COMPOSITIONS OF LINEAR TOPOLOGICAL
SPACES

MINORU TOMITA

Introduction

A topology of a linear space .%¥ is determined by a system of semi-
norms on -2, then a conception of a composition of topological repre-
sentations of . may be strictly and naturally formed by that of semi-
norms of .. In this point of view we shall develop a “composition theory
of semi-norms” which lays its foundation on three elementary properties
of semi-norms.

(1) A semi-norm is a functional on .¢°, and a space of semi-norms

allows some rules of compositions of functionals. For instance, if s;,..., S,
are semi-norms, ¢ =max (s;,...,s,) and 7 =(s§+s3+... +s%) (p=21) are
semi-norms. More generally, if a function of » real variables k(x,, ..., x,)

satisfies a suitable condition (c.f. §4), the composite functional A(s,,..
S,) is a semi-norm.

(2) A semi-norm s on .2 determines uniquely a representation of
- on another normed space _#(s), then a composition p=~(s;, ..., s.) of
semi-norms S, ...,S. defines a composition of the representative normed
spaces ZL(p)=k(L(81), ..., ZL(s.).

(3) A space of semi-norms on .2 is a topological space, which has
a weak topology as a space of functionals on 2. The general Heine-Borel
principle (The equivalency between bounded-closedness and compactness)
is valid even in the space of semi-norms. (Theorem 1 in §1). It enables
us to extend the former algebraical compositions to transcendental compo-

1 1
sitions supaca 4, (JJ”dp(l))? SUpaca <Z(4), (IAJ(Z)”dp(Z))7 etc. on

v

bounded sets of semi-norms and corresponding sets of normed spaces, res-
pectively.

§1 treats a topological space of semi-norms and the general Heine-Borel
principle, §2 and 3 prepare the correspondence theory between semi-norms
and representations. In §4 we introduce a concept of a composition of
semi-norms in a wide sence. §5 and §6 treats some sets of semi-norms
convex by some operations of compositions, and their extremal problems.
§7 determines the composition law of representative normed spaces and
their dual spaces which correspond to compositions of semi-norms.
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§1. Topology and order of semi-norms.

We consider a fixed (real or complex) linear space .. The fotality
of complex functionals on ¥ is a topological space by its weak topo-
logy. A weak neighbourhood of a functional ¢ is a set of functionals
Ug: fi oo, fo, =i lef)—lfi) | <e, 1=<i<n). If ¢ and
are real functionals, the order ¢ =+ is defined by «¢(f) Z () (SEZL).
The general Heine-Borel Theorem is valid in a space of functionals.

Lemma 1.1. A set A of functionals is compact if and only if it
is closed and bounded.

In fact, if A is absolutely bounded by a functional +, 4 is contained
in the compact space Uly) ={¢:|l¢ < ). Uly) is the Tychonoff pro-
duct //@re (| ¢(f)| =< 4o(f)) ot closed circulars in the complex domain
defined for respective f in .2, Then a bounded closed set is compact.

Conversely, assume A be compact. Every f in -2 determines the
(continuous) coodinate function ¢ — ¢(f) of variable ¢ defined on the
totality of functionals on .. Then the image (¢(f):¢E 4) of 4 is
bounded closed, and 4 has an absolute bound + (f) = supgea | ¢(f).

A semi-norm s of & is a functional on % so that (1). s(f) =0,
(2). s(af) = |a|s (f), and (3). s(f 4 g) <s(f)-+s(g). By the continuity
of the coodinate functions s — s(f), the totalily P of semi-norms on &
is a closed setl of functionals, then the Heine-Borel Theorem is valid in
P as well.

Theorem 1. A setf of semi-norms is compact if and only if it is
bounded and closed.

§ 2. Relations between semi-norms and representations.

If f—f, is a representation (a linear mapping) of < on another
normed linear space Z(s), the functional s on .2 s(f)=|(/f| (the norm
of f.) is a semi-norm on .2, The kernel -#(s) of the representation,
H(8)=(f L f,=0), is identical with the zero--point-set (f € - s(f)
=0) of s. ,

Conversely, if s is a semi-norm on ., its zero-point-set _#(s) is a
linear space, and the residue space -Z(s) = /- #(s) is a normed space.
The natural mapping f € £— fi= f/_#(s) is called the canonical
| in Z(s) is determined by

Ifs{:s(f)-
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The totality 2* of linear functionals on . is a linear space, .£*
is clearly a closed set of functionals on .#, in which the Heine-Borel
Theorem is preserved.

' Lemma 2.1. The totality F(£*) of weakly closed sub-seis of £*
is a topological space. A complete system of neighbourhoods of a
W eF(L*) consists of those sub-sets of F(L*): BW: fi,..., fu )=

(XeF (LY XCSUW: fi,....fuedand W S U (X : f.,... Jus ©))
U(W: fi,..., [.), denotes the set theoretical sum of the lotalily of
Us: fiyeo., fu, ¢) neighbourhoods of s= W.

If s is a semi-norm, the dual Banach space of £(s) is denoted by
LH(s).  L*(s) is the totality of ¢ € L* so that | ¢(f) | < s(f) for every
fe . The norm s¥(g) of ¢ in L*(s) is s*(¢) = supupnsi le( ). The
following fundamental relations between semi-norms s and unit spheres
U(s) of £*(s) is well-known.

