we obtain the spaces & = &(X),
8, B which are differentiable manifolds. Let p, p), p, be the natural map

p: To®)—>8, p: TEAXTRE -3, pp: BB, (2.14)
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Clearly & is the space of of tangent directions of %. Since

13

s m=ac Ay AprT =70 A (2.15)

we obtain naturally two vector bundles {3, &, =, K"} and its associated
principal fibre bundle {%, B, m, GL(n)} by virtue of p, p1, p» Fur-

thermore, let A operate also on % by

Wad(d)) = (b)), (2.16)
then since we have 2, - X =X - Ar, we can classify %,, — B, by the group
R* and put P, = (B, — B,)/R*, regarding B, as a submanifold of B, by
B, = 17 (B). Let be the natural map

pn: B, — BB, (2.17)
then by (2.15), (2.10) and (2. 13), we have

P0u3d))) = 5 Gu(auB)))

(edzo(2a(d) ), 7 (26(8)))
(ezp(B)), 2F(B)) = & GEu(B))),

I

I

that is

] Dol =i+ b (2.18)
Hence the vector bundle {, B, X, R"} derived from {%,,, %, X, R}
by /R* is the induced bundle of {3, &, 7, R"} by themap =n,: P—-&
whose induced bundle map v,: L, — B is obtained from ». We can

easily see from (2. 16) that the natural cross sections v, of {,, B} are
defined by

Wy(0,(5)) = pu (8)), b € B \ (2. 19)

We have also the relation on Eg,, — 3B,
Yo * pw = Py Do, (2. 20)
where 5, = ¥ | B, — B,. In the following we denote by 7, 71, 5 7. the

maps t, 1, T, . contracting on T,(X), T(X)[X T,(X), B, 55,, — B, res-
pectively,

From these relations, we can naturally define the maps ¢: & — ¥,
a: BoTQR), op: P> Band g, : P.— B, such that

’-E:()"p, 'Z-']zﬂ']'p], Ep:-dp'p,,, ‘?,,=0’,,"D,, (2.21)

We see easily that {3, &} = ¢ {T®), %}, {B, &} =2 {9B, %X}, {Pn,
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B} = o,% {B,, B} and their induced bundle maps are ¢y, 74, o, and the
relations

cea =07y Teop=0a-70 X-a,=0cpX (2.22)
hold. Furthermore, since by (2. 18) we have
e py(8) ) ) = (o, + p)(3:D) ) = E.(5:(0) ) = e(E,(D))
=¢ (a5(pa(0))),

we get

On -0 =120 - g, : (2. 23)
Lastly, by (2.19), (2.21), (2.20) we have

v an e Wlpp(B)) =5+ an pulauld)) = v - T.Gu(D))

= 23dB)) = @ pu o BB

=01 vo° pul0)) = a1+ vo + Wi(py(d)),

hence
(2.24)

Y On= 01" Vo

Thus we obtain the following commutative diagram

E ~ %n - %n
B, J,XU )m‘ Tu "
SPEINI
ST TNy
B — ’ )
V g %/’ & -
S \
3 e i — Ty(X)
\ |"’a T
T ‘y 3 % o '
T(X) = TR T.(x

Diagram 2

where we put 2 = 2 | 3B, In the following, we shall use the notations
T, T Ta Tm {4 Ty 7 Xy v inplace of 7, 7, Ty, Ta, 12, Tor T Xo, Do respectively
in cases that there will be no confusion.
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§ 3. Connection I' on the vector bundle {3, &l.

For a given connection I" of the vector bundle {3, &}, we investigate
the induced connection p< I' of the vector bundle § = {T(¥) X Tu(X),
To(X)}. For a coordinate neighborhood (U, u), we define a natural local
coordinate system (#f, £') on =~'(U) such that for y € -"(U)

a
6u1

(x), x=<z(y (3.1)

ulx), y=¢

and we call them the canonical local coordinates of T (X) for (U, u). Ac-
cordingly, the differential forms w! = ws{ on =~ (U) of T = p® I' are
written as

wl = P»{k(u, E)duk + C:j;‘(u, E) dfk (3.2)

and in UN V== @ we have by (1.10) and (2. 1)

J Ak P
oot = P (g 00 1 0,70 3.3)
ov ou Gu
Since for another (V, ») we have
— .t a N ( ou 0 ) )
YT 15 () “\ ot 6uf (),
hence for UN V= @& weget
: au” . . " k
EL = W“//, or 7}"! = a—uk'f . (3-4)
Accordingly, the equations (3. 3) are rewritten as
ou’ | %™ o' oy’ n 00" 0% n}
] = A m OV OV m OF (3.5)
Foae oo™ | outou’ V& out ot Y aut  oulou® £
Cote= 24 c,p 0¥ 00 | (3.6)

3™ " aut out
According to § 1, the condition that T is a induced connection from a
connection of {8, &} by p is that w{ are induced from differentia_l forms
on ¢~ '(U). We may assume £"=~0 on 7 '(U), hence putting & = ££"
we get
wl = Illu, tE) du* + Ci(u, tEMNE® dt* + Cllu, t E)dE".

Since («', «+, u™ ', -+, ') are regarded as coordinates on +~'(U), in
order that the forms depend only the coordinates, it is necessary and suf-
ficient that

Tl (u, tE) = Iidu, ), Cllu, t€) = t7'Cllu, &), t>0 3.7
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Cil(u, E)E* =0 (3. 8)
considering other cases.

Now, the differential forms ¢/ on ?gn for the connection F are written
on jz~'(U) by means of (1. 13) as

! = bl(da® + wial) = bi(dat ~ I't, a® du' + CF a) dEY) (3.9

regarding «’, ¥/ and 4! as local coordinates of E?S As is well known, B
has particular differential forms ¢’ which is written in =7/(U)

0’ = bl du' (3.10)

We shall denote also (z3)* 6 by 6. The tensor field dp of type (1, 1)
which represents the identical transformation of 7T (X) is written locally as

dp =2 @ du', (3.11)
ou

from which we get the tensor field =° dp (= (z° Q@ z*)dp) = d p of the
vector bundle {8", B} and

)« 2°dp) = %° - °(dp) = 5 R 0. (3.12)
We denote also =°(dp), =3(dp) by dp, dp respectively. Furthermore,
using the functions y': % — R, we define a perticular vector field 3 of
{B,, B,} by

3=y 3

On the other hand, we define a particular vector field y of ¥ by uv(y) =
(y, ). Then we get easily

=0 (3.13)

For vy and 3, we have the relations analogous to (3. 10)

¥ =blE, (b)) =y =E0]ou. (3.14)

(3. 6) shows that C/. are the components of a tensor field € of the type
(1, 2) with respect to (#?, £’). Let us put

C=CLi®R3 Q% (3.15.)

where 3' are the dual vector fields to 3. Then, the coefficients Ci. are
written on 2z (U) as

Cl = bl C & ab. (3. 16)

The differential forms {¢’, 6/} define an affine connection on the
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vector bundle 7% § which will be investigated in the following. The con-
nection I' of {8, &} determines an affine connection in the sense, that
is, for any curve C of T,(X) given by a map f : I— Ty«%) which is
locally represented by means of #’, £, we consider the system of differen-
tial equations on the space of affine frames R" X GL(#)

dp' _ . de; _ - f*ol
ar =% ar dt W) g = e

in connection with (3. 11) and (1. 8) and look for the solutions of the equa-
tions. As easily seen, the solution is uniquely determined save for affine
motions. Then we call the figure (p'(2), el(?) #'(f(#))) in R" a develope-

ment of C and #'(f) a development of the curve f= ¢ - f : I— % with
respect to C. The appropriateness of this concept will be showed in the
following paragraphs.

§ 4. The homorphism @ derived from I.

The covariant differentiation of b with respect to T is given for (U,
u) by

Dy =—— Q@ D¢, DE = dE’ + il & (4.1)
and we have
DgE = (6 + Cif') dE* + IiE'du”.

From the right hand side, we can define a tensor field @ of § of the type
(1. 1) whose component with respect 8/6u' are given by

(D = Oi + CAE" (4. 2)

and which have the property as a homomorphism of § that 7o ®=1:7%,
Furthermore, we put ® = 7°® = ®{3* @ 3;, then we have

B = plDEa" (4.3)

and the homomorphism of 7% §§ corresponding to this have the analogous
relation

Xo+®=1-%, (4.4)

We call ® = Py, D = :I;r, the derived homomorphisms from I' When
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® is an isomorphism, we say that I' is regular. Since DE’ is written
as

DE! = DJdE* + IiE'du®,
we can make use of the 2n forms du’, DEg’ in place of du’, d§’ for a
regular connection T.
In the following, we assume that T is regular and let M}, M/ be

the components of ®7, &~ with respect to 8/6u’, 3 respectively. Then
we have

Mi®} =®{M; = 3l MP; = BL M} = 4, (4.5)
it follows that by (4. 2)
M{+ MICLE =3, M+ CL& M=ol (4. 6)

and the equations for ﬁ{ similar to (4. 6). Making use of these equations,
we have

dg’ = M{(Dg'— I'iEdu®),
hence by (3. 2) we get on T7(U)
(U{ = Fglc du® + Cth.MIZ (Dgn —,.,I' Z,.Eldum)
= (I'ly — ClaMpTiE) du* + C, MiDE".
If we put
I'*,, =Tl — Chh ;’{T?}GE', 4.7)
then w{ are written as
wl = P*{Ldu" + C{;. QDE,‘. (4. 8)
The equations above clearly hold good for any regular connection 7”
of § If I' = p*I', we obtain firstly from (3. 8) the equations
Dl = E + CLEE = E, iy =y (4.9)
which show that @ (3) = 3, (5(3) = 3. We have easily
Mg =&, Miy' =y, (4. 10)
hence from (4. 6) and (4. 2) it follows that
r*i’lzft = ri‘kgi - Cijm {M;L"F:kal
= I'iE + (M — o)) ThE = MITHE,



16 TOMINOSUKE OTSUKI

that is
et = MIrgE'. (4.11)

Using this equations, (4.7) and D&’ are also written as
Pi=T*, + ChI*LE, (4.12)
DE! = DY+ I*hE du’) (4.13)

On the other hand, the covariant differentiation of the field 3 with
respect to =I" is given by '

D3 = 3,QDy’, Dy’=dy’+6ly'. (4.14)

We may regard u’, £, al as local coordinates on p'(U) and call them the

canonical local coordinates for (U, #). By means of (3.14), we may also
regard u’, y’, a/ as local coordinates, of which 3’ are defined on all the

space ®B. As it is easily seen from (3. 13), (3. 14), we have
Dy’ = biDE. (4.15)
This can be represented on %n by the equation
Dj = (7°Q=*) Dy. (4.16)

Now, it is clear that #’, dE’, 6] are linearly indepent and become a
base of T*(z~'(U)) at each point of .~ (U). If ® is isomorphism, the
same fact holds good for #’, Dg’, 6{. Hence by means of (4. 15), ¢/, Dy’,
0] form a base of T*(zz7'(U)). Thus we obtain

Proposition 4.1. If I' is regular, the differential forms ¢, Dy,

8 on %u form a base of T*(%“) at each point.

§ 5 The basic horizontal tangent vector fields and basic vertical
tangent vector fields.

We say any tangen vector X of B, is horizontal if X 05> =0
and vertical if it is tangent to the fibre of B, To(%)} through the origin
of X. By means of (3.10), (4.15), the condition that X is vertical is
that < X, ¢°> = < X, Dy’ > = 0 when the connection is regular. Any
tangent vector field X of B, which is every where horizontal or vertical
is called a basic horizontal or vertical tangent vector field if its inner
poducts with ¢/, Dy’, 6{ are constant.
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Let B:;, E:, Q! be the dual tangent vector fields of 7, Dy’, 6/, then
B, E; are basic horizontal and @/ are basic vertical from the above
definition. Let us write them by means of canonical local coordinates for
(U, #). By (3.10), (4.11), (4.15), (3.9), (4.8), we have
0’ = bldu*,
Dy’ = bi®LI*uE du® + biDLAE,
0{ = b{Iﬂ,,ka;‘du b{.Cf,.;Lal dgk ,{(ﬂ‘da;i.
Since 8/8u‘, 8/6t', 6/0a’ are locally dual to du’, d&|, daf, making
use of the inverse of the matrix of order (»° + 2n) consisting of the coeffi-
cients of the above equations and (4. 12), we get

B; = alo]ou* — I'EFae/os* — I'*L.awala/dar,

E;, = Ma,&/@f‘ - CmanM" a/aah)
Q= Ohata/aan
that is A

0 0 bl

B{ = a? (a—,‘_ - .F* El E ) I'*zmahdi aag , (5. 1)

s O

E;, = azM (65 - Cé& an 8_a§;,)’ (5.2)

Ql=a 2. (5.3)
oa;

We shall give a geometrical significance of the above equations for

the connection I'. For any point b £ 7 (U), putting x=p (B), b=,(b),
7 (b) = y, we get by (2. 4)

(b)—a{g ~(x), =&
let C be a curve in X given by f: I— %, f(0) = x whose tangent
vector at x is e;(b), where I denotes an open interval containg 0. If we

parallely displace the tangent vector ¥ of X at x with respect to ]:, this
is done by solving the differential equations

0
ou’ ().

dv’ a dw® - f) j w dv* '
df + Fm:(f(t) Vv ‘——“—"dt + Cnn:(f(t)7 v di =0
under the initial condition 2’(0) = £. By (4.13), we have

dv’

*J hd(u f) _
7 + ¥, 0)v =0

S dt '
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Accordingly, the curve C in T(X) given by f: I— T(X) such that
v+ f=f, E+f=2 have the tangent vector at ¥

7 0
uF — I'ilx, y) Eal a—gk

k .
since I:L"dtﬁ]m = gf.

