COMPOSITIONS OF LINEAR TOPOLOGICAL SPACES

MINORU TOMITA

Introduction

A topology of a linear space \mathscr{L} is determined by a system of seminorms on \mathscr{L} , then a conception of a composition of topological representations of \mathscr{L} may be strictly and naturally formed by that of seminorms of \mathscr{L} . In this point of view we shall develop a "composition theory of semi-norms" which lays its foundation on three elementary properties of semi-norms.

- (1) A semi-norm is a functional on \mathcal{L} , and a space of semi-norms allows some rules of compositions of functionals. For instance, if s_1, \ldots, s_n are semi-norms, $q = \max(s_1, \ldots, s_n)$ and $r = (s_1^p + s_2^p + \ldots + s_n^p)$ $(p \ge 1)$ are semi-norms. More generally, if a function of n real variables $k(x_1, \ldots, x_n)$ satisfies a suitable condition (c. f. §4), the composite functional $k(s_1, \ldots, s_n)$ is a semi-norm.
- (2) A semi-norm s on \mathcal{L} determines uniquely a representation of \mathcal{L} on another normed space $\mathcal{L}(s)$, then a composition $p = k(s_1, \ldots, s_n)$ of semi-norms s_1, \ldots, s_n defines a composition of the representative normed spaces $\mathcal{L}(p) = k(\mathcal{L}(s_1), \ldots, \mathcal{L}(s_n))$.
- (3) A space of semi-norms on $\mathscr L$ is a topological space, which has a weak topology as a space of functionals on $\mathscr L$. The general Heine-Borel principle (The equivalency between bounded-closedness and compactness) is valid even in the space of semi-norms. (Theorem 1 in §1). It enables us to extend the former algebraical compositions to transcendental compositions $\sup_{\lambda \in \Lambda} \lambda$, $(\int_{\Lambda} \lambda^p d\rho(\lambda))^{\frac{1}{p}} : \sup_{\lambda \in \Lambda} \mathscr L(\lambda)$, $(\int_{\Lambda} \mathscr L(\lambda)^p d\rho(\lambda))^{\frac{1}{p}}$ etc. on bounded sets of semi-norms and corresponding sets of normed spaces, respectively.

§1 treats a topological space of semi-norms and the general Heine-Borel principle, §2 and 3 prepare the correspondence theory between semi-norms and representations. In §4 we introduce a concept of a composition of semi-norms in a wide sence. §5 and §6 treats some sets of semi-norms convex by some operations of compositions, and their extremal problems. §7 determines the composition law of representative normed spaces and their dual spaces which correspond to compositions of semi-norms.

§1. Topology and order of semi-norms.

We consider a fixed (real or complex) linear space \mathscr{L} . The totality of complex functionals on \mathscr{L} is a topological space by its weak topology. A weak neighbourhood of a functional φ is a set of functionals $U(\varphi: f_1, \ldots, f_m, \varepsilon) = (\psi: |\varphi(f_i) - \psi(f_i)| < \varepsilon, 1 \le i \le n$). If φ and ψ are real functionals, the order $\varphi \ge \psi$ is defined by $\varphi(f) \ge \psi(f)$ $(f \in \mathscr{L})$. The general Heine-Borel Theorem is valid in a space of functionals.

Lemma 1.1. A set A of functionals is compact if and only if it is closed and bounded.

In fact, if A is absolutely bounded by a functional ψ , A is contained in the compact space $U(\psi) = (\varphi : |\varphi| \leq \psi)$. $U(\psi)$ is the Tychonoff product $I/\bigoplus_{f \in \mathscr{L}}(|\varphi(f)| \leq \psi(f))$ of closed circulars in the complex domain defined for respective f in \mathscr{L} . Then a bounded closed set is compact.

Conversely, assume Λ be compact. Every f in $\mathscr L$ determines the (continuous) coodinate function $\varphi \to \varphi(f)$ of variable φ defined on the totality of functionals on $\mathscr L$. Then the image $(\varphi(f):\varphi \in \Lambda)$ of Λ is bounded closed, and Λ has an absolute bound $\psi(f) = \sup_{\varphi \in \Lambda} |\varphi(f)|$.