Lemma 2.2. The unit sphere U(s) of £L*(s)is a weakly compact
convex and symmetric (i.e.¢ € U(s) and la|=1 imply as € U(s)) subset
of L*. s e Uls) is a one-to-one correspondence between the totality
P of semi-norms and the totality U of weakly compact convex and
symmetric sub-sels of ZL*.

U is a topological space, as a sub-space of F(.*). Our interest is
how the order and the topology of P are transposed to those of U.

Theorem 2. The correspondence s < U(s) between P and U is
an order-preserving (r Z s if and onl y if Ulr) 2U(s)) homeomorphism.
A mneighbourhood Uls: fi,..., f., &) of an SEP corresponds to the
neighbourhood B(US): fi,..., fu, &) of Uls).

Proof. We only need to prove that #(f)—s(f)| < ¢ is equivalent
to UUr): f, &) 2 U(s) and UUS): f, ) 2 Ulr). If #(N—s(f). e,
every ¢ < Uls) satisfies |¢(f)| < s(f) < 7(s) + ¢, while we can choose a
W& Ulr) with »(f)=+(f). There is a suitable number a{ja] < 1) so
that |¢(f)—ayp(f)| <e and ¢ & Ulayr: f, &) S UU@): f, ¢). This
means U(s) E UU): f, ¢) and Ulr) € U(U(S): f, ¢). Conversely if
Uis) S UUr): f,e) and Ulr) S UWUS): f, ), s(f) = maxeevs | ¢(f)]
and 7(f) = maxyer 1Y) satisfies |7(f)—s(f)| < e. Hence s — Uls)
is an homeornorphlsrn which mapps the set Uls: fi,..., f., ) to the set
LU fiyenns Sy €
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§ 3. Orderly semi-norms on vector lattices.

We apply the result of the former § to semi-norms on vector lattices.
Let &£ denote a compact space and C(£) denote the totality of continuous
functions on it. A semi-norm s on C(2) is said to be orderly if s(f) =
s(g) whenever |f(4)|=1g(2)] on Q. Generally, a normed lattice with
a unit is represented as a uniformly dense sub-lattice of a suitable C(2)
with an orderly norm, then we shall treat a normed lattice under such a
concrete representation.

Among many orderly semi-norms of C(2), the following semi-norms
are well-known,

(1) Let p be aregular measure on £. Then |,z|,,(f)=(j1f(l)‘.’

dp(/l))!’; (p =1) is an orderly semi-norm. We call it an LP-semi-norm on
C(2). -

(2) If X is a closed sub-set of 2, |X|(f)=supwx|f(1)]| is an
orderly semi-norm. We call it an L~™-semi-norm.

C(#2) is always treated as a Banach space with the norm || /| =12|(f)
=sup|f(1)|. The dual Banach space C*(2) of C(£) consists of the
totality of completely additive set functions on the Borel field in 2. Every
¢ € C*(®) has the Lebesgue decomposition ¢ = ¢* + ¢~. The lotal varia-
tionof ¢:lg¢'=¢" — ¢~ is a regular measure on £.

A regular measure is called normalized if its total mass is 1. The
totality £ (£) of normalized regular measures on &£ is a bounded regu-
larly convex sub-set of C*(£).

We recall some elementary properties of orderly semi-norms.

(3.1) An orderly semi-norm s is smaller than the norm s(1)|2l.
In fact, |f()|< | f] implies s(f) < s(l £ 1) =11 s).

(3.2) An orderly semi-norm s is said to be normalized if s(1)=1.
The totality P, of normalized orderly semi-norms on C(2) is bounded,
closed and compact; the totaliiy P of orderly semi-norms s with
s(1)= 1 is as well,

Lemma 3.1. The totalily L’ of normalized L”-semi-norms on
C(Q) is compact (for each 1 <= p < o).

Proof. Incase p { oo, the Lemma follows from that L” is the
range of the weakly continuous mapping sz — [/, on the weakly compact
space 4 (£2) of normalized regular measures.

In case p = oo, the Lemma follows from the I. Gelfand’s theorem on
normed algebras that a necessary and sufficient condition for an (orderly)
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semi-norm s to be an L~-semi-norm is s(fg) < s(f)s(g) and s(f?) = s(f)*
for f, g in C(2).

(3.3) We denote by C(s) the normed space canonically represented
by an orderly semi-norm s. The dual space C*(s) of C(s) is con-
tained in C*(). The total variation |¢ =¢* — ¢~ of every element
¢ in C*(s) belongs to C*(s) and has the same norm s*(g¢l)=s*(¢)
with ¢.

In fact, |¢| (| f]) is determined by |¢!(If]) =supyzs l¢(g)]. Thus
() Zlelf)) =supiyizi l¢ (@) < supsmzsn l¢(g) = s*()s(f). Then
s*(|¢)) = s*(¢). On the other had, |¢( /)| < |ol(If]) implies s*(¢) < s*( ¢))
and s*(¢) = s*(|¢)).

(3.4) Let U*(s) denote the totality of regular measures contained
in the umnit sphere of C*(s) of an orderly semi-norm s. For each
S € C2) we can choose p& U*(s) so that s(f) = pu(f)=|pnh(f).