Nextly, let C be a curve in T.(¥) given by f: I— T.(X), F(0) = y

at

and

[msf -7>] —
dt =0 b
then the tangent vector at y is
since we have analogously
d(E’-f)] =[ jD(Ek-J_‘)l — e
[ dt k=0 M dt heo o M.
Lastly, for (5. 3) it is clear by means of its form that €/ is the image
of the tangent vector 8/da) at the unit element ¢ of GL(n) by 3 as an

admissible map & : GL(n) — 77(») of {8, TuX)}. Thus, we obtain

Proposition 5.1. The basic tangeni vector fields B, Ei Q! on %o
for a regular connection T have the Sfollowing geometrical significances
as follow. Let b e %o, b= r,,(B), y= E(l;), x = y(Z). 1) If we take
any curve through x with its tangent vector e(d) at x and define a curve
in ToX) by parallel displaing y along the curve with respect to ;‘, then
the tangent vector of the lifted curve at y is :":*(B,(E)). ii) If we take a
curve in T.X) through vy such that the tangent vector at the beginning
point of the development of the curve is the image of eb), then the
tangent vector of the curve at y is #(E«b)). iii) QUb) is the image of
8/0a’ at e by the admissible map b: GL(n) = 77 (»).

Lastly, we define other tangent vector fields which will be frequently
utilized in the following. By means of y', *»-, ", we have the n tangent

vector 8/dy' which are independent of connections. Since we have y’ =
biE* or £ = a'y’ by means of canonical local coordinates, we get
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K, (5. 4)

Since we have locally

TeEy = at l 6 = athbm . 6 = M( ‘*(Ym)'

it follows that

) Yi = &t Ek or EL Mk Yt, (5. 5)
hence by (5.2), (4.5)
Y —ai‘(“@"“'— C.:‘l-afn‘?_h)= 4 - Cm /. (5.6)
oy'

0E* " Pan

§ 6. Torsion forms, curvature forms and developments of curves.

By means of (1. 18), the covariant differentiations of the cross section d p
T @ T*(X) is written on 7(U) as

Vin=2,0 (6. 1)
of @ = 6_ 0
v (V( ou' ) ) v (au‘ ) ou’ @ & 6.2)
where
& = d(du’) + wl/Ndu' = ol /N du, (6.3)
Q1=dw! + ol o (6. 4)

2 and @} are called the torsion forms and the curvature forms of I for

the canonical local coordinates respectively. Since T is regular, ¢’ and
O are written in terms of du*, DE* only, hence putting

v’ = M{D¥ (6.5)
we can write them as

.,Q" = —F*fk du' /\ du"' _— ijlc dui /\ ;’k, (60 6)
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01 = —R,M du® AN du* + Phy dut N7 + %S,,.” AT (6.7)

Rgm: = “Rijx-n, Sijnk = ‘—SzJ/.-n-

On the other hand, for the natural cross section Y of § we have easily

V= gui ®DE, V'y= Zzﬂ G, ©.8)

that is
dDE) + wl NDE = O] (6.9)

For 7% @, we have analogously the following equations. Since 3 = a/%°
(8/84") on p(U), we obtain by means of (1.21), (3.12), (3.13)

V (dp) = 7°(6/6u)) @ 7* & = 5, R bi =% 0} 6.1
=3,Q (de’ + 6l N\ 8"
and
Vi = at V(z°0/8u™)) = al 2°(6/6u*) Q 7* 0% = 3, Q@ bL(Z* 0} a?
= 3, Q@ (do] + ol /N 6D). (6.2")

Hence the torsion forms #’ and the curvature forms &7 of 7% I" are writ-
ten on ;7' (U) as

O'=4de’ + ol N6 = biz*y
1 =5 0 . 1A~k
5 Tht' N0F = Ch N, (6. 10)
Ol =dol + ol /\ 0% = bl (Z*0}) at
L%

we 0" N 0F + sz, 6" N7 :§tjnk PN

1
2

where T%, E?k, Ri, I?’:JM, Sh. are the components of the images of the
tensor fields 0. §§ under #° with reSpect to the natural base {3 } which
have locally components I"*} — I'*};, Ck, Riw, Six respectively. Clearly
we have

Riw = bha¥ a¥a ¥ Riww etc.,
where we put by (4. 15)
= M Dy, (6. 12)
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For 3, we have
V'3 = V (5, Q Dy)) = 3, @ (d Dy’ + 6{ /\ Dy")
hence _
dDy’ + 6l )\ Dy'= y' 9] (6.13)
Now, for a curve C in Ty (X) given by f: I— ToX), let ¢ : (C) — %n
be the imbedding map, then we get by (6.10) — (6. 13) the equations
*e=*0 =0
Hence, the equations of Pfaffian forms in RB” X GL(») X 7YC)
dp' =¢', >0, de,=¢e! *0! (6.14)

are completely integrable by a Theorem of Frobenious. Furthermore p’
depends only on the parameter ¢ of C, since (* ¢’ depend only on df.
Accordingly, p' determine a curve C' in R” as an affine space. For a
solution p’, €', we getin o (U)NZ7'(C)

die'y') = e'\(dy’ + * 0] y') = e',(:* Dy’) = e/, bl F¥ (D

this shows that e’; y’ depends only ¢ Let us consider the curve C in %

given by f = ¢ - f. From the above circumstances, we may call the figure
composed of the curve C' and the vector field e,y along C' a dewvelop-
ment of C with respect to I'. Wecall C'a supporting curve of the deve-
lopment of C.

Let C be acurve of class C"(r >2)in X given by f: I— % and
without stationary points with respect to #, that is fi 8/6¢ 5= 0 every-
where. Then, the map f = fy 6/6t clearly define a curve C in To(%).
We say that C is the /ift of C in T,(¥). Let us consider a development
of C. Since we have locally

G . 4.

14
we have
dp’ d(ut - f) ; du? -
dIZ‘ =e'; b \Ludf Ji, e'sy’ = ey bl £t = e/;b] _—(udt h
that is
dp' ,
G=en

Thus we obtain
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Proposition 6. 1. For any curve C in X without stationary points,
a development of the lift in Ty(X) of C is the supporting curve C' of the
development and the field of tangent vectors of C'.

Lastly, we induce the condition that the supporting curve of a deve-
lopment of a curve in 7(¥) is an affine straight line, From the equations
above, it is necessary and suificient that there exists a function + of ¢
such that

d?p! . dp!
at* vV dt’

By a simple calculation, this equation is locally written as

d (%(u" : f)) + al o* of B d

- f) + af db"—t(u‘ < f) =y d’ - f),
making use of (3.9) we have

AW p) Lol dw /), dw-]) (6. 15)

When C is the lift of a curve Cin X, since & = Zz’{lt (u’ - f) along C,
(6. 15) is written by means of (4. 2), (4. 11) as

2,7
T v 1t (u, S) Ay gy, duydu 2

dr t/ dt dt dt df
i t n du’
- o1 82) (5 )
* de At dt Ve
hence
d*u’ * du)d_u‘ du® _ | du’
dt’ + I ‘dt /) dt dt v dt (6.16)

§ 7. a-curves and horizontal curves.

For a given curve C of class C' in T4(X) given by f: I— T, (%),
we can prove that there exist curves E in %'n which are given by maps
f: I—%, such that # f f and 7*6/6t is horizontal and that these
curves C are transformed each others by right translations of {Bn,
To(%X)}. These curves are called horizontal lifts in 5130 of C.

A tangent vector of C is locally written as
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_F _d’-f) 8 dE - f) @
X=hr =@ o~ dat &

(7.1)

Assume f(t) e ¢(U) and take a point I; e %0 over f(t), then we get
from (5.1) and (5. 2)

0
bu * - 6u, - F* f agh' 3 (I)kbxr*E - BE' y (7- 2)
hence
gu‘ = blz B, + I*5E OLblz E (7.3)

By means of (7. 1) and (4. 13), we get therefore

1
X =48 D) iz p, v rpeibiE e + €D wiiz,E,

b d(zzi t £z, +{d<fdt F) 4 prigen s f)ﬂjt'_fl}@b&*&,

that is

_ % i
X=Fl =y {__dti 7By + L DE #4E). } (7. 4)

From this equation, we see that the horigontal tangent vector Xat b
such that 7, X X is written simply as

_~

9’
X = TB~ dt Ej (7.5)

When C is the lift of C in X, since we have locally
F=(w s, Lwn) oo g F=dw.p,
X may be written as simply
X =B, + —gg—d E,. (7.6)

Conversely, if C satisfies (7. 6), then it must be %(u’ fr=§.4
hence C is the lift of =(C) =
Here, we introduce some definitions. We call the horizontal tangent

vector field B = y’B; over %‘, the canonical horizontal vector field of
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the connection F We define the fields =, II, II*, I~ of the subspaces
Z5, IT; and subscts //5, IT; of the tangent space T5(B,) such that

E5 = SIRE(b), II; = RB() + Z5, II% = R*B(b)+ =5

respectively, where R, R*, R~ denote the real field and its subsets of all
the positive numbers and negative numbers respectively.
Then, the above calculation proved the following theorem.

Theorem 7. 1. A necessary and sufficint condition that a curve C
in To(X) is the lift of a curve in X is that the tangent vectors of a hori-
zontal lift of C in %0 belong always to the field B + =.

Nextly, for a curve in X given by f: I— ¥, we call the curve in
&(X) given by the map ¢ = p - (f48/6¢) the lift of Cin &(X). By (2.21),
we have ¢ - © = f. Then, we shall prove a theorem analogous to
Theorem 7.1 regarding the lift of curve in &(X).

Theorem 7.2. A necessary and sufficient condition that a curve C
in Ty(X) has the property such that p(C) or p(eC) is the lift in &X) of
the curve =(C) is that the tangent vectors of a horizontal lift of C in go
belong always to the field II* or I~ respectively, where ¢ means the
symmetric transformation of vector bundles.

Proof. Let fo: I— ToX) be the lift of f = = - £, that is fo = f40/0L.
If o(C) or p(eC) is the lift of the curve C given by f, then it must be

d
1' = \r
£ F =

<, s0 that the tangent vectors of a horizontal lift of C in %0 belong by
means of (7.5) to 1™ or I~ respectively. The converse can be easily
proved.

(' - f) = plE" - fo) for some positive or negative function

Now, for a curve C in T.(¥) — x given by a map f: the equation

(7. 4) and(7, 5) become clearly
- S~ J
x=ot 2@ -fze, X-2F,.

Conforming to these circumstances, a curve C in T,(¥) is called a
proper a-curve (regarding as a parameter curve), if it is of class C' and
its image under p or p - ¢ is the lift in &(X) of a curve in ¥ and C is called
an a-curve if it is arc-wise proper a-curves or curves of class C' in fibres
of {&(X), x}.

Then, we obtain immediately the following theorem which will be
fundamental for our considerations.
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Theorem 7.3. For any a-curve C, the tangent vectors of a hori-

zontal lift Eof Cin %0 belong always to the field [, and the converse
is also true.

§ 8. The homogeneous holonomy group of I
According to the theory of connections of vector bundles, we can

define the holonomy groups of the connection T = p* I' of the vector
bundle § = {T(X) [X] To(X), To(X)} which may be regarded as the holono-
my groups of the connection I" of the vector bundle {3, &}. For any two
points y,, 1 € To(X), take a curve C arc-wise of class C' which joins

from y, to y,. For any frame b of §F at 3o, let E:, be the frame of § at y,
which is obtained by prallel displacing bo along the curve C. Asis well
known, the point l;l is the end point of the horizontal lift C of C with the
beginning point b:, and the holizontal lifts of the curve C are transformed
each other by right translations (1. 14) of the principal fibre bundle {%O,
T%)}. Thus corresponding b, to I;.,, we obtain an isomorphism

hi : G, = L(Vy)— G, = L(V,) 8. 1)
which is commutative with the right translations, where V, and G, means

the fibre of ¥ and {;ﬁo, To(X)} at the point ¥ and L(V,) means the group
of linear automorphisms of the vector space V,. By virtue of these pro-
perties, we may regard kz as an isomorphism of V,, onto V, . Furthermore,

let C, be a curve joining y, to y., then, denoting the curve connecting C
and C, at y, by CC,, we obtain easily the equation

hsey = hs - kg (8. 2)
For a fixed point y, putting y, = ¥ = y;. All the maps %; make up, as
is well known, a subgroup H(y) of L(V,)= GL(n) which is called the

{(homogeneous) holonomy group at y in a wide sense of the connection T.
When we take only the curves C homotopic to zero, the coresponding

subgroup H °(y) of H () is called the restricted (homogeneous) holonomy
group at y in a wide sense. If X is separable, ﬁ“(y) is a Lie group.

We have stated above the holonomy groups of T ina general sense
regarding it as a connection of the vector bundle ¥ and merely T,(¥) as a
differentiable manifold. But, we should naturally restrict our considera-
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tion on a-curves only to define the holonomy groups of 7", since I" is an
affine connection of the special vector bundle § = {T(¥) [X] T\(¥), To®)}.
And so we call the group H(y) which is defined by taking only a-curves

in the above definition of H (») the (homogeneous) holonomy group at y
of T. We also call the group H%y) which is defined by taking only a-

curves homotopic to zero through only a-curves in the definition of H %)
the restricted (homogeneous) holonomy group at y. H(y) is an invariant
Lie subgroup of H(y). For two a-curves C,, C;, if we can deform C, to
C, through only a-curves, we say that C,is a-homotopic to C,. Needless
to say, if C, is a-homotopic to C;, C, is homotopic to C,. On the converse,
we shall investigate in future.

Now, for any point be %0, we consider all the curves through b
which are horizontal curves tangent to the field 7 at each point. And,

let P(b) be the locus of the end points of these curves. We have imedia-
tely

Proposition 8.1. If P(b) = I;., then P(b) = P(b)).

Proposition 8.2, For any g € GL(n), be %o, we have r, (P(b)) =
P (r,(0)).