A semi-norm s of \mathscr{L} is a functional on \mathscr{L} so that (1). $s(f) \ge 0$, (2), $s(\alpha f) = |\alpha| s(f)$, and (3). $s(f+g) \le s(f) + s(g)$. By the continuity of the coordinate functions $s \to s(f)$, the totality **P** of semi-norms on \mathscr{L} is a closed set of functionals, then the Heine-Borel Theorem is valid in **P** as well.

Theorem 1. A set of semi-norms is compact if and only if it is bounded and closed.

§ 2. Relations between semi-norms and representations.

If $f \to f_s$ is a representation (a linear mapping) of \mathscr{L} on another normed linear space $\mathscr{L}(s)$, the functional s on $\mathscr{L}: s(f) = |f_s|$ (the norm of f_s) is a semi-norm on \mathscr{L} . The kernel $\mathscr{N}(s)$ of the representation, $\mathscr{N}(s) = (f \in \mathscr{L}: f_s = 0)$, is identical with the zero-point-set $(f \in \mathscr{L}: s(f) = 0)$ of s.

Conversely, if s is a semi-norm on \mathcal{L} , its zero-point-set $\mathcal{N}(s)$ is a linear space, and the residue space $\mathcal{L}(s) = \mathcal{L}/\mathcal{N}(s)$ is a normed space. The natural mapping $f \in \mathcal{L} \to f_s = f/\mathcal{N}(s)$ is called the *canonical representation* of \mathcal{L} by s, and the norm $|f_s|$ in $\mathcal{L}(s)$ is determined by $|f_s| = s(f)$.

The totality \mathscr{L}^* of linear functionals on \mathscr{L} is a linear space, \mathscr{L}^* is clearly a closed set of functionals on \mathscr{L} , in which the Heine-Borel Theorem is preserved.

Lemma 2.1. The totality $F(\mathcal{L}^*)$ of weakly closed sub-sets of \mathcal{L}^* is a topological space. A complete system of neighbourhoods of a $W \in F(\mathcal{L}^*)$ consists of those sub-sets of $F(\mathcal{L}^*)$: $\mathfrak{V}(W: f_1, \ldots, f_n, \varepsilon) = (X \in F(\mathcal{L}^*): X \subseteq U(W: f_1, \ldots, f_n, \varepsilon)$ and $W \subseteq U(X: f_1, \ldots, f_n, \varepsilon)$). $U(W: f_1, \ldots, f_n)$, denotes the set theoretical sum of the totality of $U(s: f_1, \ldots, f_n, \varepsilon)$ neighbourhoods of $s \in W$.

If s is a semi-norm, the dual Banach space of $\mathcal{L}(s)$ is denoted by $\mathcal{L}^*(s)$. $\mathcal{L}^*(s)$ is the totality of $\varphi \in \mathcal{L}^*$ so that $|\varphi(f)| \leq s(f)$ for every $f \in \mathcal{L}$. The norm $s^*(\varphi)$ of φ in $\mathcal{L}^*(s)$ is $s^*(\varphi) = \sup_{s(f) \leq 1} |\varphi(f)|$. The following fundamental relations between semi-norms s and unit spheres U(s) of $\mathcal{L}^*(s)$ is well-known.

Lemma 2.2. The unit sphere U(s) of $\mathcal{L}^*(s)$ is a weakly compact convex and symmetric (i. e. $\varphi \in U(s)$ and $|\alpha| = 1$ imply $\alpha s \in U(s)$) subset of \mathcal{L}^* . $s \leftrightarrow U(s)$ is a one-to-one correspondence between the totality P of semi-norms and the totality P of weakly compact convex and symmetric sub-sets of \mathcal{L}^* .

U is a topological space, as a sub-space of $F(\mathcal{L}^*)$. Our interest is how the order and the topology of P are transposed to those of U.

Theorem 2. The correspondence $s \leftrightarrow U(s)$ between P and U is an order-preserving $(r \geq s \text{ if and only if } U(r) \supseteq U(s))$ homeomorphism. A neighbourhood $U(s:f_1,\ldots,f_n,\varepsilon)$ of an $s \in P$ corresponds to the neighbourhood $\mathfrak{V}(U(s):f_1,\ldots,f_n,\varepsilon)$ of U(s).