In fact, let ¢ be an element of C*(s) sothat s*(¢)=1 and s(f)
=¢(f), then its total variation |¢| belongs to U*(s) and satisfies
lpl (f) = le(f) =s(f) and |¢|(f) =s(f).

When g, » are regular measures, we say p<v if v—p is a
measure. A set V of regular measures is said to be a sta7 if =V and
pZv implies » €V, The U*(s) of an orderly semi-norm s is clearly
a star.

Theorem 3. s © U*(s) is a one-to-one correspondence beiween P*
and the totality U* of regularly convex stars of regular measures on
2 with masses = 1.

Proof. By 3.7, every s&P* satisfies s(f) = supues* |ptl: (f) and
S = SUPucr+w |21, then s U*(s) is one-to-one. It is sufficient to say that
every VEU™ is a U*(s) of an sEP*. The set U =(¢EC*Q):
lgp|€ V) is regularly convex and symmetric in C*(®2), then it determines
a semi-norm s on C(£) whose unit sphere Uls) of the space C*(s)is U. s
is orderly. In fact, ¢ €U implies |¢| € U, where |¢| (| f]) = sup o1z 1¢14(S)

and s(f) = supees |¢(f)] = supeeule (If) = supeer J If()ld|e|(2). Then
V is identical with U*(S), the totality of measures in V.
Corollary. s < U*(s) is an order-preserving homeomorphism be-

tween P and U™,
The topology of U* is in the sense of Lemma 2.1.
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§ 4. Concept of a composition.

We turn once more to the linear space .2 in §1. Let % be an order-
ly semi-norm on the z#-dimensional Euclidean space ", k is a function
of »n variables k(x,,..., x,) so that (1) &lx,..., x.)<Fky, ..., ¥.)
whenever |x]| <(y:; 1<i<n). (2) klax,...,a%,)=|«akx,...,%.) and
(3) X+ Yo eXnt90) Z B(Xy oo, X)) F BV vy V) If S5...8, are
semi-norms on .2, the composite functional g=4%(s,, ..., s,) (that is, ¢(f)
=k(S(f),...,8(f)) is a semi-norm. We call it a composite semi-norm
or composition of s,...,Ss. A compositi(])n is called normalized if
k(,...,1)=1. In partiqular, ¢ = (2 as*)? and 7 = max(s,,...,s,) are
called an L*-sum and an L~-sum of those s;, respectively.

More generally a composition is defined in a bounded set of semi-
norms. Let A be a bounded set of semi-norms. A function on 4 is
uniformly continuous? if and only if it is extended to a continuous function
on the closure 1 of 4. Then the space C(.) is identical with the totality
of uniformly continuous functions on .. Let 2 be an orderly semi-norm
on C(A). If fe £ is fixed, the function |fi|= A(f) of variable i in A
is uniformly continuous on /. A composition on 4 is a semi-norm on
< determined by £*(f) = k(|fi]). A composition & is called normalized
if the semi-norm % is normalized. A composition by an LP*-semi-norm
on C(£) is called an L”-sum of 4. If A is compact, every L7-sums
are expressed as follows.

Lemma 4.1. If A is a compact set of semi-norms, then

(1) An LP-sum (p < o) julp on 4 z's] a weak integral by a re-
gular measure p on A;'pl;= (J A2 dpa) 7.

(2) An L=-sum |X|* is the least upper bound X" =sup,exi
(i.e. | Xi™J) = supaead(f) on a closed set X in .

Usually every L”-sum on a bounded set A4 of semi-norms is treated
as an LPsum on the closure . But, if necessary, we represent an
L?sum (p < o) by a weak Radon integral on . ‘

A finitely additive set-function defined on the totality of sub-sets of
a topological space & is called a Radon measure.

The Radon integral exists for every bounded function f on £.

Lemma 4.2. If s isan L*-sum (p < o) ona bomgded set 4 of
semi-norms, s is a weak Radon integral s=( J {"d p(2)? by a suitable
Radon measure p on A.

1) Uniformly continuous by the uniform structure of the weak topology.
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Proof. The space C(.), regarded as the totality of uniformly con-
tinuous functions on A, is contained in the totality B(4) of bounded
functions on 4. If p is a Radon measure, the Radon integral p(f)=
j fdp is a positive linear functional on B(4). Its restriction on C(4)
is a positive linear functional on C(j ), and represents a fegular_measure‘

;£ on .. Then the weak Radon integral (J).( )7dp(2)? is equal to an
. ,
L”-sum (j A dp(DYT =12 (f).

The “Extention theorem of the measure” mentions that (See the next
Remark) every positive linear functional on C(1) is extended to a positive
linear functional (a Radon integral) on B(d). Then every L”sum is a
weak Radon integral on .

Remark. The following extention theorem is often useful.

Theorem 4. Lel A be a topological space, £ be a bounded set in
the dual space of a Banach space and Co(£) be the smallest regularly
convex set which contains 2. If 21— T2 is a mapping of 4 on £,

every element ¢ of Co(%) is a weak Radon integral ¢ = J T4 dp(2) by
a suitable Radon measure with the total mass 1.

If 0 is compact and if 2— T\ is continuous, the measure p can
be chosen as a normalized regulur measure on 9.