Proof. Since horizontal curves are transformed each others by right
translations of {8, T.X)}, it is sufficient to prove the proposition that

(e Il = 1, (r)s = = & - (8.3)
From (1. 15), (3.10) and (4. 15), we have for ¢/, Dy’, o/
(r)*0° = bl(g)d*, (r,)*Dy’ = bi(g)Dy', (r)*0] = bl(g) 6railg), (8.4)
hence for the dual tangent vector fields B;, E;, Q! we have
(re)x By = bi(g) By, (r)x Ei = bl(g) E;, (r,)x Qf = al(g)Qr bi(g). (8.5)
Furthermore, from (3. 14) we have
(ro)*y' = bl(g)y'.
Accordingly, for the canonical horizontal vector field B we have
(r9)x (37(8) Bi(b) ) = 3(]) ()4 Bu(b) = y'(0)bi(g) B, (bg)
= y/(bg)B,(bg),
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that is
(r,)«B = B. (8. 6)
From (8. 6) and (8. 5), we get immediately (8. 3).

By virtue of the definition of H(y) and Theorem 7.3, we have the
relation

Hi»)®B) = PO N7y, y= 2. 8.7)

Now, in the set of all the curves arc-wise of C' in T,(¥) which start
from and return to a point », we define a natural equivalence relation
such that ‘

Cl Cﬂ"' Cl Ct_] Ci+2"' Cm~ CJ Cg“' Ct—] CH.?,“' Cm,

then the set of equivalence classes make up, as is well known, a group

?J-(y). We shall also represent the class itself containing a curve C of the
above mentioned set by the same symbol C. % in(8. 1) is a homomorphism

§(y) — L(V,). Let £2(y) be the subset of E(y) consisting of a-curves only,
then H(y) = h(£(y)). Furthermore, let £%y) be the subset of £(y) con-
sisting of a-curves a-homotopic to zero. Then, £°(y) is clearly an in-

variant subgroup of £2(y). Let E"(y) be the subset of 13( ) consisting of
curves homotoptic to zero. Since

~

2%) < 2 N %),
we have the natural homomorphisms
L[ = Hly)| Hy) = F(T,(X),
where F(T,(X)) denotes the fundamental group of the space T,(%).
If X is separable, 7,(X) is also separable. Thus, we get the following

Proposition 8. 3. H"(y) is isomorphic to a Lie subgroup of GL(n)
and the connected component of the group H(y).
From this proposition and (8. 7), we can prove the theorem.

Theorem 8. 4. For any b e %.., y= r?(l;), H%y) (I;) is the connec-

ted component containg b of the intersection of the fibre 77 '(y) and P(l;)
which is an integral manifold of the field II.

§ 9, Torsion tensors and curvature tensors.

For the future discussion, we shall calculate the torsion tensor and
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the curvature tensors of ; and show some properties. We had locally by
(3.2), (4.8), (4.2), (4. 13)

(I.l(J = & -+ Ci’k dfk :I‘*i’k duk -+ Cf’m;’ k, (9. 1)

DE’) = @ dE’” + Il E' du® = OdE* + I*E E du). (9. 2)

Hence, with respect to the canonical coordinates (#’, &’) for (U, u), the
torsion forms of I" are lacally written by (6. 6) as

2 = ——% Th du' N du* — Chodu' Nv% 15 = MEDE,
Th = —Th=T"— I'l (9. 3)
The tensor fields of $§ of the type (1.2) with the components locally

Ti, Ci. are called the torsion tensors of the first and second kinds res-
pectively. T4, a’k in (6. 10) are the components of the image tensors of
the tensors under =°.

The curvature forms @} was of the form (6, 7), hence we have by
(6.4), (9.1)

S
ot = 2 g - 6a€;”d N NS

"EC,:k dE" N dE* + (T di + Ch 7™ (P*hdu® + Cl®)
in which substitute (9. 2), we get
J J : .
- g—“ du* N du —%’E",'!L du A (ML DE* — T £ du®)

Ocit d A (11‘4‘c DEk *;‘L &l duk)

acL,
aft
+ (I'*h du” + Ci, Th)/\ (r*h du® + C,k )
oI 3Fn. *t sl __ 6Cu *t gl OCl, pxe g1 prxs pm
{6u" g Tnt Plud + et Daf T g
arm‘ 6cm (] 0 — L C rwe 11
agls auh a{_t P & GE" P E

(Mh Dgh ”l El duh) /\ (Mk DEIG - mk &m duk)

- ]1* }du /N duk ' {
*) 7 n 2 8 Cle
+ I Co — Clh I'*np du® /N y* + a&,,—t—c AN

Thus, we obtain the formulas
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apu ari *t ) (arfn 61"” *t z)
i _ _ —
ink ou" 9" r ot BE Irw&
-+ %), r'*L. — r'*. r*, (9. 4)
. act, _ aCl, * m) *t gl (acgc _ aclt *5 m) i
ou” oE* . Frud + du*  0E° It “unt
oI} 8Cj, oCi 8 Cl:
P{M‘ - 6;: - ou }bk 8&}:’ - agix\) *gh gl
4+ I'*, Ch — C I'*}, (9. 5)
8Ci, @oCi, . P .
Sthe = —Eh— - ﬁ + Ch Ch — Ch Cin. (9. 6)

We call the tensor fields of % of the type (1,3) with the components
Riu, Piu., Siw the curvature tensors of the first, second and third kinds
of the connection I" respectively.

Now, we shall define covariant derivatives for vector fields and tensor
fields of the vector bundle § with respect to I'. Let be given a vector
field of § whose components are locally V. By (9.1) (9. 2), we get

DVI=4dV?+ wg Vi
:( oV’ _ a8V’

ou" ot

BE + T V) dut +(66;’,f + Ch V)"

Hence if we define two covariant differentions of V/ with respect to F by

J
Viw= 66V,, 66‘; T*LE 4+ IT*, VY, 9.7
; VI
Vl;hz_aE,TTc v (9. 8)

the above equations are written as
DVj Vj, n du -+ V" sh ‘)‘ (9. 9)

Since we assume that I" is regular, that V', and V7., are the com-
ponents of two tensor fields of type (1. 1) of ¥ with respect to the frame
{8/6u'} can be easily proved. The covariant derivatives “, 2" with respect
#" and “; k" with respect to £* may be analogously defined for any tensor
fields of .
We get easily from (4.12)
6[,’{70 — ap*gk -+ ?Cit El + C) a’-‘r'h'llc EI (9. 10)

ou su” tu
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ari or*} 8Cj 61‘
ag;’k —_ aéhik _|_ aE ’1: I‘l*{k gl + C{;( *t lk

ek g). e
Substituting (9. 10) into (9. 4) and using (9. 11), we get

*3 *J
R = (ar i E) (N o ;00 ”“f)

1011)5
T +C L
a

a 3 6 s L] m. 8 s m
—( a];:‘— Sl o) P+ (22— aagz ¥ ") I
+ I, — Il IT'*,
that is
;g _(0r*h eI *t )_ Or™*h _ 0™ iw z)
R ( o ouE L ou* oE 1
+ %), I'*y — I'*. I'* 9. 49
J ar*lk_ar*l7t_|_( *t F*m/v, m) *3
+C{a" ou* fat o "
— (F*:k"— aggsmk gm) }g l-
Then, substituting (9. 11) into (9.5), we get
— _6]1*1]1; . acif *t gl _ ( *t a]—'*fh z) acijk
Phu = —7op — Zpt T¥h# = ClL (I + ) G0
J
+ 66(;26 - aagk) *WE + I*h Ch — ChI*y
*J J
—Uh (05 - 2k re i cL M- CLIh— CAI™)
; oI
— Cit agkm &l,
hence by (9. 7) we get
*j *t
Pl = —‘a;—;,:km -+ Cijk.h — Ci’z aagkm £, (9. 5"
Lastly, by means of (9. 8) we have
6C1k

" = Cfn— ChCh + CiCl + Cin Ci,,
hence substituting these into (9. 6) we get

St = Clun — Clux — Ch Ci + Ch Cia
— C; (Chi — Cha)-

(9.6
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Up to now, we did not use the equations (3.7), (3.8) which represent
r= p%® I'. By means of these equations, (9.4), (9.5) and (9. 6) follow
immediately

(Riu(u, tE) = Rbalu, &),

P,j,,,k(u, tE) = t~]P{lLk(u: ), (9.12)

Sijhk(u, tg) = t7* St (u, £), t >0,

Furthermore, by (3.7), (3.8) and Euler’s formula, we have

. arj 8(Cl &Y 6Cl, 0Ch .x s
Pijnk El& — ___ég_:ch Ek + (ivé:hg 4 ( aEkir Ek _ aEZL EA)F*{ILEI
' 4
= —(ct + 2 p ) g = o,
3
Stjmcgk = %g#fL + Cijn =Os
that is
Pl E* =0 (9.13)
Si'nx Ek = S{nx fh = 0. (9. 14)

If we transform the equations by 7° in {*3,, — B, %0}, it follows by (3. 13)
that

Pl vt =0, ©. 15)

S, S/

b ¥ = Shi ¥" = 0. (9. 16)

wn

(9.12) is also written on {%,, — %,., %(.} by virtue of (2. 13) as

A;* E{’M = -‘R;’M:)
A* Phy = t7" P, 9.17)
2% St = t—z-‘g?mc, t>0.

§ 10. The covariant differentiations on 7<% .

The covariant differential of a vector field B = 3 Vi = of 7¢ & with

respect to the connection 7% Tis given by
DB =3@DV’, DV =dV'+ol V. (10. 1)

Especially, if ¥ is the image of a vector field B of § under z°, that is
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~

B = 7°B, we have by (1. 17)
DT =D (#°B) = (7° K 7*) DV, (10. 2)

Let be locally B = V’4a/6u’, then it follows from (9.9), (2.4), (2.5),
(2.11), (3.10), (6.12) that

@DV = @ (L2,® pv!)
= @) (2 V' du + Vi )

= 5@ b (VY0 alo* + Viwal 7,

where we put

= = Mk Dy (10. 3)
which is locally written by (6.5), (4.15) as
7o=bar" (10. 4)

The above equation follows immediately the following theorem.

Theorem 10. 1. For any vector field B =7B=V 3;, the cova-
riant differential DV’ of V! with respect to =% I" is written as

DVI= V%,.0* + V' 5, (10. 5)
and the coefficients of 6%, ¥* are locally
V=0 Vil Vie=0blV', dl (10. 6)

and the components of the images of the tensor field V7%, Vi of §
under z°.
This theorem holds clearly for any tensor field of 3.

Making use of this theorem, we shall prove some formulas. Let K }} 4
be the components of a #° -image tensor field of the type (p, ¢), then we
have

BuKiin) = < B, dKizip > = < By, DKfizir >
= < By, K;, "+ Kfv} AT
= 11-1:5.,. %

EdKY) = < By dEWS > = <Ey DR
= Ky o  En 7" D v
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= Kiifen M2
and
QUK ) = < Qb dKiiin >
< Qh DKY: 3";—21{"“”05& +2K1111q55>

f

td -
= -2 Kytite < Qb o > + Z Kipitn, < Qb o5, >
o= =]

n
= = Ky ag«+2 K,,

=] B

Thus, we get the following theorem.

Theorem 10. 2. For the components K,} i of a 7° -image tensor
field of type (p, q) of =% F, we have the formulas

B{Kiin) = Kite (10.7)
E(Kie) = Koo, M2 (10. 8)
or
Y Ke) = Ky, , (10. 8)'
and
QZ(E}}:::};) = —é}] R}}:::f‘.:;‘v e+ Z K """ nohs. (10.9)
Since 3 = 7° v, it follows especially that
Exy) = <Ei, Dy’ > =di (10. 10)
and
Bi(y) =0, Qi(y) =0. (10. 11)

§ 11. System X and J,.
By Theorem 8.5, the restricted holonomy group H%y) is determined
by the integral manifolds of the field // of (# + 1)-dimensional tangent

subspaces of B. But the system spanned with B, E,, ---, E, is not gene-
rally involutive. We shall investgate the system.

Lemma 11.1. Let w® a =1,2, -, m, be differential forms on an
m-dimensional manifold which are linearly independent and X, a =1,
-, m be the dual tangent vector fields. If we put
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1

(i(t)m = ?

Ry o®* Now”, Riy = —R7ys (11. 1)

then
[Xs, Xy] = —Rpy X (11. 2)

This lemma is well known, and so we omit the proof.
Now, since (6. 10), (6.13), (6.11) are written as

do’ = —oi N\ 6 —% T 0' A\ 6% — Ch ENTE

dDy’ = —0{ N\ Dy' + y' 6,
doi = —6l /N 68 + 0, (11.3)
1

61 = 5 R0 0" + P AT 4 5 St AT

We obtain by this lemma and (6.11) for Poisson’s brackets of the basic
tangent vector field B;, E; and @/ the following formulas

[Bh, Blc] = T;‘IA B; — J’l -Ei’nk Ej - Eijnk in, (11.4)
(B, Eil = {Ch.B; — 3 Prlun E; — P @4} MP, (11.5)
(Ew Ei = — {9 St E, + S @4} ML M;, (11.6)
[By, Q%1 = —64 By, (11.7)
[E, QY] = — 6% E}, (11.8)
[Q% QL) = ok @ — &% Q. (11.9)

We denote by 2l the algebra of all differentiable functions on Egu over
the real field. Then, in the vector space over  of all the tangent vector

fields on %n with the bracket multiplication, we consider the subspace
linearly generated by B, Ej; +-», E, which we denote by

Y={(B=y"Bw Ei, -, EJ)}. (11. 10)

For any set 0 of tangent vector fields on %:., in the following, we shall
denote generally by {0} = {N}y the subspace which is linearly gene-
rated by elements of 9t with coefficients in 2I.