Proof. We only need to prove that $|r(f)-s(f)| < \varepsilon$ is equivalent to $U(U(r):f, \varepsilon) \supseteq U(s)$ and $U(U(s):f, \varepsilon) \supseteq U(r)$. If $|r(f)-s(f)| < \varepsilon$, every $\varphi \in U(s)$ satisfies $|\varphi(f)| \le s(f) \le r(s) + \varepsilon$, while we can choose a $\psi \in U(r)$ with $r(f) = \psi(f)$. There is a suitable number $\alpha(|\alpha| \le 1)$ so that $|\varphi(f)-\alpha\psi(f)| < \varepsilon$ and $\varphi \in U(\alpha\psi:f,\varepsilon) \subseteq U(U(r):f,\varepsilon)$. This means $U(s) \subseteq U(U(r):f,\varepsilon)$ and $U(r) \subseteq U(U(s):f,\varepsilon)$. Conversely if $U(s) \subseteq U(U(r):f,\varepsilon)$ and $U(r) \subseteq U(U(s):f,\varepsilon)$, $s(f) = \max_{\varphi \in U(s)} |\varphi(f)|$ and $r(f) = \max_{\varphi \in U(r)} |\psi(f)|$ satisfies $|r(f)-s(f)| < \varepsilon$. Hence $s \to U(s)$ is an homeomorphism which mapps the set $U(s:f_1,\ldots,f_n,\varepsilon)$ to the set $\mathfrak{B}(U(s):f_1,\ldots,f_n,\varepsilon)$.

§ 3. Orderly semi-norms on vector lattices.

We apply the result of the former § to semi-norms on vector lattices. Let \mathcal{Q} denote a compact space and $C(\mathcal{Q})$ denote the totality of continuous functions on it. A semi-norm s on $C(\mathcal{Q})$ is said to be *orderly* if $s(f) \geq s(g)$ whenever $|f(\lambda)| \geq |g(\lambda)|$ on \mathcal{Q} . Generally, a normed lattice with a unit is represented as a uniformly dense sub-lattice of a suitable $C(\mathcal{Q})$ with an orderly norm, then we shall treat a normed lattice under such a concrete representation.

Among many orderly semi-norms of $C(\Omega)$, the following semi-norms are well-known.

- (1) Let μ be a regular measure on Ω . Then $|\mu|_p(f) = (\int |f(\lambda)|^p d\mu(\lambda))^{\frac{1}{p}} (p \ge 1)$ is an orderly semi-norm. We call it an L^p -semi-norm on $C(\Omega)$.
- (2) If X is a closed sub-set of Ω , $|X|(f) = \sup_{\lambda \in X} |f(\lambda)|$ is an orderly semi-norm. We call it an L^{∞} -semi-norm.

 $C(\Omega)$ is always treated as a Banach space with the norm $\|f_{\parallel} = |\Omega|(f)$ = $\sup |f(\lambda)|$. The dual Banach space $C^*(\Omega)$ of $C(\Omega)$ consists of the totality of completely additive set functions on the Borel field in Ω . Every $\varphi \in C^*(\Omega)$ has the Lebesgue decomposition $\varphi = \varphi^+ + \varphi^-$. The total variation of $\varphi : |\varphi| = \varphi^+ - \varphi^-$ is a regular measure on Ω .

A regular measure is called *normalized* if its total mass is 1. The totality $\mathcal{M}(\mathcal{Q})$ of normalized regular measures on \mathcal{Q} is a bounded regularly convex sub-set of $C^*(\mathcal{Q})$.

We recall some elementary properties of orderly semi-norms.

- (3.1) An orderly semi-norm s is smaller than the norm $s(1)|\Omega|$. In fact, $|f(\lambda)| \le |f|$ implies $s(f) \le s(||f||1) = ||f||s(1)$.
- (3.2) An orderly semi-norm s is said to be normalized if s(1) = 1. The totality P_1 of normalized orderly semi-norms on $C(\Omega)$ is bounded, closed and compact; the totality P of orderly semi-norms s with $s(1) \leq 1$ is as well.
- Lemma 3.1. The totality L^p of normalized L^p-semi-norms on $C(\Omega)$ is compact (for each $1 \le p \le \infty$).

Proof. In case $p < \infty$, the Lemma follows from that \mathbf{L}^p is the range of the weakly continuous mapping $\mu \to |\mu|_p$ on the weakly compact space $\mathscr{M}(\Omega)$ of normalized regular measures.

In case $p = \infty$, the Lemma follows from the I. Gelfand's theorem on normed algebras that a necessary and sufficient condition for an (orderly)

semi-norm s to be an L^{∞} -semi-norm is $s(fg) \leq s(f)s(g)$ and $s(f^2) = s(f)^2$ for f, g in C(Q).