Proof. The totality R of Radon measures on £ with the total
mass 1 is the smallest regularly convex sub-set of t.he dual space B*(2)

of B(#), which contains the totality of point measures 4y : J Sfdorn=f(2)
(2€20). Since pER —)J T2dp(2) is weakly continuous on R, its Range

is weakly compact, convex and contains every TA = I Trudox(y) (A€ Q).

Then it is identical with the set Co(:1).
If £ is compact and if the mapping is continuous, a weak Radon

integralJ T.dp(2) is equal to a weak integralJ T2du(2) by a regular

measure p. p is the restriction of the positive linear functional p on.
B(©2) within the space C(£). .

~ Corollary. (Extention theorem of the measure). Lei @ be a topo-
logical space, and A be a compact space. If 2 —Ti is a mapping of
2 in a dense sub-space of A, every regular measure p on A, as a
positive linear functional on C(d), is extended to a Radon integral p
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on B(9) so that
[ fTdp = [ frdun.

If © is compact, and if T is continuous, p is chosen as a
regular measure on 5.

Proof. We apply Theorem 4 to the mapping A— én. The point
mass dr at T2 in A is a positive linear functional on C(£). Then
every positive linear functional z on C(d) in the set X= Co(dr: 1 E L)
is a weak Radon integral‘[ﬁm dp(1). X is the totality of normalized

regular measures on ./, and every normalized regular measure p is a

weak integral p = Jd“dp().). Then for every f= C(d),

[ rdpe = [ smi oty = [ reTndp.

§ 5. Convex sets of semi-norms.

A set A of semi-norms is called LP-sum convex (1< p < oo) if
every normalized L”-sum of every pair of elements in A bclongs to .
A is called universally convex if it is L'-sum convex, and s, t € 4 imply
max (s,at) € A forevey 0 a < 1.

Theorem 5. The totality Co*(d) of normalized LP-sums on a
bounded set A of semi-norms on £ is the smallest closed LP-sum
convex set which contains A.

Theorem 6. The totality Co*(.1) of normalized compositions on
a bounded set A of semi-norms on £ is the smallest closed universally

convex set which contains A.
Proof of Theorem 5. In case p < oo, Co™d) is the range of the
1

weakly continuous mapping pg—|n 5= ( J A% d;(2)) *» defined on the tota-

lity # (4) of normalized regular measures on . This mapping trans-

poses the addition ap + B(a+3=1) in A (d4) tothe LPsum operation
.l

{a(pld)?+ 3D} 7 in Co™(d). A (A) is the smallset weakly compact

convex set which contains those point measures 4, at A in A, then

Co?(d4) is the smallest c?mpact L*.sum convex set which contains all

elements. » — (j)."dovu)r»" in .
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In case p = o0, Co™(A) is compact as the image of the continuous
mapping % — |k* of the compact set of the totality of L~-semi-norms on
C(.1). (c.f. Lemma 3.2), then it is sufficient to see that Co=(.1) contains
everywhere densely those L*-sums max(4, ..., 4,) of finite elements in
A, that is, every neighbourhocd U(|X|*: fi,..., /., &) of an L*-sum
| X|* = supaex 4 (the least upper bound on a closed set X in ) contains
such an L”-sum max(4,...,4,). Let »; be a point in X so that
v 1) = supaex2(f1) = | X, *(f)), then we can choose ..., 4, in 4 so that
i (f)— 2N <e G §=1,2,...,n). The max (4,...,4,) is a requ-
iered one. Thus the Theorem is valid in every case.

Proof of Theorem 6. By (3.4) in §3 an orderly seminorm % satis-
fies R(f) =sup,@-+(k,J f dp=supuutay | n)(f). Then the composition

£ isa L=-sum of L'-sums on :
kN f) = supuertw L/l‘l (A = supuer+ o U“lA (.

Lemma 5.2. Every composition k" on A isa L”-sum of a system
of Ls-sums on A.

ILet 4 be a bounded set and let W denote the smallest universally
convex set which contains 4. Then W= Co™(W) for p=1 and p=oo,
Let % be an arbitrary normalized composition. Then % is a L=-sum
of a suitable set © of L-sums |x'' on A by measures ;. with masses
p(4) =< 1. On the other hand k" is normalized, and there is at least one
measure v in U*(k) so that k(1) =|v|,(1)=1. Then k isa L=sum k=
supueca (max(|v|}, [xlM). Every |l is a multiplication |u {f =ap of
0< a =1 and a normalized L'-sum s, in A. Since 'u|* and s, belong
to Co'(4) & W, max (|v', 'n ) = max (v, aye) belongs to W (by the
definition of the univresal convexity), then & =supi,ea max{( v|r", [g[i))
belongs to Co™(W)= W.

§ 6. An extremal theorem of semi-norms.

An element of an L*-sum convex compact set A4 of semi-norms is
called L*-sum indecomposable if, whenever s be a normalized L?-sum
of two elements ¢,7 in ., we have either s=g¢q or s=7. The next
Theorem will be applied to decomposing operator algebras in §8.

Theorem 7. If A is a compact L?-sum convex set of semi-norms,
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A contains sufficiently many indecomposable elements in it. Then
every elewent of A is an L*-sum on the totality E? of L*-sum inde-
composable elements in A (i.e. A4 = Co™(E?)).