Now, we shall calculate the brackets of the elements of 3. Firstly,
we get by (11.5), (4.6) and (10. 10) the equations

(B, E;] = [%" By, Ex]l = y"[Bn. E:] — Ex(3") B,
‘—‘(J’h 6ljmm B; — y " ﬁl'jnm E, — ¥ F)tjnm Q;) M;an — By,
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that is
(B, Eil = — M {Ba+ ¥ Pln Q\ + 5" 3" Pl Ej}. (11.11)
In order to construct the minimum involutive system containg 3, we
must adjoin the n elements
By =By + 5 P Q} (11.12)
and S/ Q% by (11.6). On the other hand, we have by (9. 15)
¥" By = y" By = B, (11.13)
hence if we put
Y= {(By Es Siu Qh}, (11.14)

then ¥; © X¥. By a simple calculation, from (11. 8) and (10. 9) it follows
that

[Ye Q% = —64 Y. (11.15)

§ 12. Ricei formulas

In order to use them in the following, we shall derive the Ricci for-
mulas for 7 -image tensor ficlds of % from (11.4)-(11.9) and (10. 7)-

(10.9). Let Kir'dﬂ be the components of a =° -image tensor field of the
type (p, g). We have firstly

=,
K

1

i Tt i T4 ed

_;é’, E R KJ}...J&’, nE = (Bh,Bk — B,v; Bn) Kjlljtf
—~ LS, ~ ‘ ~.

(T — YR E, — R Qj K;{ g‘

— B

T} I{j] Jp "—y RanK_,J _jngg

Ii

hence
Kyoum — KSifp . = 3 R Kty — zﬁ:ﬁj; w Kt
+ T Kjyip. o — 3 Rl Kijilo., M. (12.1)
Now, by (5.5) we get from (11.5)
(B, Yil = [By, VL E] =& [B, E] + &%, E,
= CiB; — 3 Pl Ey— P Q' + G4 E,.
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On the other hand, it is evident that for the natural cross sections dp
(3.11) and dp (3.12) of F® T*®) and ¢ F® T*(B,) respectively, their

covariant differentials are vanish, that is also represented by
Dol =0,
hence we have
Bl = (35 + 5 Che = 3 Chye
Accordingly, we obtain the formulas
[Ba, Yil = Cix By + 3/ (Clon — Pih) Ey — Pl Q4
Making use of this formula, (10.7), (10, 8’), (10.9), we have
Kydnen — K;;:::;;,h; ¢ = (BuYy — YiBy) K4 5
= Ch E} iR + ¥ (Clon — Ff;m) Kji: J” t M3
+ Plul E e I{, ...... e — 2 uJB Kj]""j' 5,
that is

(12.2)

(12.3)

(12. 4)

=
Kj}..‘jg;kln Kfl jP) e = Z Pc hk K 1 ...... jl’ fand 2 PjB hk KJJ...[..._;.-.'

—+ Cth‘j}::Ja"t + y (Clk,h— Pi M:) Kjlljf‘ M(.
Then, we have analogously from (5.5), (11.6) and (10. 8")

(12. 5)

(Y, Yil=[®h E, @} E) =&, b} [E,y E,] + Yi(@HE— Y(DLE,

= - J’lg;ljhk E; — gi"hk Q% + Ei;z» E, — ‘T’;; v Ee

Since we get from (5. 5), (10, 10) and (12. 2) the equations

zi)-l‘nh = ((;;l. + J’l Etih);k = y’;k atn + y” E{m;k

= L Chh + 3 Chir = Cha + 3™ Chs Ch + 3 Clioss

that is

(I’n H Cu; y (me + th cz k)
we have

[Vie Yil = {(C& — Ch) — 3(Shu + Chix — Claan

-+ Ertnh E':lmlc - Efnlc a"‘k)} Ei - §iink Q{-

(12. 6)
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The coefficients of E; of the right hand side of the ahove equations are
rewritten by (9. 6') as

Che — Ch+ ' Cln (Cit — CB) = &4 (Ci — T,
hence we obtain finally the equations
(Vi V2] = (Ch— Ch) ¥i — S} Q1 (12.7)
Making use of (12. 7), we have easily the formulas
Eifrinen — K = (V¥ — YY) Kijle
= 3 St Kty — 33 Sk Kz (12. 8)
+ (Ch — Ch) Kitiipe.

The formulas (12.1), (12,5) and (12. 8) should be called the Ricci for-
mulas for the #° -image tensor fields with respect to =< 7.
We have obtained the Ricci formulas as an application of the fields

B, E, Q{. But the Ricci formulas for the connection T of % are similarly
true. If we transform the formulas for I” in 3¢ 3 by =°, we may obtain
(12.1), (12.5) and (12.8). In the following, we shall immediately give

the formulas for I. For the sake of simplicity, we take a tensor field &£
of the type (1.1), Locally, we put :

2oy = (@0/u)), 2z = <° (du)). (12.9)
Then we have
Dzuy = 2ay @ wl, Dz = — zuw)' Qul (12.10)
and
Vizun = 2oy @ L, Ve’ = — z0) ® 21 (12.11)

Now, let & be locally given by
® = (2wn R 207) K5,
then from (1. 18), (1.19) it follows that
({v;@ = 2wt ® Z(mj K VQK} 12.12)
VR = 20,1 @ 2wy’ @ VK, '

where
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|V K} = DK},

lng; =d(VK)+ ot~V K;— o5NA\V Kt,
On the other hand, making use of (1. 19) alone, wc get

v 2R=(ng(mi Qzw] +2ou ® VEZ(U{)K}:

where the sum of the right hand side should be calculated through a
suitable isomorphism on the product &). Substituting (12.11) into the
equation, it follows that

ViR =20, R 2] @ (25 K§ — 2% KY). (12.14)
Thus, we obtain the formulas

V> K} =9 Ky— QK|
and in general

\vi K};:::}g = 2 Kjite — 2%, K e (12. 15)
* B

(12.13)

which are equivalent to the Ricci formulas.
On the other hand, we get by (9. 9)

V Ky = K}{:zziﬁ;h du" + Kjtljme 7"
Ve = D(Kjma) AN du® + Kjiie, @ (12. 16)
+ (D Kie) N7+ Kpien Vit
and by (6. 8)
V7=V (M:D:™) = DM AN DE+ MLVE"
= (DM}) O + MEE OF,
that is
Vi* = — MiDD, A7 + MEE O (12.17)

Substituting (9.9), (12.3), (12.6), (12.17), (6.6) and (6. 7) in the right
hand sides of (12.15) and (12, 16), we shall obtain the Ricci formulas for

the connection /" of 5.

§. 13. The minimum involutive system Y. derived from ZX.

In succession we shall calculate the Poisson’s brackets of the system
Y. By means of (11.4), (11.7), (11.12), (10.7), (10.9), we get

[Em Bk] = [Bn - J’V st;'z'n Q% Bk—l_ylnpi’éht”lcQJi::]
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= [Bu Bl + 3 Piul@Q, Bl — Bu(y'Piw) Q)
+ Py [Br @] + Bu(y' Piu) QS

+ 3 Pun " P [QY, Q]
+ 3 Plun QY (3 P QF — ¥ P QU3 Piun) QY
= {T,{L - yl(FnJZk - Eﬁzjlh)} B; — ¥ fe—z]mh E;
 {Riw + ¥ (Pns — Pien) + ¥ (Plu — Pi) 9™ Pl

+ Wy (Pey Pilvn — Piin Plun) } Q)
= {Tnjk - yl(thlk. — ﬁcjm)} Ej - 3’1 ﬁzl;m E,
— {Riw + 3 (Piws — Pilun) + T, ¥ Pl

3y (Pd vn Blu — Pl Plon)} @Y,

hence
[Em EL] = ’"{ sk y"( Pijlh.k. - ijl.'c,h) + T _’V" Pijim
+yl' F?fwn yl" Py — y"" Pnii vk y" Fiml’lb} QJi (13- 1)
{mod ¥ y).

We now introduce a convention that for any tensor field of the type (5, ¢)

ponents of the tensor field of the type (p, ¢ —1) obtained by the contrac-
tion of the tensor product of this tensor ficld and vy with respect to its
3th covariant sufix and £. Forany tensor field of z%%, we take the
same convention by means of the vector field 3, for instance

Py =y P, etc. . (13.2)
Then, (13.1)is written as
[By Bl = — {Rihe + Pibuse — Pihin + Tt Plon
+ Plo P — Phoe P} Q!
(mod ).

We get similarly from (10. 8), (10. 10) the equations
[En, Ef»] = [Bn -+ Ejou an EL]
= [Bn, Ek] + Fijoh [Qj, Ek] - Ek(ﬁ:'ﬁm)Q?
= {Cpi Bn — Pin Q5 — (Plow)y Q') Mt
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= _{Ejm + (Rjon);t + EITL Fijam} j’zé Q5 (mod X)),
that is
[Ba, Ei] = —{Piu + (Plw). + Ch PP} ML QS (13. 3)
(mOd 2]).

Nextly, from (11.2), (11.7), (11.9), (10.9), (10.11), we get
[Bi, Q] = [Bu+ P.u @i Q]
= (B Q1] + Pinl@ Ql1 — QIP.LQ
= — 3\ Bi + P @ — Pl o Qi
+ Pl @ — Pl @ — 0 P,'y @i = — 31 By,
thus we obtain the equations analogous to (11. 7) as follows
[Bh Qi = — 4 B.. (13.4)
Furthermore, for any z° -image tensor field we get from (10.7), (10.9)
Bu(KYyn = Kiin, — wﬁ: P oy KSpitile + L P, Lo Ko iidpe (13.5)
By means of (13.4), (13.5), we get immediately the equations
(B Sfu @) =(Sfun — P St + Pla SMWQL  (13.6)
(mod ~).
Lastly, we have
(St Q%) S&wmer QU] = Stnrwr Sfwrnes [QY, QU]
+ S QY (S wren) QU — S QUr (S ) QY
= {5} wi Sihrwr — S sm
+ Sdww (=6 o) S; Wi + 0F Sy k)
— S s (— 83 Siiws + ¥ Spd ner)} QF (mod X)),
that is
(S QY Sitwrer Q1] = — (Suvrir Sthrirr — Sinrer S @ (13.7)
(mod X')).

From the above calculations, we see that the vertical tangent vector
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fields of the right hand sides of (13.1), (13.3), (13.6) and (13. 7) must be
the newly adjoined elements to the system Y, as generators. For the
sake of the following discussion, we shall now introduce some concepts
and prove lemmas.

We denote by I the set of all the differentiable field of square ma-

trixes of degree » defined on §Bn. Then, Mt is a Lie algebra over A with
the ordinaly addition and the bracket multiplication

[K, Hl = KH — HK, K, He 9.

The dimension 9t is #* but it is oo as a Lie algebra over the real field.

Let any tangent vector field X on %., operate also on any element K =
(K% € M by

X(K) = (X(K) ) (13.9)

To any element K & &, we correspond a vertical tangent vector field
defined by

K Q =K;Qi. (13.10)
Then, we get immediately

Lemma 13. 1. For any K, H< Tt and any tangent vector field X,
we have

X(K, H])=[X(K), H + [K, X(H)].
By (11.7), (13.4), (11.8), (11.5), we get easily

Lemma 13. 2. For any K = ((K))) and the tangent vector field X, =
Bm Bh: En,, Yn, we have

(X5 KQ] = X,(K)Q — Ki X
Furthermore, by (11.9), (10.9) we get also

Lemma 13.3. Let K,‘}l 5r and W""l % be the components of the =°

-images of any two tensor fields of the type (p+1, ¢ + 1) and (v + 1,
w+1) of §, then we have

[ m Jv Q 'i"fl kv QL = K,JI jp ijl kn KJJ1 Jp thi" n )QJ
{mod { JJ" j"’ Qi, ud’ x',‘"" Qn})

From the components K}j‘}iiij;', we consider an element of 9 which
is written as :
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Kipie = (Kfyie)
in the following.

Now, from the right hand sides of (13.1) and (13. 3), we define two
tensor fields of the type (1. 3) of =% ¥ with the components such that

- ~, ~ ~ =,
Vi = R + Pionx — Plown + T Plon

4+ Pl Pl — Plo Pio, (13.11)
Wi = Pl + (Plod + CP% Plom (13.12)

Clearly the above tensor fields are the images under z°. Since we have
from (10. 10), (10.11)
('ﬁjion):k = Ejioh;k + Pjimh J’h:k
= P—Jiuh,‘k + Ei‘mh 6;:"
= thuh;ﬁ: + ‘Isj"kh + ;jimh a)?,
(13. 12) is written also as
Win = Piw + Plo+ Plan Cl% + Piom Cit + Pilawse  (13.12))

Let us now denote by 1l = Uy all the elements which are obtained
by repeatedly but finitely operating B; and Y, on Vi, Wy and S,. Let
us denote also by 9 the subalgebra generated by 1, that is the mi-
nimum subalgebra containing 1. By this definition, it follows that U is
invariant under B;, Y; and 9 is also invariant by virtue of Lemma 13. 1.

Lemma 13. 4. By(Mp) = Y, (Myp) = My

Now, for any point be %o we define a subset of the Lie algebra over
the real field of all square matrixes of degree n by

M () = {KOB) | K € D} (13.13)
which 1is clearly a subalgebra from the definition of r.

Theorem 13.5. For any b € B, y=,:r(l;), H"(y)(l;) is the image of
the subgroup of GL(n) which is generated by W (b) by the admissible
map b: GLn) — 77'(y) = G,

Proof. According to Theorem 8.5 H%y) (b) is the connected com.-
ponent containing b of the intersection of G, and P(b) which is the in-

tegral manifold through b of the field 77. Since J7 is the field of the (2+1)
-dimensional subspaces spaned by the tangent vectors of the system JI,



CONNECTIONS OF THE SPACE OF TANGENT DIRECTIONS 43

the integral manifolds of /7 coincide with the integral manifolds of the

minimum and involutive system Y. containing X¥. Owing to § 11, X.

is also the minimum and involutive system containing ¥,. By Lemmas
13.2, 13.3, .. is a submodule containing X, + WirQ. Furthermore, by
Lemmas 13. 2, 13.3 and 13.4, X, 4+ M @ is involutive. Hence, we have

Jo =231+ MWr Q. (13.14)

Let us denote by I7. the field of the tangent subspace spaned by the
tangent vectors of the system Y.. Then, at be %0, IT.. is the tangent
subspace spaned by B;(E), Eg(é) and the vertical tangent subspace iy
(b) Q(b). Accordingly, PBN G, is a manifold whose tangent space at
b is Mn(b) Q(b). Since H" (y) is a Lie group, the image of the subgroup
of GL () which is generated by EDEP(Z;) undr the map b must be contained

in PN G,, hence it must be the component of P(b) N G, containing b
considering on the dimension of this subgroup.