(3.3) We denote by C(s) the normed space canonically represented by an orderly semi-norm s. The dual space $C^*(s)$ of C(s) is contained in $C^*(\Omega)$. The total variation $|\varphi| = \varphi^+ - \varphi^-$ of every element φ in $C^*(s)$ belongs to $C^*(s)$ and has the same norm $s^*(|\varphi|) = s^*(\varphi)$ with φ .

In fact, $|\varphi|(|f|)$ is determined by $|\varphi|(|f|) = \sup_{|f| \ge |g|} |\varphi(g)|$. Thus $|\varphi|(f) \le |\varphi|(|f|) = \sup_{|f| \ge |g|} |\varphi(g)| \le \sup_{s(f) \ge s(g)} |\varphi(g)| = s^*(\varphi)s(f)$. Then $s^*(|\varphi|) \le s^*(\varphi)$. On the other had, $|\varphi(f)| \le |\varphi|(|f|)$ implies $s^*(\varphi) \le s^*(|\varphi|)$ and $s^*(\varphi) = s^*(|\varphi|)$.

(3.4) Let $U^+(s)$ denote the totality of regular measures contained in the unit sphere of $C^*(s)$ of an orderly semi-norm s. For each $f \in C(\Omega)$ we can choose $\mu \in U^+(s)$ so that $s(f) = \mu(|f|) = |\mu|_1(f)$.

In fact, let φ be an element of $C^*(s)$ so that $s^*(\varphi) = 1$ and $s(f) = \varphi(f)$, then its total variation $|\varphi|$ belongs to $U^+(s)$ and satisfies $|\varphi|(|f|) \ge |\varphi(f)| = s(f)$ and $|\varphi|(|f|) = s(f)$.

When μ , ν are regular measures, we say $\mu \leq \nu$ if $\nu - \mu$ is a measure. A set V of regular measures is said to be a *star* if $\mu \in V$ and $\mu \geq \nu$ implies $\nu \in V$. The $U^+(s)$ of an orderly semi-norm s is clearly a star.

Theorem 3. $s \leftrightarrow U^+(s)$ is a one-to-one correspondence between P^+ and the totality U^+ of regularly convex stars of regular measures on Ω with masses ≤ 1 .

Proof. By 3.7, every $s \in \mathbf{P}^+$ satisfies $s(f) = \sup_{\mu \in U^+(s)} |\mu|_1(f)$ and $s = \sup_{\mu \in U^+(s)} |\mu|_1$, then $s \leftrightarrow U^+(s)$ is one-to-one. It is sufficient to say that every $V \in \mathbf{U}^+$ is a $U^+(s)$ of an $s \in \mathbf{P}^+$. The set $U = (\varphi \in C^*(\Omega))$: $|\varphi| \in V$ is regularly convex and symmetric in $C^*(\Omega)$, then it determines a semi-norm s on $C(\Omega)$ whose unit sphere U(s) of the space $C^*(s)$ is U. s is orderly. In fact, $\varphi \in U$ implies $|\varphi| \in U$, where $|\varphi|(|f|) = \sup_{|\varphi| \ge |\psi|} |\varphi|(f)$ and $|g| = \sup_{\varphi \in U} |\varphi|(|f|) = \sup_{\varphi \in U} |\varphi|(|f|) = \sup_{\varphi \in U} |f|(\lambda)|d|\varphi|(\lambda)$. Then V is identical with $U^+(s)$, the totality of measures in V.

Corollary. $s \leftrightarrow U^+(s)$ is an order-preserving homeomorphism between P^+ and U^+ .

The topology of U^+ is in the sense of Lemma 2.1.

§ 4. Concept of a composition.