Proof. Let ¢ denote an upper bound of .. Incase p < oo, the
Theorem follows the Krein-Milman’s theorem. Replace ecach 1 in A4 by a
bounded functional (A(f)/q(f))* on & provided (A(f)/q(f))” =0 when-
ever ¢(f)=20, then the set 4 and its L*.sum operation are transposed
to a set A” of bounded functionals and the usual addition of functionals,
respectively. A7 =((1/g)*?:2 & A) is a bounded regularly convex sub-set
of the Banach space B" of the totality of bounded functionals on ., and
A= (1/g)y is a weak homeomorphism between A and A®. A® contains
sufficiently many extremal elements in it, while (1/g)” in A” is extre-
mal if and only if 2 is L”-sum indecomposable in /4. .1 contains there-
fore sufficiently many indecomposable elements in it.

We next consider in the case of p = oo, Given each s in 1 and each f
in ., we can choose an L~-indecomposable element ¢, in 4 so that
I;=s and t{f)=s(f). In fact the totality of elements ¢ in 4 so that
t<s and (f)=s(f) is inductive by the inverse order of semi-norms,
and contains a minimal element ¢, by the Zorn’s lemma. f, has no semi-
norm 7 sothat {, > 7 and t{f)=7»(f)=s(f). This ¢, is indecompo-
sable since !, = max (g, 7) (g, r = A) implies either {{f)=gq(f)=s(f) or
ILf)=7(f)=s(f), and either {;=¢ or t,=7. The given semi-norm s
is an L=sum S=supyesf I, of L™-indecomposable elements ?, in A,
hence A contains sufficiently many L~-indecomposable elements.

Example. The totality P* of normalized orderly semi-norms on the
space C(£) of a compact space £ is L”-sum convex. It is shown that

Theorem 8. A necessary and sufficient condition for an orderly
semi-norm s to be indecomposable to any non-trivial L™-sum of orderly
semi-norms is that s be an L'-semi-norm.

Proof. 1If an L'-semi-norm |p|, is an L”-sum |n|; =max (g, #) of
two orderly semi-norms ¢ and #, then either |p|, (1) =¢g(1) or |p|(1)=
7(1). We can assume |pl;, (1) =¢g(1) without loss of generality, then
every f in C(2) with 0 =< f'=C 1 satisfies jp, (1) =|ply (f) +ipl, A—1),

1) B is considered as a dual Banach space of a suitable normed space /(££), the
totality of functionals ¢(f) which vanishes except for finite elements in &, and whose

norm is JZEL (N
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=g N+q—1F), ¢ N phi(fHandg(Q—f) < pl (1—f). This
means ¢(f)=|u|,(f) and g =|n}, the indecomposability of |x|, to non-
trivial L*-sums.

Conversely let s be an L™ indecomposable orderly semi-norm in P*,
By (3.4) in §3 s is an L”-sum s =SungU+(s)![l[1 =supacai On a suitable
set A4 of L'-semi-norms. Eevery neighbourhood U=U(s: f,..., fu &)
contains an element of .. In fact, let s, denote the least upper bound
of semi-norms in the common-part of U and 4, and let s; denote the
least upper bound of semi-norms 7 in .l so that 7(fi) < s(fi) —s. Then
§ is an L™-sum S=max (Sq Sy, ...,5:). By the indecomposability of s,s
is coincident with s, and UM 4 is non-empty. Then s is an L'-semi-
norm as a limit element of L'-semi-norms (Lemma 3.1).

§ 7. Decompositions of normed spaces and its dual spaces.

Let %2 be a composite semi-norm on a set 4 of semi-norms on £

Then the representation £— £ (&*) is said to be composed of the
system of those representations (."— (2): 1€ 4). The consistency of
such a definition is asserted by the one-to-oneness of the correspondence
between semi-norms and representations. To study the relation between
ZL(k*) and (1) (A€ 4), we define the carrier of a composition.

The carrier of an orderly semi-norm % on the space C(£2) of a com-
pact space £ is the smallest closed sub-set X of £ so that every f in
C(£) which vanishes on X belongs to (k) {(i.e. B(f)=0). The exis-
tence of the carrier is asserted by the next Lemma.

Lemma 7.1. The carrier D) of an orderly semi-norm k on
C(2) is the closure of the set-theoretical sum of carriers of all regular
measures in the space U*(k) (U*(k) is defined in 3.4, §3).

In fact, if a continuous function f vanishes on the carrier of every

regular measure p in U*(k), then by 3.4 |p,(f)= J 'fldn =0 and
k(f) = supuer+w _[ |f1 d=0. Conversely, if a continuous function f does

not vanish on the carrier of a measure y in U*(k), then Z(f) _Z_J’ Sldy
>0. QE.D.

If two functions f and g in C(£) has the same values on the carrier
D(k) of an orderly semi-norm %, then k(f)=k(g). k is thus deter-
mined as an orderly norm on C(D(E)).

The carrier of a composition £ on a compact space 4 of semi-norms
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is defined as the carrier of the orderly semi-norm %2 on C(A).

Lemma 7.2. If %k* is a composition on a compact set A of semi-
norms on £, the zero-point-set N (k") of k™ is contained in each
zero-point set N (1) of semi-norms in the carrier of k*.