§ 14. Structure of the holonomy group H%(y).

We shall investigate the structure of the holonomy group H°(y). We
may obtain immediately from the computations of (13. 1)

[Bh, Byl = (T — Piw + PiBi — R Ei — Vi@l (14.1)
and we had already (12. 7)
[Va, Yi] = (Che — Cha) Vi — Sfu QL. (14.2)
Then, by means of (12.4), (11.15), (10,8) and (13. 12) we ohtain
[Bi, Yi] = [Bu+ Pia Q) Yil
= [By Y + PlnYi — (' Pl @1
= CiuBi + (Cien — P MYY, — Pl Q1
+ P Yi— (3Pl Q1
= Cl Bi+ {Pdn + (Clin — PJ) M} Y,
— [P+ (7 Pl + Ci Plon} Q1
that is

(Bi, Yil = ChBi+ {Phy + (Cla — P ML} Yim Wiw QL (14.3)
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Now, any element of the set U defined in § 13 is of the form such that
Ky ;= (K}ss) g2

according to the convention for notations. Hence, by the above formulas
and (10. 8"), (10.9) we have the equations

(BuB: — Bi Bi)(K,.;) = [Ba, Bi] (K,,.;)

= e Kipog) = 33 Vi K,

+ (Tie — Piu + Pdo) By (K y) — R M1K) 555 (14.4)
(B,Y: — Y. By (Kjps,) = [Ba, Yil (Kj,..s,)

= [Wh Kpos,) = 33 Wi Ky,

+ e ByK;,.s) + {Pém + (Citn — Pl MI} K, g5 (14.5)
and ‘
(YhYk i YLYn) (K;]...jq) = [Yh, YL] (K;l...jq)
= [Shk: KJJ"'jq] bl Ep ’S.jtﬁhk Kjl"'L"'J-]

+ (Cle — CA) Kypg i (14.6)

We shall divide U into three parts. Let us denote by B,..2, Wn+2 and
©n+2 the subsets of the elements of U1 which are obtained by operating
B, -, B,, Y, -, Y, repeatedly at most m times on the sets (Viy), (W)
and (S,:) respectively. If we put

B = Vs, B = U By S =G,
m=0

m=( m={

then 1 = B, U B.. U S...

Theorem 14. 1. The submodules {B.}, {W.} and (8.} are ideals
of the Lie algebra W over N, and {Up} = Vin

Proof. Let Spis, Omss be any two of {Buso}, {Waio}, {Sn-of, then
we see from (14. 4)-(14. 6) that

[Rm-i—i’y '@l] c Rm—Ha m = 0) 1’ 2, R

where the left hand side representes the set of Poisson’s brackets of any
elements of &,,. and 9. and we shall usc this notation for any two
subsets of M. Furthermore, making use of Lemma 13.1, we obtain

[‘Qm#.‘, @2] cC [R'm-!—;h 'i)’.’] + Rm+6 = '@m+5
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and inductively

[Rins2, Opra]l T K, (14.7)
m, p=0,1, 2, -,
Hence, we have the relations
[&., R.] C &.
[, D] C &N Do (14. 8)

e, H. = {B.], {W.}, {&.}]
These relations will give the proof of the first part of this theorem. On
the second part, since {U} = {B.} + {W.} + {S.}, we get from (14. 8)
the relation
({u}, {u}l c {uj,

which shows that 1l is a Lie algebra over 2, hence it must be Mir.

Now, we denote by &,,,. the set of the elements of &,,. which are
obtained by operating Y, .-, Y, alone and put &', = \U &',.,-. Then, we

mal)

obtain analogously from (14. 6)
[{®’m+?}) {@’v+2}] c {@,m+9“»‘4}7
hence
[{&.}, &.l]c {©.} (14.9)
Thus we obtain the following
Theorem 14. 2. {&'.} is a Lie subalgebra of Vir over .
For any point y € T((X), x = «(y), the set of %z corresponding to all
the closed a-curves at y in 7T.(X) — x must be a Lie subgroup of H"(y)
since the fundamental group of the sphere of dimension n — 1 (2 >>3) is

vanish. We shall denote this group by H*(y). Then, we have a theorem
analogous to Theorem 13. 5.

Theorem 14.3. For any be ‘ga, y=x (I_)), H*(y) (b) is the image
of the subgroup of GL(n) which is generated by the Lie algebra {&'.}
(5) over the real field under the admissible map b.

§ 15. Derived connections.

According to §§ 11— 14, the homogeneous holonomy group of the
connection I' was determined by the tangent vector fields B, E; over
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B and owing to the right hand side of (11.11) we define a connection of
7% ¥ determined by the differential forms on 8, such that

0] = 0] — P 6° (15. 1)
in place of ¢/ for I'. On the other hand, if we take for each coordinate
neighborhood (U, ) of ¥ the differential forms

"ol = ! — Py du* (15. 2)

then 'w{ satisfy (3.3), (3.7), (3.8) by means of (3.3), (9.12) with respect
to w{ and so the system of 'w{ determine a connection of ¥ which is in-
duced from a connection ‘I" of the vector bundle {3, &(%)} by p. We
shall call this connection I’ the derived conection of I'. Then, we can
easily see that ’¢{ are the differential forms for ‘I
If we put 'wi = 'l du® + 'Ci dE*, we have

/F{k = Fijx - Pijuka ’C:{k- = C{k’ (15. 3)

hence
' = @f, 'Ml = M, (15. 4)

that is @, = ®r. If we denote by ‘D the covariant differential with
respect to 'I", we get from (15. 1)

'Dy’ = Dy’ — PJo 6" (15. 5)

Accordingly, the tangent vector fields 'B;, 'E,, 'Q{ dual to '¢?, 'Dy’, '¢!
are given by

'By = B + Pty Ei + PluQ}, 'Ei=E, 'Ql = Q. (15. 6)
Hence, by (15.4) and (11. 2) we have immediately

'Yy = Y, (15.7)

'B, = B + Ply En (15. 8)

These equations show that
{('Blr ot ’Bm ,E]: ) ,En)} = {(B-h "y Bm E]’ A Eﬂ)}' (15- 9)

In the following, we shall denote by Hrn(y), etc. with the symbol I' the
homogeneous holonomy group at a point y € 7,(X) for the connection
p'Q' I of %, etc.

Theorem 15. 1. For any connection I = p* I, we have

He(y) = Ho(y), HE(y) = HiN(y).
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Proof. On the system X and X, of I' defined by (11. 10) and (11. 14),
we have by (15.9) the relation
I {(,BI, °ty ,Bm ,E]; Tty ,E'n)} C 2’1,

hence the minimul involutive system containing the system {{'B,, -+, 'B.,
'E,, -+, '"EJ} coincides with X.. ‘B, --:, 'Bn, 'Ey, -+, 'E., are the basic
horizontal tangent vector fields with respect to 'I", the integral manifold

of the system {('B,, -+, 'B,, 'E;, ---, E,)} containing a point b =B, coin-
cides with the integral manifold Py (3) = P(b) (§8) of the system ~. In
general, for any connection I, we shall denote by Fp (b) the integral
manifold containing a point be Fo of the system {(Bj, >+, B., E,, -,
E,)} of I'. Clearly, Pr(b) is the locus of the end points of all horizon-

tal curves with respect to I' through the point 5, hence we have the
relation analogous to (8.7)

He(9) (B) = Pe () N7 (). (15. 10)
As stated above, we have
Por(b) = Pr(b).
Thus, we obtain from these relations and (8. 7)

Hi(y) = He(y).

In the next place, we shall prove the second part of the theorem.
The group H{(y) as the image of £"(y) under the homormorphism #; is
the connected component of the identity of Hn(¥) according to Proposition
8.3. On the other hand, H&(y) is the image of 2°(y) under ks by de-
finition but we have a proposition similar to Proposition 8. 3 on this group
considering the homomorphisms

2 »/ E"(y) — H( »/ H( ) — the fundamental group of T, (%)
under the condition that ¥ is separable. Hence H *(y) is the connected

component of H { ) containing the identity element. Thus, we obtain the
relation

—~

HR(y) = H.p ().

By virtue of this theorem, with respect to the homogeneous holonomy
groups Hi(y) of a connection I' of the vector bundle {3, &(¥)}, itis
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sufficient that we may consider the homogeneous holonomy groups ﬁ,p (»)
in a wide sense of the derived connection ‘I" of I" which are obtained re-
garding &(X) merely as a differentiable manifold.

Theorem 15. 2. In order that for a connection I' of {3, &(X)} we
have Hy(y) = Hp(y), for any y € To(X), it is necessary and sufficient
that P, = (P}y) defined. by the curvature tensor of the second kind of
I belong to {Ur}.

Proof. By means of (8. 7) and (15. 10), for any ¥ € Ty(X), in order
that Hq(y) = ﬁp( ¥), it is necessary and sufficient that the integral
manifolds of the system >} = {(B, E,, :-, E,)} and the system {B,, -,
B., E, -+, E,)} have always the same intersections with the fibres of
{%0, T,(X)}. Furthermore, the two systems of integral manifolds con-
tains horizontal curves over a-curves of T,(¥X). Hence, it is equivalent to
that the integral manifolds of the system ¥ and {(B,, -, B,, E;, -, E.)}
coincide with each others. Hence it is necesary and sufficient that ¥ and
the system {(B,, -, B., E,, -, E.)} have the same minimum involutive
system containing them. On the other hand, from (11.4) — (11.9), non
vertical elements of the minimum involutive systems of ¥ and {(B, **-,
B;, E, -+, E,)} are linear combinations of B,, -, B,, E, -+, E, and
By, -, B., E,, -, E, respectively with coefficients in 2. Hence the con-
dition that the two minimum involutive systems are the same system is

P P @ €M Q or Py e My

by virtue of (11.12). According to Theorem 14,1, we have {Up} = My,
hence we get the condition P, = {Ur}.

Corollary 15.3. If, for the curvature temsor Pgy of the second
kind of T', y' PP vanishes everywhere, then we have
Hy(y) = He(y)
From the definition of /, I we have immediately

Theorem 15.4. For the derived connection 'I' of I, in order that
' = I it is necessary and sufficient that y' P/, of I' vanishes every-
where.

We shall say that a connection I' of {3, X(X)} is k-proper if ' ='T".

Theorem 15.5. For any connection I' of {3, &(X)}, we have

rIIv — I(II') — ’P.
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Proof. By means of (15.1) — (15.7), if we consider the formulas
‘(11. 4) — (11. 9) made for the derived connection 'I" of I', we have
['Bu, 'Eil = {Ch'B, — "Piwn E; — 'Plum Q} M
= — 'Pén MP' Q) (mod {(By, -+, B,, Ey, =+ E)}).
Furthermore, from (15.8), (13.3) we get
UBi, 'Ei] = [Ba+ Pin By, Ei
= [Br Ed + Pin[Ei, E — EdPla)Es
= —(Wim MI' + Pl St Mi M} Q)
(mod {(Bj, -+, B., E;, -, E)}.
Accordingly, we have
"Pou = W + Plon M} St (15. 11)
By (9.16) we have
Piw = 3" P = y* Wihao (15.12)
On the other hand, we get from (13.12)
Wi = Plu + 3" (Pl + Cot Pilom
= Plu + (3" Piwds — Pim 3% + Ct Plon
= Pl — Plu @k + Cit Pilon = 0,
that is
"Pia = 0. (15. 13)
According to Theorem 15. 4, it must be ""I" =T
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A projective vector bundle $F, over Ty(%).

To make clear the following discussions, we shall now prepare some
concepts. Let {%, T(X)x] TyX), =, GL(n), GL(n)} be the induced prin-

cipal fibre bundle of the principal fibre bundle {%0, ToX), 7, GL(n),
GL(n)} which is the associated principal tibre bundle of the vector bundle
F = {T(X) K To(X), To®), 70, R, GL(n)} by the map 7o: T(X) [X To(X) =

T,(%X) and denote by z,: B — B, the induced bundle map. Since 7, -+ =

7o * 7p», We denote this map by z: B— To(%). Now, for any point

- -

_~

[l

»
% —r . DN A }1{" < PR)

oy o T

7(X)

4

—_— X <= TdX) «——— TX)T(X)

/ T . \ L} ]

T

Tu

TRIRTE) —— TE) <= TORTE~=— TOXTER 74

Diagram 3

be®, if we put b =r,(H), y=jb), w=xx(b)), then y and w

are written uniquely as

¥y =yeld), w = we/(d).

Hence w' may be regarded as » maps
g
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w': B> R. (16.1)

Clearly, it follows that B = 530 X R* as a manifold. For a coordinate
neighborhood (U, u) of X, let (#', &) be its canonical coordinates of T(%)
by (3.1), then w is written as
_.i0
w =7z v (). (16. 2)

4

Hence we may regard («*; &' ; 7') as local coordinates of T(X)X]T(X) for
(U, u), and so we shall call them its canonical coordinates in T(X) [X] T(X).
By means of (2.4) we may also consider (u’; &3 77; al) forb e (z - p)™
(U) as its canonical coordinates in B, By virtue of (3.14) we have of
course

¥y = blE, w = b;"p‘, ei(b) =alo/6u’. (16. 3)
Now, let (U, «) be another coordinate neighborhood of X such that

UNU<% @ and (u’; &1 7’; al) be the canonical coordinates for (U, ),
then we have on (7-/2)~' (UM U) the equations

P, P P o 0 L oW
U u (u)) & 6ut E ) 7 6”1 7 i 6u" (/28 (16. 4:)
If we put
aj=y’, (16.5)
then (16. 4) is written as
_ _ - u — w .
W=ww, P=dbg =2 (16.4)

o = 0’ 1’ e A,

?

In the following, we assume that «, $3, - run over 0, 1, -+, #.
Nextly we define a vector bundle J = {®, X, «, R**', G} as follows :
The group of bundle G is the subgroup of GL(n + 1) such that

a =1, al =0 (16. 6)

regarding 2°, x', -+-, 2" are the coordinates of R"*!. For any two coodinate
neighborhoods (U, #), (U, u) of ¥ such that UM U % @ the coordinate
transformation g, : UNU — G of J is given by

1 0
Eip = (0 ou’ ) (16.7)
out
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Clearly (16. 7) satisfy (1.2), hence & may be defind. We denote by
¢v the coordinate function of ¥ corresponding to U. Let 6, = (5) be the
ath unit vectors of the (# + 1) axises of R**!. Then we have

ou(x, g6.) = ¢u(x, dp)aklg), g€ G,
in general, for a vector bundle. If we put for g = g5,(¥)g
oz(x, 0p)dh(g) = ¢ulx, dp)ablg),
then we get immediately
ai(g) = ablgu(x))al(g) (16. 8)
which is the last equations of (16. 4’). Thus, we shall easily obtain

Proposition 16. 1. {B, X, u} and (B, To®), /t} is the associated
principal fibre bundles of  and 7% J = T = {Wo, To(X), r R, G}
respectively and {B, ToX), pl=7%{B, ¥, p}.

We shall call I and ¥, the induced projective vector bundles of T(X)

and % Let 2.(2>0) operate naturally on 28, and B so0 as to commute with
ro and 7, then {W,/R*, S(X)} is similarly considered as the induced pro-
jective vector bundle of {3, &(X)}. Since the fibre of 7%F at (w, ¥) €
TAX) X (T.(8) — x) is clearly T.(¥) X (w, y), we can define a natural
cross section W: 7(X) X To(X) — T(X) X TE) X To(X) of % § by corres-
ponding (w, y) to (w, w, ¥). Let 7,: T(X) X TX)[X TyX) = T(X) X To(X)
be the induced bundle map of the induced bundle %%, and 7, : B — B,
be the induced bundle map of the induced bundle = {®, To(¥)}. In the
following, we shall denote =y and j'-7, by the same symbols y and »*
respectively.

§ 17. The induced projective connection Iy of I

From a connection I” of %, we shall define a connection Fa of . by

the system of differential forms on each coordinate neighborhood 7 (U)
of ¥ such that

wg = w? =0, (ug = du’, tui’ (17. 1)

where ! are the differential forms on z (U) of the connection I. We

see easily that (17. 1) satisfies (1. 9) and (1. 10) by (3. 3) and (16. 7). Hence,

the connection ]:0 can be defined. We shall call .;0 the induced projective

connection of f The differential forms §2 of ﬁ, which are defined on B
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by (1.13) are written locally as
ot = bi(dal + wial)
regarding »’, &, 5’, @l as local coordinates of B. Making use of (16. 6),
(17.1), we have
0% =0, 0f =0,
03 = 07 + blldal + wiah) (17.2)

where ¢{, ¢’ are differential forms on %0 but we used the same symbols
for their ¥ images.

If 7’=p<>1’, there exists a connection I'y of {T®/R*, &(¥)} such that
[y = p%I We call I' also the induced projective connection of I

On the other hand, the natural vector field W of & has locally 5’
as its components with respect to the canonical coordinates («’; &' ; ;;J),
and so its covariant differential DWw with respect to the induced connec-

tion I' = %" is written as

2
all_;

Dw = Z— @Dy, Dy’ = dy’ + pol. (17.3)

The vector field z° of the vector bundle z%(7¢%) has w’ as its compo-
nents with respect to its natural base, hence we get from (16. 3) the equa-
tions

Dw’ = dw’ + w'6] = biDy". (17.4)

Accordingly, we get by means of (16. 5) the equation
0, = 0’ + Dw’. (17.5)
Thus, from the above considerations, regarding B as the bundle spaces

of the principal fibre bundles {%, TE) X T(X), z, GL(n), GL(n)} and
{8, T,X), 1, G, G}, we obtain two set of n* + 3n differential forms

(¢’, Dy’, Dw’, 6}) (17.6)
and
(6°, Dy’, 64, 6) (17.7)

which have geometrical significances corresponding to their structures
respectively, when I” is regular.
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Theorem 17. 1. The affine holonomy group of a connection 7" of
the vector bundle F = {T(X) [ To(X), To(%)} is isomorphic with the holo-
nomy group of the induced projective connection T, of T.

Proof. To prove this theorem, it is sufficient to say the following.
I:et a curve C of T,(X) be giyen by FiI— Ty(X). The developments of
C and affine frames along C are obtained from the solutions of the Pfaf-
fian equations on R* X GL(#) X =7(C)

dp' = e, del = elo! (17.8)
as stated in § 6. On the other hand, the developments of frames along

C with respect to Fo may be likewise obtained from the solutions of the
Pfaffian equations on GL(n+1) X p7}(C)

dA, = AL 0L, (17.9)
Clearly, as a manifold, the affine transformation group of dimension
¥ = alx' + &, lal|#0

is R* X GL(n). Putting a} = a’, @} =1, af = 0, the group is isomorphic
with G C GL (n + 1). In this sense, if we regard any solution p’(ls), el(d)
of (17.8) as functions on z~(C) by setting P(E0)), ei(?,,(l?)), we can
compare them with solutions of (17.9). By means of (17. 2) and (17.5), in
fact, (17.9) is written as

dAy = AN’ + Dw’), dAi = Algl,

hence if we put
A = A} — A, (17. 10)

we get

dA' = dA} — ADw’ = A,
In place of (17.9), we may consider

dA’ = A, dA] = Algl. (17.9")

Accordingly, if we put for any solution p’, e of (17.8)

’ Alzp,—i_b\(h Aizeé,
then A', A} are a solution of (17.9'). This shall immediately lead the
verification of the theorem by virtue of the definitions of holonomy groups.

§ 18. The basic tangent vector fields of I’y on B.
Let (E{, E; @?, @{) and (B, E, W, Qi) be the suits of tangent
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vector fields on B dual to (8, Dy’, 6, ¢}y and (6°, Dy, dw’, 6 res-

pectively. Since B = %;, X R, B, E, and Q] are given locally by the
same equations as (5. 1), (5.2), (5.3) with respect to local coordinates u’,

& al of B and we have
W. = 8/6w' = aid/6al. (18.1)
Hence, by means of (17. 4), (17.5) it must be
Bi=B — W, E.=E, @ =W, @ =@ —w'W. (18.2)
On the other hand, the equations of structure on B for the connection I
as an affine connection are
do’ = — gl + &), dol =— ol /o + 6] (18. 3)

by (6.10), (6.11). Furthermore, from the covariant differentials of the
fields 733, 'l of 2¢F, we can obtain similarly to (6. 13)

dDy’ = — 6] N\ Dy = y'0{, dDw’ = — 0] N\ Dw'+w'e{. (18.4)
From the above definitions and Lemma 13.1 we have
(W, Bjl=[W, E;]=[W, Q) =[W, W,]=0. (18.5)

Needless to say, (11.4) — (11.9) hold good for the Poisson’s brackets of
B, E;, @Q{. Furthermore, the equations of structure on B for the in-

duced projective connection 'y are clearly

AJ_ _ Aj Ai 5 ! )]

{d’(?g ?i/\?n‘i‘ H+w Hn (18.6)
dol = — ol /N0 + o}

by (17.2), (17.5). The tangent vector fields on B dual to (0, Dy, Dw’,

of) are (B, E, Wi, Q.

Nextly, we shall define covariant differentiations for tensor fields of
%% analogous to (9. 7) and (9. 8). For instance, let a vector field v of
the type (1, 0) have V* as its components with respect to 8/d#;. Then,
by (4. 8), (6.5), (17.3) we have

DV =dV! + wlV?

J J ~ 177 . .
=3 _g:;b duh 4+ aa; d(fh + 66‘;/" d_//h-T 11 *,ZnV1dun + Cijk.ViTh
7 J
OV yur + 2V (7" — I'*}Edu”)

R oE™
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6V

(D/) — ]"*’ Ddut — Clnk'ylrk) + '*,Vidu" + C{nV{rh.
We define the covariant derivatives VJ, V/, Vi, by

V} — an _ aV ]1* h}:l aV

= m + *LVe (18.7)
Ou’b 65‘ / ’ h

J
Vj;h = % - aV CUI.V + Ci’nVi (18. 8)

oV’
Vj:n = W (18. 9)

7
Then DV’ are written as

DV =V} du*+ Vi, ' + Vi, ”. (18. 10}

We can easily verify that V7, V’,and V”, are the components of tensor
fields of 7¢ & of the type (1.1). Let V- be the components of 79 with
respect to the natural bases (3,)°%, then V- are represented locally as

VI = ] V! (18, 11)
and by means of (1.17), (17.4) we have
DV = V9, 0" + V%, 7 + V%, Du" (18.12)

V2, V%, and V7, are the components of #°-images of the above men-
tioned tensor fields of 7% .

Lastly, making use of the relations between (¢, Dy’, Dw’, #) and
(B, E;, Wi Q) dual each other to, we shall obtain the formulas analo-

gous to (10.7) — (10.9). Let Kj v be the components of a =°-image
tensor field of the type (p, ¢), then we have easily

B{Kjiin) = Kb, (18.13)
E(Kysn = Kitie, M, (18. 14)
Yo Kyl = Kl (18.14))
where
Y. = &F E,. (18. 15)

Furthermore, we have
Wl Kiyii) = Khiine = 0Kt/ ow® (18. 16)
and
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Qr (K e = — E K e Gl + 30 KU 375. (18.17)
B

A

§ 19. The holonomy group of Iy and the system .
Let us define the holonomy groups of the projective connection I,
by means of a-curves only, that is, the curves in B which are horizontal

with respect to I's and whose images under the projection /: of {‘ii, To(%)}
are a-curves.

Following the manner in § 7, we denote by Z the field of #-dimen-
sional tangent subspaces of B spanned by E,, TR E Setting B =
¥y é,, we denote by I the fields of (n + 1)-dimensional tangent spaces of

B spanned by B and Z. The same calculations as in § 7 will give the
following lemmas.

Lemma 19.1. A necessary and sufficient condition that a curve C
in To(X) is the lift of a curve in X is that the tangent vectors of a hori-

zontal lift of C in B with respect to ﬁ, belong always to the field B+E.

Lemma 19.2. A necessary and sufficient condition that a curve C
in Ty(X) has the property such that p(C) or pfle C) is the lift of the
curve ©(C) in S(X) is that the tangent vector of a horizontal lift of C

in B with respect to Fn belong always to the field 1.

Lemma 19.3. For any a-curve C, the tangent vectors of a horizon-

tal lift C of C in B with respect to I‘o belong always to the field T and
the converse is also true.

Now, we shall denote by 90 the algebra over the real field of all
scalar fields on B and we may consider 2 defined in § 11 naturally as
a subalgebra of 9. From these lemmas, we see that the locus of the
points of horizontal lifts with respect to Ty of a-curves through a point
b= P is the integral manifold 13(13) containing b of the system

= {(B, B, -, E)}g (19.1)

with coefficients in B. )

We shall calculate the Poisson’s brackets of Y. We get from (18. 2)
(18.5), (11.11) and (10. 10)
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[B, E) = [B — 5" Wa, E] = [B, E] + E.(" W,
= — MXB» + PiuE) + W,
= — MUB, — &4 Wi + Plon Ev.
Hence the elements to be newly adjoined to ¥ are
By — @, Wi = Bu+ P\ @ — T W.. (19. 2)
Since we have by (4. 9), (11.13) the equation
9By — B, W) = B — y' Wy = y'(B, — W)
= y' B, = B, (19. 3)
the system

3 = {B,— B W, -+, By — O, W,, Ey, -+, En}g (19. 4)
n

includes the system ¥ and have the same minimum involutive system
containing .f‘, with the one of Y. We may use Y, -+, Y, in place of E;,
oo, E,of 3.

Nextly, making use of (14.1) — (14. 3) and the formulas of the last
section, we have

[By — ®4 Wy, By — B W,) = [By, Bl — (Bu®D — BLDDIW,
= (Th — Pio + Plo) By — R E; — Vi @
— (Bu(®]) — Bu®)) W,
= (T, — Piu + Pin) (By — & W) — R E; — Vi @
— {w' Vihu — ®UT, — Pilow + Pioa) + Bo(Dh) — BUDD} Q3
On the other hand, B, is written on B as
Bi=By + P Qi=By+ Pju Ol + w’ Pin W, (19.5)
hence for the components K jijp of a #° -image tensor ficld of the type
(p, ¢g), making use of (18.13), (18.17), we get
Bu(Kipzip) = Kiipoa— 33 PO Koty + 30 Plon Kl
+ w' Phy Kiie ' (19.6)
analogous to (13.5). By (19.6), (12.3) we get
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=t

Bn((bi] = (I){., R i’an (bfl: + Pktnhv ‘Djt

— j ¢ Dt
- Co%, n Pljoh (bk + Pkoh (I’f-

!

Hence we obtain
(B, — &% W, Be— @i W) = (Tii— Pt B ) By~ &} W) —Rni B,
— TV Q5 — {w Vi — @t T+ Bh Plu— &4 Pidn (19.7)
—onu.h + ~ojx, 2} QAZ
Nextly, we have
(B34 W, Vi) = [By, Vil + Va(@) W,
=Th By {Plont (Conga— Pie) M} Yy — Wina Q5+ Bl W)
= Ch(By— B W) + { P+ (Clon — Piod) ML} Y — Wihe Q)
— {w* Wi — B G — Bh; 4} €5,
that is
[Bu — @i W,, Yl = Ci (B — &} W) + {&¢ Plon+ Cibia— P} B
— Wiha @4 — {w* Wik — G — Cdl Chu— (C) ;43 @5 (19.8)
Lastly, by means fo (12.7) we get
[Ys Yi] = (Che— Cd) ¥y — St Q)
= (Clo— T ¥, — S @4 — w* S Q5. (19.9)
Thus, jhe elements to be newly adjoined to i‘, are the vertical vector
fields Vi OF + Ve €%, Wi @) + Wi @3, S} + w* S @5 in the
right hand sides of (19.7), (19.8), (19.9) where we set

A

I ~ o~ ~ o~ ~ o~
VJm: =w thm; - (I’f T;u: + (T’; Plu — (I)i- Ptjuh

— Cihx + Cihn (19. 10)
and
WJM = w' f/f;rfjulc — a& - onc 5/:& — (5,3,); e (19.11)

§ 20. The minimum involutive system derived from X

For the connection 7“,,, successively we shall treat the analogy to the
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argument in § 13. For brevity, we set

B = B, — &l W, (20. 1)
Firstly, we get by (19.6).