In fact, if f& #(%* and E(fil)=0, then |Ai|=a(f)=0 and f
belongs to #(2) foreach 2 in D(k).

A composition of normed spaces is now defined.

Definition. 1. Let Y1) be a system of normed spaces defined at
each point 4 in a compact space 4. A normed space N is said to be
composed of (N(A):2E A) by an orderly semi-norm %2 on C(A) if

(1). For each Y1) a representation f— f, of I in N(1) exists.

(2). Ifan f in N is fixed, a numerical function |f.| of the vari-
able 2 is continuous on 4.

(3). Every two elements 2,y in A are distinguished ('fil #1/.0)

by the norm-function |f. of a suitable f in I, '
’ (4). Thenorm |f] of £ in N is determined by |f'= k(| fi().

Definition 2. If the space J in Definition 1 is composed by an
L?-semi-norm (p < o) by a regular measure p on A, then I is said

1
to be an LP-sum and denoted by ¥ =( J N2 dp(2) ?.

If the space N is composed by the L=-semi-norm 'A|, then N is
said to be the L=-sum (or the least upper bound) of those spaces (J(1):
A€ 4), and denoted by I = supscadi(4).

Theorem 9. Let k" be a composite semi-norm on a compact set A
of semi-norms on a linear space . Then the representative space
ZL(E™) is a composition of those normed spaces (£ (i): 1€ D(k)).

Proof. If 1€ D(k), #(2) 2 A (k") implies that fi — fi = (fi) de-
fines a representation of £ (£*)= L[/ A (k*) on L) =L[ (). kisa
semi-norm on C(D(%)), and the representation f, — (f;). satisfies clearly
(1), (2), (3) and

(4); ful =) =R L.

We now treat our final problem, the composition rules of the dual
space of a composite normed space.

Let 4 be a compact set of semi-norms on 2. A spherical system
U(4) on A is the totality of those pairs (4, ¢) sothat A€ 4 and ¢E
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U(2) (U() is the unit sphere of £*(2).). Ul(4d) is a topological space,
as a sub-space of the product space AX L *,

Theorem 10. The spherical system U(A) of a compact set 4 of
semi-norms on L is weakly compact.

In fact, let ¢ denote the least upper bound of 4. The U(2) of every
A in A is contained in [ ‘g), then U(d4) is contained in the compact
space AX Ulg). If f is a fixed element in £, the functions 2(f)—Ig(f)!
js continuous on the product space A X U{g) with respect to the variables
2€ 4 and ¢ &€ Ulg). U(d) is the common part of all those closed sets
(2, 0) E4x U@ : 2(f)—l¢(f)] Z0), then it is closed and compact in
U(@)x 4 as well. Q.E.D. .

If o is a regular measure on U(.), p determines a regular measure

#a on A so thatJ F (A dpal2) = J Fdu(2, ¢). 1 is the restriction of
the measure pz on A by the mapping (4, ¢) — 2

Theorem 11. Let k" be a composite semi-norm on a compact sel
A of semi-norms on £, and let U(A) denote the spherical system on
A, Then every « in Ulks) is a weak integral = Jgﬁd’u(i, ¢) by a

suitable regular measure n on U(d) whose restrictiou ps on A be-
longs to U*(k).

Proof. 1If p varies on a set of regular measures on U(4), the
mapping pu — ua is weakly continuous. Then the totality W of those
regular measures g on U(:A) whose restriction 75 belongs to U*(&) is

regularly convex and bounded (since J ldp= J ldpa<1). If peW,

then the weak integral [ edu(2, ¢) belongs to U(E™). In fact by the rela-
tion 2(f) Zlg(f)| for (4, ¢) =U(4), we have

o= [ e ndnt, o1 < [ 10dp0,
- J!fAI dpa() < B A = BN

The weakly continuous mapping p—ﬁj«pd,u(/‘., ¢) maps therefore

the set W in a regularly convex symmetric sub-set U of U(k®).
Now suffice it to say U= U(%£™). This follows the fact that for each

J in £ we can choose a weak integral «p='[<pdy(1., ¢) in U with
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RN =(f), or k(|fa])= Jw(f)dy()., ¢). The existence of such a mea-
sure ;s is shown in the more stronger condition that

(1).  p vanishes out-side of a compact set V= ((1, ) € U(4) : A(f) =
(.

(2). The restriction pn of p within the space A belongs to U*(k)
and satisties (/i) = [ i duald) (= [ 9(0) dpt, o).

In fact, by (3.4) we can choose a measure » in U*(k) so that &( f\.)

|fx| d»(2). It is sufficient to see the extensibility of the measure v
to a measure ;2 in the space V. This is done by the extension theorem
of measures (Theorem 4 Remark in §4), and by the fact that the mapping
(4, ¢) = 2 maps the set V=1((1, ¢) =U(A):2(f) =¢(f)) onto the set 4,
that is, for each 2 in .1, we can choose a ¢ in U(1) so that ¢(f) = i(f).
Thus such a measure p exists, and U coincides with U(&").

Theorem 12,2 Let k* be a composition on a separable compact
sel A of semi-norms, then every element » inthe dual space L*(k")

is @ weak integral = qu dv(3) by a suitable regular measure v in

A, where . s a weakly measurable function on A so that each
is an element in L*(2) of norm *(Y\) 21, and v is a measure in
U*(k) of norm k*(v) =k ().