Buw") = w0y — Pluw' + 0 Plyaw, ..

Since we have easily

u«'i,n = U, w‘; = 0, w‘:,, = ("J\,t, (20. 2)

and so
B.(w") = 0. (20, 3)
We have immediately
[BY, Q] = [B, — ® W, Wi = 0. (20, 4)
Furthermore, by means of (13. 4), (18.5), (20, 3), (18.17), we get
[B¥, Q] = [By— BEWs, Q) = By, Q1] — BE[ Wi, Q1] + QI ()W,
= [Ba, Q] + LW, w’ Wi] + (OF 81 — ®f 85 Wi
= — 8B+ DLW, + 3L W, — DL W,
— 81 (B, — @t W),

that is
(B}, @1 = —af B}, (20.5)

We have easily

[Ya Q1 = [Ya Q@ — ' W] = — il Y, (20. 6)

(Y. @ =0 (20.7)
Lastly, by (18.3), (18.4), (18.5), (20.2) and Lemma 11. 1 we get

(QF, Q51 = 61 QF — & Qf (2 0.8)
and

Q4 @ = [Qf — ' W, Wil =4l Q2 (20. 9)

For the components K ity of a 2™-image tensor field, we get from (19. 6),
(18. 16) the formulas

5 2r et Lol ot B £ L onetend Dt g ereennd P
}-i(- (KJ}'I"I’) = {Jll...j!;.h - GE Pt l“m Kj: J;’ + 32 Pjﬁo};, Kj:...;...jq

+ (' Pla, — OF K. (20. 10)
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Now, let K iy s K}“r““p’ H Tryen H 5,1, D& the components of 7°-
image tensor fields of the type (1, p), (1, p+ 1), (1, q), (1, g + 1) respec-
tively. Making use of the above formulas. we calculate the following
Poisson’s brackets.

A A A A A A A A
t 0 ] 2 13 m
[K Ky, Q7 + Kjk]---kp Ql, Hn]-'-an? + Hmh]"-hq Q]
A A A A
t 3 i 3
== (K kpeeky, H Ryhg it T Kklu-kp:t H hyhy
~ A A ) A
1 t t {
+ Kml"'k}? H h]'"hq - K kl...[-p Hm’l“'h'q) Q‘{,’
A ¢ A " A 4 Ao Ai A . A j
+ Ksk]---kp Q:( H hlmhq) Qt - Kjx:l-un-p:z H hyehy, Q{
A " Ai AJ A s A{ A L Aﬂ
+ K.Icl-uk.p Hjh]~-~llq:t Qi - QL(K A:J---kp) H.dl‘]-"hq Qi
A i Ac A t A ‘ A J
'
- (Ktklml'p }:I_in]---hq - K}kl-nkp Hm.r..nq) Q:
A A A A - ~
i t t 1 t 1
+ (_‘ Kml"'kll Hj),,l...nq + Kjkl"'kp H”‘J"'hg + ZB K-h'ﬂkl"'kp HJ),.‘...t...hq
A . e he - e Y
+ Kjk]"'kp Hm]...nq - Kw]...;;p HJ"J"'hq - ; K_;kl.,.t...kp ch“h]--vhq) Qx
A 5 20 A Y
= - %: H“a’l,"'hq (K kyeetenk Q! + KJklmt--'kp Ql)
A t At A ° A 1 A j
+ %] Kk'ﬂklmkp ( H nl...z_...hq Qi "l‘ HJ "1"“"""«1 Q{)

A A A A A
1 t i t
- {(K kl"'kp:t H h]"'hq - H "l"'hq:t K }‘:l'“kp) Q?
2y s St L. 5y n
+ (K“kj“'kp H-“’]"‘"q - K-“"l"’kp th‘...nq + Kjk]---kp:t I‘I hyehy
A - N
- I{ikl...i.-,’1 Hjhl"'h'q‘t) Q{}. (20. 11)

We denote by SN the set of all the differentiable fields of (n, n + 1)-
matrixes defined on B. M is a module over 9 of dimension n(n + 1). We
define a bracket multiplication for any K = (K, K%)), H= ((H', H)) €
M by

(K, H] = F = ((F', F)),
F' = WAK")H' — W.(H" K", (20.12)
F;, = KiHj— Hi K+ W(K) H' — W.(H) K".
This multiplication is not dependent on connections since the differential
operators W, are tangent vector fields defined only according to the struc-
ture B = %(, X R

Lemma 20.1. The bracket multiplication of e defined by (20.12)
has the following properties. For any K, H, L € ‘i‘t, fes 9
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[K, H] = — [H, K]. (20. 13)
[K+ H L] = [K, L] + [H, L), (20. 14)
[fK, H] = f[K, H] + W{f)H" K, (20. 15)

[[K H], L] + [[H, L], K] + [[L, K], H] =0. (20.16)

Proof. The first three of these formulas are evident from the defini-
tion. We shall give the verification of (20. 16). Setting [K, H| = F, we
have

WJ{FYL* — W,(L") F*
= {W(W.(K")) H'L* — W(W.(H")) L* K'}
+ {WA(KYW.(H") L' — W,(LY) W.(K*) H}
+ {W(LYW.(HYK' — W.(H") W,(K") L%}
and
FiLy— L F; + W,(F) L' — W,(L)F*
= {K{ H{L5— LiK; H; — Hi K;L; + L{ Hi Kj}
+ {Wi(K) H'L; — W,(H) L' K§ — W, (H) K'L§ + W (K}) L* Hj}
— {Li WK% H' — KIW,(HY) L* — LY W.(H3) K* + Hi W.(K) L*}
+ {W.W(K)) H' L' — W,(W.(H%) L* K}
+ {W.(K) W.(H)L' — WLy WAK") H' — W.(H%) W,(K") L’
+ W, (L) W.(H*) K'}.
Cyclicly changing on K, H, L of the right hand sides of the above equa-

tions and adding up them, the sums vanish since W, :--, W, are com-
muative each others.

Lemma 20.1 shows that the module I over 9 with the bracket

multiplication is a Lie algebra over A since N vanisches under W,
From (20. 15), it follows that

[fK, H] = f [K, H] mod K. (20. 15)

Now, toany K = ((K*, K!)) € M, we correspond a vertical tangent
vector field on B with respect to fn by

KQ = K'Q + K% Ql. (20. 17)

Let any tangent vector field X on B operate also on any element K =
(K', K9) by
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X(K) = (X(KY, X(K))). (20.18)
Making use of (20. 12), we get immediately

Lemma 20.2. For any K, He M and any tangent vector field X

on B which is commutative with W, -, W,, we have

X(IK, H]) = [X(K), H] + [K, X(H)].

Furthermore, making use of (20.5)—(20.7), the following lemma
can be obtained.

Lemma 20.3. For any K= ({(K'!, K%) M and X, = B¥, Y, we
have

(X, KQ] = X, (K)Q — KL X.

For a set of functions K* sip K J3ys, ON ifS, we shall put
Kj.gy = (KYpsy, Kby € S0

Then, formula (20. 11) for KL iy Hn, np corresponding to the components
of 7”-image tensor fields is wntten as

[Kipr, @ Hipn, Q) = = 3 By, Kyt @
Q

»

+ E Khﬂ Kk Hn o (20.11")

— Ky o] Q.
_ Now, by means of V', Wi defined by (19.10), (19.11) and Vj'u,
W . defined by (13.11), (13.12), we define the elements of I such that
Vie = (Vae, Vi), Wae = (Wia, Wiao)
S = (@ Sty Siad).
Let us denote by I = ﬁp the set of all the elements which are ob-

tained by repecatedly but finitly operating B, Y, on V},k, W, and S,..
Let us denote also by smp the submodule generated by U with respect to

the summatmn and the bracket multlphcanon with coefficients in ‘]I
Since U is invariant under B¥ and Y,, imp is also invariant by Lemma
20. 1 and Lemma 20. 2.

Lemma 20.4. B (0ih) = Y,(h) = Wb,
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Then, in order to obain an analogy of Theorem 13.5, we denote by
Mir the subalgebra generated by 11 with coefficients in 9. We get imme-
diately the following
Lemma 20.5. Br) = v.(p) = M.
Theorem 20.6. For any K = (K', K})) ‘lep, we have
Wi(K') = K;, WK = 0. (20.19)
Proof. Since é‘i = W, by (18.2) and W, are commutative with B¥,
Y; by (20.4), (20.7), the above equations are satisfied by Vi, Wi, Sw
and also by any element of n. 1 any K, He il satisfy (20.19), then
FK+gH f, g = isso. For [K, H] = F, we get from (20. 12)
W;(F) = W(Ki H — H{ K"
= K{ W;(H") — H{ W;,(K") + W,(K) H' — W,(H) K"
= Ki H; — Hi K+ W;(Ki) H — W;(H) K' = F;j
and
W.(FY) = W,(Ki H — H{ K} = 0.

Since 5’)31;‘ is generated by U with cosfficients in A, any element of Sl"ip
must satisfy (20. 19).

Now, for any point be %, we define a set of (#, n + 1)-matrixes
by
Me(h) = {KB) = (KUB), Ki(h)) | K € D}, (20, 20)
Then, we have
Theorem 20.7. Eljlp(l;) isthe Lie algebra of a connected Lie subgroup
A(I;) of the affine transformation group A, of dimension n.
Proof. By means of Theorem 20. 6, for any K, H & I, (20.12) is

written as
F'= KIH' — H! K', Fi=K! H,— H: K} (20. 21)

which coincide with the formulas of the multiplacation of the Lie algebra
LA, of A,, for if we write an affine transformation as

= al(g)x) + d(g), g E A,

then the multiplication of A, is given by
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al(g g = atlg)ds(g.), a'(g g:) = aj(gna’(gy + a'(g)

and hence the equations imply the same formulas of the multiplication of the
Lie algebra LA,. As stated above, 9.’!521« is closed under the bracket multi-
plication [K, H], hence Slsér(?)) is a Lie subalgebra of LA, We shall
denote by A(B) the Lie subgroup generated by Sjtp(é).

Now, we shall denote by /’1—}’{( y) the affine holonomy group at y €
To(X) of the connection F = p* I', regarding it as an affine connection
and To(X) as a differentiable manifold merely and by AH "(y) the res-
tricted affine holonomy group at y which correspond to Z)""( »). Further-
more, we denote by A H(y) and A H%y) the subgroups of z‘ﬁ/{ {y) and
ﬁlo(y) which correspond to the groups £2(») and £2°(y) of a-curves de-
fined in § 8 respectivly. Owing to Theorem 17.1, these groups /Tﬁ (»,

AHY y) and AH(y), AH"(y) are isomorphic with the homogeneous ho-
lonomy group, the restricted homogeneous holonomy group in a wide
sense and the homogeneous holonomy group, the restricted homogeneous

group in a narrow sense at y, of the connection T“o of the vector bundle
Bo= {W,, To(X), r, R, G} respectively and we shall identify them
respectively.

Let a curve C of class C'in T.(X) be given by f: I — T,(%X) and
set f(0) = v (3 = o Ff() =3, <(») = 2. Then, by the develop-

ment of affinc frames along C, we may obtain the affine transformation
@ - Txl(}:) X y = T,‘o(?f,) X Y
of the fibres of §. The induced linear transformation on vectors from ¢;z

is h7 defined in § 8. For any b, € 5" (y), setting b, = 7,(b), w, = =, -
#(b), we define by, w, by

bo = hz(b) € ' (3),  wo = @5(w,)

then the point 1;0 = (50, wo) € 7 '(y5). Thus setting i)n = spa(éﬂ, ¢z may
be considered as an isomorphism of 7' (y) = G, onto .7 (y) = é,o.

Theorem 20.8. For any point be 5!3, ,](I;) =y AH%y) (I;) is the

image of the subgroup A(E) of A. under the admissible map b: A.—
27 ().
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Proof. By the similar manner to Theorem 13.5, we can prove that
AH( y)(I;) is the connected component containing b of the intersection of
N (y) = é,, and the integral manifold P(b) containing & of the field /7.
Since J7 is the ficld of the tangent subspaces of B spanned by the ele-
ments of }f, the integral manifolds of 17 coincide with the integral mani-
folds of the system 3. which is the minimum involutive system containg
Sover 9 X !, is also the minimum involutive system derived from :‘.‘1.
By means of Lemma 20.1—20.3, we have 3. DO ¥ + 4. Con-

sidering Lemma 20. 4, the system .»‘.A‘, +2th{«@ must be involutive. Hence
we have

IL= ¥ + MLQ. (20. 22)
At each point I;, the tangent subspace I L.(I;) spanned by the elements of
X s spanned by By¥, Y, and the vertical tangent subspacc spanned by
the elements of 932% Q On the other hand, we denote by IT.. the field of
tangent subspace spanned by B¥, Y. and &lA)Zp @ Then it is evident that
I.6) c II.(b). But, Mr and M are spaned linearly by the elements of
llp with coefficients in 2 and 9 respectwely Accordingly it must be II
II ! Thus, we see that P(b) N Gy is a differentiable manifold of dimen-
sion dim s)Rp(b) which is tangent to the vertical tangent subspace T (G,) N
/.. Since AH"(y) is a Lie group, AH(y) (5) must include the image of the

group Ab) generated by the Lie algebra Mer (b) under the admissible map
b. By virtue of the coincidence of the dimensions of A H°(y) and A(b) this

image must be the connected component containing b of P(b) N Gy =

AH(y) (5). Since we assume that ¥ is separable, the component of A H(y),
containing the identity, is A H(y). Hence we have

AH () () = b(A (D). (20. 23)

§ 21. Structure of Sﬁ'lp.

We shall treat the same mveshgatlons of EDlp as the ones of My
doned in § 14. We denote by 8,,”) ~):m+o, @ . the sets of elements of 11
which are operated at most m times by B¥, Yi upon Vi, Wi, S respec-
tively and set
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A A A A A
o = U:=0g~‘5m+2, W, = U:;=o%m+':, S, = U:-n@mﬂ-

?£>

Then we have =% Uiﬁ Ué For any suBset B of ‘Lﬁép, as previ-
ously, we denote by {N} = {N}y the submodule spanned by 9 over 2.

Theorem 21. 1. ‘B,} {%w} and 4'@ } are ideals of the Lie algebra
M and U} = Wen
Proof. According to Theorem 20, 6, any element of 1l is of the form
Kiox, = (K .x, Kh.x). By (18.17), we have
Q; (i<tkl-~-lcp) = — atlA{sk kg + E k[kr--t---kp(;;:a,
Qi (K yory) = = 0 Ko, + Kliy 95+ 5 Khpoaon 95,
which are written as
/Qz (Kk]---kp) = ,12 Kkl"'t"kp 32;‘” _(((}: kakl"-kpy (}:I‘Esjkr..k,’—' E:kl...kpf')\;)).
(21.1)
By (18.14'), (18.16) and (19.7), we have

(B¥BY — BEBY) (K,..,;) = (Ti — Plu + Pln) BHK,,.;)
— Ro'we MK s e — K e — 17..‘,.xéz<Kj|...jp>
= (The — Pl + Piw) BY (Ky.p) — Row MK .y
— Vi Ky o — by Vit Kjl...t...le
+ (Vi I%‘;,u-jp, Viue Kj’jl---j,, - Efyf-d,, Vi),
By virtue of Theorem 20. 6, it must be
Vine Kypgyo = (Vi Kby, 0)),
Hence, by (20. 21) we obtain the formulas
(B BY — BEBY) (Kpp,) = (Vi Kipos] = 3 V3 1K,
+ (Tt — Pl + Pl B (Kj,s,) — R M K s (21.2)

which are identical with (14.4) for . Nextly, by (19.8) and (21.1)
we have

(B;f Y — Y, Bl-zx) (Kjl»--j”) = Enzx B_t* (Kjl--.jp) +
-+ {thtnk + (a;sk,h - ;nskk) ]TJ;} Kj]---jp;z - W‘thJl“'Jpn



68 TOMINOSUKE OTSUKI

_ Wt
3 Wyl nx Ky,

+ ((I’-fftih;; K'Jl""’p’ mihk Ej&]"'jp - "~K:fl"'jp thnx)),
hence
(B-);% Y‘; - YLB')T) (Kjl..._’p) = [th, Kjl""‘p] — ; Wj;hk Kjl---t-v-jp

+ Ce BY (K y) + { P + (Colen — Péin) M2} Ky 0
(21. 3)
which are identical with (14, 5). Lastly, by (19.9) we have
(Y,.Y:. — Y.V (Kj‘l..._]p) = (Entk - Ekth)KjJ--vhp;l — ' ’>§lrhl: Kjl-»Jw:i
_ Ed Sj‘:],k KJI'"L""’})
+ (S K'ypsyy Siue K spegy = K'pos, Sfud),
that is
(KLYF\. - Yth) (ij""’p) = [Shk, Kjl...jp] - wE 51; Tk Kjl"‘t"'jp
+ (Gl — G Kipeog o (21, 4)
which are identical with (14. 6).

Since we take coefficients in 2, it follows from (21.2) — (21. 4) that
the verification of Theorem 14.1 may hold good in this case. g.e.d.

Similarly to Theorem 14. 2, if we denote by &.. the set of elements
which are obtained by operating finitely Y, upon S,:, we shall get

Theorem 21. 2. & is a Lie subalgebra over W of SI

§ 22. Relation between AH and A H.
We take an element of I defined by
P = (P, Pl
Pl = ' Pty — Gl (22. 1
Theorem 22. 1. For any y € ToX), a necessary and sufficient

condition in order that A H(y) == ;1\}’[(31) is that y"Py. = {f[r‘} 91
Proof. By virtue of the above arguments, a necessary and sufficient
condition in order that A H(y) = AH(y) is that the integral manifolds of

the minimum involutive system over 2 containing the system
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{(-éh *tt é'm Eh Y qu)}ﬁ[

and the integral manifolds of the system >’ defined in § 20 have the
same intesections with fibres i () of {¥8, Tu(X)}, y € T4%). Since we
can join any two points ¥, ¥ € T«ZX) by an a-curve C and the any

horizontal lift C of C with respect to the projective connection Fa must
be contained in two integral manifolds of the both systems. Hence, the
above condition is equivalent to that the integral manifolds of the both
involutive systems coincide with each others, that is the both involutive
systems are so. Accordingly the condition above is equivalent to that
By € ¥ + MQ.
From (20.1), (19.5), (18.2), we have
B}f = Bh - (’f;;itWJ:én + (wtﬁziah - an) QAI; + ;;jinh QA':

= By + P4, : (22.2)
hence it must be P,, = *J:’ié. On the other hand, itis clear M. = { flp};jI
and W,(P‘ p) = 13—;‘;,.,(, W, (P/w) = 0. Hence in order that A H(y) =
AH(yp), itis necessary and sufficient that P,, = {Ur tore g.e. d.

We call a connection I' being a-proper, if P,, = 0, that is

y" Chik = 0, y"‘ﬁ;’“ = 0. (22. 3)
Now, if a connection I' is k-proper, that is I"'='I", then we have
ynPjthk = 0.

Accordingly, in order that an k-proper connection I' be a-proper, it is
necessary and sufficient that & = 1. By means of (15.3), we obtain
immediately the following
Theorem 22. 2. In order that the derived connection 'T" of a regu-
lar connection [ is a-proper, it is necessary and sufficient Op = 1 that
is
Gty =Gty = 0. (22. 4)

Theorem 22,3. If &dp =1, we have

AHdy) = AHr(y), AHX») = AHYNy), ye€ T(X).
Proof. We shall denote by the same symbols with primes the quanti-



70 TOMINOSUKE OTSUKI

tes of the derived connection 'I" of I' corresponding to those of I'. By
means of (15.8), (18.2), (20.1) and &{ = 4{, ‘we have

,bi = IBt - W: = Ei + ;ohoi En - VV: = E% -+ ﬁaho; E)u

'Ei = ,E( = E; = Ei.

Hence, the system :3', given by (19. 4) is equivalent to the system
By, =, 'B., 'Ey -, 'E} 4,

This will prove the theorem.

Lastly we state a remark on an /-proper connection I'. In this case,
since P/, = 0, we have from (13.12), -(19. 11), (22.1)

ijink = sz hks
Wih.lc = wjﬁjihk - Ehik - EoIL Ehlk - (an'h);k
= ﬁl ke Eot: Ehlk - (Eoth);k-
Thus, we obtain the relation

WM: = Phk - ((Eoi: E;Lu + (E‘!m);k, 0)) (22- 5)
Accordingly, if I' is a-proper, it must hold
th = Phk- (22. 6)
Conversely, if we have (22, 6), it must be
~;l Ehtk + ( Eoin); k= 0.
Multiplying the equation by y*, we obtain
~;t ~:le - Eoit (Ih;ft = - aﬁk = 0.
Thus, the following theorem has been proved.

Theorem 22.4, When a connection I' is h-proper, a necessary and
sufficient condition that I' is also a-proper is that W, = Py, holds good.

§ 23. Modified connections.

" In the last section, we generalized Theorem 15.1 on the homoge-
neous holonomy group of a regular connection I" in the case of affine
holonomy group under the condition ®r = 1. In this section, we shall
attempt to remove this restriction in Theorem 22. 3.
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The homomorphism @ = ®p of §F = {TE)XTyX), ToX)} defined in
§ 4 for a regular connection I' is an isomorphism such that 7z - ®=1 - 7
and 2 - ® = & - 2, for any k > 0. Accordingly, we may regard @ is
induced by the bundle map p; from an isomorphism of the vector bundle
{8, &(%)}. We shall denote this isomorphism of {3, &(X)} by the same
symbole ®. Then we have

pi- =D p (23.1)
Now, since @ is a bundle map, we can define a connection OHT of

B> T =p%I' = p# I', by means of (1.16). Using (23.1), we have imme-
diately

(DT = (p; - DI T = pH(OHT) = p(@H ) (23.2)

We call &#rI, @I the modified connections of I, I" and denote them

by &I, —F respectively.
Owing to the relation (1.17), a vector field along a curve in T,(X)

which is parallel with respect to T is transformed another vector field

along the curve under ®° which is parallel with respect to “I', and the
converse is also true. Hence we have

Theorem 23. 1. For a regular connection I' and its modified con-
nection =I', the following isomorphisms hold good through Oy

Ho(y) =~ Hep(y),  Hely) =~ Hen(y).

Now, we shall write the Pfaffian forms of AT with respect to a local
canonical coordinate system (x’, ). Making use of °6/du'( = 8/64’
according to our convention), we have'at each point of #(U)

O (8)6ut) = ®io/ou’, (23. 3)
hence by (1. 15) we have

(220 = @ | 7@ x5 (2 )

out ou’

- () - (3 3o

that is

©0 _ 5.0
¢ Gui—Mia

(23. 4)

w’



72 TOMINOSUKE OTSUKI

Accordingly, the covariant differentiation of I is given by the equations
— .0 0

making use of (1. 16). This equations is written as

-9 3 -
D Gur = s @1
wl = Ml (ddf + wr @) = M{ DO} + ol (23. 5)

Let ¢/ be the differential forms on %0 representing Fr’Q(if), then these
are written locally as

0] = bl (ddf + wi a}),
in which we substitute (23. 5), we get the relations
0 = Mi(dDF + 68 Y. (23.6)

For any curve C of class C' in T(X), its developments are given
by the solutions of the Pfaffian equations (17.8) on R* X GL(xn) X z~(C)

dp' = el¢’, del = elol. (23.7)

For any solutions (p', ef), if we put €] = e} (~D{, then (p', &',) is, as is
easily verified, a solution of the following equations

dp' =& Mio, de| = &7l (23.8)
Furthermore, if C is an a-curve, we have locally the relations
du’
= Ve

hence it must be ¢/ = 4y’ dt on 77Y(C). Accordingly, by virtue of (4. 10)
we have
dp' =el¢’, del=é\v! (23. 8"

for a solution (p', e}) of (23.7) when C is an a-curve. From this, it
follows immediately

Theorem 23. 2. For any regular conection I' and its modified
connection “I', the following relation holds through ®r regarding it
as an affine transformation on each fibre T (X) X y, x =z (y):

A Hr(y) = A Hep(y)
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Lemma 23. 3. For any regular connection I', the isomophism ®ar
of its derived connection “I' is the identity transformation.
Proof. Making use of canonical local coordinates (x/, &), if we put

-l-';{ = l_‘ijkduk + C—ijkdfk,
then by (23.5) we have

-— . h'
Coi = M,{( Al

oE*

+ Clhk (l)s)y

hence by (4. 10)

— - 2l
Ce= £ = Mi(¢ S35 + cig)

= Mi (6% — @k + Cg) =0.

Thus it must be ®ar = 1 by the definition of this homormorphism.

Corollary 23.4. For any regular connection I', we have
2(*r)=-*r.

Theorem 23.2, Lemma 23.3 and Theorem 22.3 will immediately
imply the following main theorem.

Theorem 23. 5. For any regular connection I' of (B, S(X)) and
the derived connetion *I' = '(°T") of its modified connection “I', the
Sollowing relations hold

AHn(y) ~ AHo(y), AHNy) ~ AHL(9), y € To¥).

In the following, we shall make some remarks on “I'. By means of
(23. 6) we have

Dy =dy + ¥ = dy + ' Mi (dDk + ok (3’;‘)

=dy — y D dM + My ek

= MUdy* + y'ob),
that is

Dy’ = MiDy* = 3, DE = MIDE = . (23.9).
On the other hand, from (23. 5), (4.8), we have
z"t, = (Ulj + MI{ (Coht).kduk + MI{(Cohi);A:‘j’k
= (I'%, + MUCH)du* + (Cl + MI(Ch)y) DE

Making use of Lemma 23. 3, we have
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M = T+ MUCY)y, Clo=Clh+ MUCM),. — (23.10)
Since the curvature forms @] of “I' are written as
9 = do] + ol N\ of = Mg} (23.11)
by (23.5), if we put

o, 1—21"1,,).; du'“ /N du" -+ F{j}l.k duh /\ Bfk + % S_;,jn,k th /N D—En, (23. 12)

-

2

o=

thén we get from the above equations and (23. 9)

!Eijnk = M! ®! R, 15;";:1; = M&’ @} Pl

| St = M ®t Sy (23.13)

Furthermore, the differential forms on 58, for the connection *I" =' (*T")
are given by
7l — ML DY Plomt™

= Mldd% + MU — Pl )0}

= MUdDE + 65 B, (23. 14)
where 68 = 9} — P,.6™, making use of (23. 13) and (15. 1). '0} being the
differential forms on %‘] for the derived connection 'I" of I' and dp = Pop
by means of (15. 4), the right hand side of (23. 14) must be the differential
forms on B, for the modified connection =('I") of 'I". Thus, we have

proved the following
Theorem 23. 6. For any regular connection I' of {3, &®X)}, the

Jollowing relation holds good
A = *I" = 20,
Corollary 23.7. For any regular connection P,' *I is a-proper.

Proof. This corollary follows immediately from this theorem, Theo-
rem 15.5, Lemma 23. 3 and Theorem 22. 2.
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