Proof. J. Dieudonné [2] extended the Doob’s theorem to the follow-
ing result. “If 1—Ti is a continuous mapping of a compact space
£ to another separable compact space A, every regular measure n on

2 is a weak integral n= I ux duv(4), where each pn is a normalized

regular measure on the space £,=(x:Tx = 1), and the measure v is
the restriction of the measure p on the space A”. We now assume
the space A4 in Theorem 11 be separable. :

If 4 is an element of Z*(2*) with the norm 2™*(y) =1, 4 is a
weak integral +r = J’gcd‘a(z, ¢) so that the restriction » of p within
the space A belongs to U*(k). The Dieudonné’s theorem is applicable
to this measure p with respect to the mapping (2, ¢)— 1, and p isa
weak integral = J A,’l;\ dv(2) of a weakly measurable function p.. Each
p#a is a normalized regular measure on the sphere U(2) (= the complete

1) Analogous cares to those of [2] must be exercised with the measurablility of
the norm functions A¥(ya), as well as the difference between weak equivalency and
usual equivalency, of those functions ¢a in Theorem 12 and its Corollary.
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inverse image of the point 2). Then

v = yond g = ([ ot9) dpmigh dpy
= [aN1duia.

Each . is a weak integral «n= J'q)d‘u;‘(go) on the unit sphere U(1)
by a normalized regular measure g, and belongs to U(2) as well, then
4 is a weak integralIA«]q dy(2). The norm K£*(v) of v is 1 because it

is not smaller than the norm &**(y»)=1 of 4. Q.E.D.

Corollary. Let s be a L sum (p < =) on a compact set 4 of

L . . .
semi-norms; s = ( J Rl du(2)?. Then every + in L*(s) is a weak in-

tegral = [ () so that
(1). Incase p=1, s*(y)=ess. max ¥ (yn).
@. Incase p>1, s =([ 2y dutan. (L41 _y),
? q
If s is the least upper bound on A, every +r in ZL*(s) is a weak
integral + = qu du(x) by a suilable regular measure p on A so

that
s5p) = [ 24(y) duta).

§ 8. Applications to decomposing operator algebras.

Let R be a normed space, and "<«/ be a linear algebra of bounded
operators on I which contains the identity I. A semi-norm 7 on s/
so that #(I)=1 and 7(AB) < y(A)(B) is said to be algebraic. The
norm #(A)=|A| of A as an operator is clearly algebraic. The totality
of algebraic semi-norms on £ is L™-sum convex.

If % is an element of N, the semi-norm p(A) =|Ax| on -« satisfies
p(AB)<n(A)p(B). In general, a semi-norm p on -« so that sup p(B)<1
PlAB) { oo (A= o), is said to be operative. And if 7 is an algebraic
semi-norm so that p(AB) < r(A)p(B), r is said to operate on p, and p
is said to be operailed by 7.

The canonical represcntation of .« by an algebraic semi-norm 7
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is an algebraic representation of .« to another normed algebra .« (). If
p is an operative semi-norm, then .o/ operates bounded linearly on the
normed space  (p). That is, there is an algebraic representation AE
— A(p) on a linear algebra of bounded operators on -«/(p) so that p(A)
=|A(p)x; for a suitable cyclic element x in «(p). If p is operated by
an algebraic semi-norm # moreover, then A, — A(p) determines a topo-
logico-algebraic representation of the normed algebra .«/(#) on an opera-
tor algebra on .« (p). The totality of semi-norms opecrated by a fixed
algebraic semi-norm 7 is universally convex.
An operative semi-norm p on .« is said to be normalized if p(I) =

1. If p is normalized and operated by an algebraic semi-norm 7, then
p=<r. (In fact, p(A) = p(AD) < r(A)p(I) =#(A)). Thus

Lemma 8.1. The totality of semi-norms on a linear algebra o
operated by a fixed algebraic semi-norm v on A is compact, uni-
versally convex and bounded by r.

The present problem is to decompose a given (algebraic or operative)
semi-norm p into simpler pieces.

The past works for operator-algebras were almost restricted to that
of C*-algebras, but for the G.E. Silov’s several early works. Then we
shall reconstruct once more the decomposition theory of C*-algebras in a
new point of view. It may be perhaps useful to extend the result to
general Banach algebras in a feature.

Let .o be a C*-algebra (i.e. a uniformly closed self-adjoint algebra
of bounded linear operators on a Hilbert space.) with the identity I. An
algebraic semi-norm p on .« so that p(A*A) = p(A) and p(A*) =p(A)
is said to be a B*-semi-norm. If _# is a two-sided closed ideal of .+,
by the theorem of Gelfand-Kaplansky ([4] and [6]) the residue algebra
o | N with the norm |A/ _#|=infrc_y A— X| is a C*-algebra. Those
natural representations A — A/_# by closed ideals .# exhaust the tota-
lity of representations of .« to C¥*-algebras. Then the zero-point-set
A (p) of a B*-semi-norm p is a two-sided ideal, and A — A/ A#(p) is the
canonical representation of .« on the C*-algebra .«/_#(p) so as to be
p(A) = infxeﬂ(p) ‘A - X| = [A/r./f/(p)[.

In such a way, B*-semi-norms and two-sided closed ideals of .=/ cor-
respond one-to-one with each other, however, the correspondence reverses
their respective orders. The totality B* of B*-semi-normson s is
L=-sum convex, closed and bounded by the norm n(A) of . If p is
a least upper bound p =supaead onaset A of B¥*semi-norms, then the



COMPOSITIONS OF LINEAR TOPOLOGICAL SPACES 207

ideal #(p) should be the greatest lower bound (the common ideal) of the
system of corresponding ideals (./(2):2& .1). In particular, p=B* is
L=-sum indecomposable if and only if the ideal A (p) (and the algebra)
A [ AN(p) is irreducible (c.f. [7]), that is, #(p) has no expression as
the common ideal of any pair of ideals containing #(p) properly. Thus

Lemma 8.2. Every C*-algebra with the identity Iis a L*-sum of
(ideal theoretically) irreducible algebras.

If . is a projective C*-algebra (A C*-algebra ./ is said to be pro-
jective if it is spaned uniformly by its projection elements.), then the
result is more strengthened.

Theorem 13. Every projective C*-algebra -« with the identity I
isa L=-sum of several sub-dirvect sum irreducible C*-algebras.

Proof. -« is said to be sub-direct sum irreducible (c.{. [1], [7]) if
it contains the smallest closed two-sided ideal. For each projection E, we
consider a minimal B*semi-norm p, so that p,= E|=1. If ¢q is a
B*-semi-norm properly smaller than p,, then ¢g(E) < p(E) and ¢(E)=
g(E») =q(E)® imply q(E)=0. The least upper bound 7 of all those
B*.semi-norms properly smaller than p, vanishes at E as well. 7 is
then the largest B*-semi-norm properly smaller than px and 7 (px) is
the smallest closed ideal which contains </ (p) properly. Thus #(p.)
and ¢/ ¥ (py) are totally irreducible. Since .« is projective, the least
upper bound s of those B*semi-norms p with the totally irreducible
zero-point-sets (ideals) #(p) does not vanish at any projections in <«
This means #(s)=0= #(2n), the equality of the semi-norm s and the
norm 22 of /. Q.E.D.

If .« isa C*-algebra with the identity on a Hilbert space 9, every
element x in $ determines an semi-norm p on .« operated by the norm
1(A) of . An H-semi-norm on -/ operated by the norm 2 is defined
in the following condition. The space -/ (p) of the canonical representa-
tion A— A, is a Hilbert space, -« operates on which as a self-adjoint
algebra, that is, ((AB),, C,) = (B,, (A*(C),) forevery A,B,C in .

1
Notice that p(A)=(A,, A,)?, then an H-semi-norm p determines

the inner-product (A, B,) = % Ip(A+ By — p(A — B) +ip(A +iBy —
ip(A —iB)%} of ., and the totality of normalized H-semi-norms on s/
operated by the norm of .« is compact and L>sum convex. An norma-
lized H-semi-norm p is L’-sum indecomposable if and only if the algebra

s/ operates irreduciblly on the Hilbert space 7 (p).
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The above-stated is of cause merely a reproduction of the I. Gelfand’s
theory. His theory of the canonical representation of a positive definite
function consists of two relation-theories, One treats the relation between
positive definite functions and H-semi-norms. Another treats the relation
between H-semi-norms and the canonical representations. We can eli-
minate its somewhat superfluous former half.

Coincidence between indecomposability of (operative and algebraic)
semi-norms and algebraic irreduciblity of canonical representations ob-
served in B*- and H-semi-norms may not be expectable for general ope-
rator-algebras. However, to investigate the propereies of general alge-
braic and operative semi-norms may be an important remained problem.

REFERENCES

[1] G. BIRKOFF: Sub-directunions in universal algebra, Bull. Amer. Math. Soc. vol.
50 (1954) pp. 764—768,

[2] J. DIEUDONNE: Sur le théoréme de Lebesgue-Nykodym IV. Jour. Indian Math.
Soc. N.S. 15 (1951). .

[3] ————: La dualité dans les espaces vectoriels topologiques Ann. Ecole Norm.
Sup. vol. 54 (1941) pp. 107—139. )

[4] I GELFAND and NAIMARK: On the imbedding of normed rings into the ring of
operators in Hilbert space. Rec. Math. (Mat Sbornik) N. S. 12 (1943) 197—213.

[5] R. GODEMENT: A theory of spherical functions I, Trans. Amer. Math. Soc. vol.
73 (1952) pp. 555—596.

[6] I KAPLANSKY: Normed algebras, Duke Math. Jour. vol. 16 (1949) 339—418.

[7]1 N. H. MACCOY: Sub-direct sums of rings. Bull. Amer. Math. J. vol. 53 (1947)
856—877.

{81 G.W.MACKEY: On infinite-dimensional linear spaces Trans. Amer. Math. Soc.
vol, 57 (1945) 155—207.

[9] I.E.SEGAL: Irreducible representations of operator algebras. Bull. Amer. Math.
Soc. 53 (1947) 73—88.

[10] G.E. SiLov: Rings of type C. Rings of type C on the line and on the circum-
ference. Doklady Akad. Nauk SSSR (N.S.) 66 (1949) pp. 813—816 and pp. 1063—
1066.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received March 17, 1957)