We turn once more to the linear space \mathscr{L} in §1. Let k be an orderly semi-norm on the n-dimensional Euclidean space \mathscr{R}^n . k is a function of n variables $k(x_1,\ldots,x_n)$ so that (1) $k(x_1,\ldots,x_n) \leq k(y_1,\ldots,y_n)$ whenever $|x_i| \leq |y_i| \ (1 \leq i \leq n)$. (2) $k(\alpha x_1,\ldots,\alpha x_n) = |\alpha|k(x_1,\ldots,x_n)$ and (3) $k(x_1+y_1,\ldots x_n+y_n) \leq k(x_1,\ldots,x_n)+k(y_1,\ldots,y_n)$. If $s_1,\ldots s_n$ are n semi-norms on \mathscr{L} , the composite functional $q=k(s_1,\ldots,s_n)$ (that is, $q(f)=k(s_1(f),\ldots,s_n(f))$ is a semi-norm. We call it a composite semi-norm or composition of s_1,\ldots,s_n . A composition is called normalized if $k(1,\ldots,1)=1$. In particular, $q=(\sum \alpha_i s_i^p)^{\frac{1}{p}}$ and $r=\max(s_1,\ldots,s_n)$ are called an L^p -sum and an L^∞ -sum of those s_i , respectively.

More generally a composition is defined in a bounded set of seminorms. Let Λ be a bounded set of semi-norms. A function on Λ is uniformly continuous if and only if it is extended to a continuous function on the closure $\overline{\Lambda}$ of Λ . Then the space $C(\overline{\Lambda})$ is identical with the totality of uniformly continuous functions on Λ . Let k be an orderly semi-norm on $C(\overline{\Lambda})$. If $f \in \mathscr{L}$ is fixed, the function $|f_{\lambda}| = \lambda(f)$ of variable λ in Λ is uniformly continuous on Λ . A composition on Λ is a semi-norm on \mathscr{L} determined by $k^{\Lambda}(f) = k(|f_{\lambda}|)$. A composition k is called normalized if the semi-norm k is normalized. A composition by an L^p -semi-norm on $C(\Omega)$ is called an L^p -sum of Λ . If Λ is compact, every L^p -sums are expressed as follows.

Lemma 4.1. If Λ is a compact set of semi-norms, then

- (1) An L^p -sum $(p < \infty) |\mu|_p^{\Lambda}$ on Λ is a weak integral by a regular measure μ on Λ ; $|\mu|_p^{\Lambda} = \left(\int \lambda^p d\mu(\lambda)\right)^{\frac{1}{p}}$.
- (2) An L^{∞} -sum $|X|^{\Lambda}$ is the least upper bound $|X|^{\Lambda} = \sup_{\lambda \in X} \lambda$ (i.e. $|X|^{\Lambda}(f) = \sup_{\lambda \in \Lambda} \lambda(f)$ on a closed set X in Λ .

Usually every L^p -sum on a bounded set Λ of semi-norms is treated as an L^p -sum on the closure $\overline{\Lambda}$. But, if necessary, we represent an L^p -sum $(p < \infty)$ by a weak Radon integral on Λ .

A finitely additive set-function defined on the totality of sub-sets of a topological space Ω is called a *Radon measure*.

The Radon integral exists for every bounded function f on Ω .

Lemma 4.2. If s is an L^p -sum $(p < \infty)$ on a bounded set Λ of semi-norms, s is a weak Radon integral $s = (\int_{\Lambda} \lambda^p d\rho(\lambda))^{\frac{1}{p}}$ by a suitable Radon measure ρ on Λ .

¹⁾ Uniformly continuous by the uniform structure of the weak topology.

Proof. The space $C(\overline{A})$, regarded as the totality of uniformly continuous functions on A, is contained in the totality B(A) of bounded functions on A. If ρ is a Radon measure, the Radon integral $\rho(f) = \int f \, d\rho$ is a positive linear functional on B(A). Its restriction on $C(\overline{A})$ is a positive linear functional on $C(\overline{A})$, and represents a regular measure μ on \overline{A} . Then the weak Radon integral $(\int \lambda(f)^p \, d\rho(\lambda))^{\frac{1}{p}}$ is equal to an L^p -sum $(\int \lambda(f)^p \, d\mu(\lambda))^{\frac{1}{p}} = |\mu|_p^A(f)$.

The "Extention theorem of the measure" mentions that (See the next Remark) every positive linear functional on $C(\bar{A})$ is extended to a positive linear functional (a Radon integral) on B(A). Then every L^p -sum is a weak Radon integral on A.

Remark. The following extention theorem is often useful.

Theorem 4. Let A be a topological space, Ω be a bounded set in the dual space of a Banach space and $Co(\Omega)$ be the smallest regularly convex set which contains Ω . If $\lambda \to T\lambda$ is a mapping of A on Ω , every element φ of $Co(\Omega)$ is a weak Radon integral $\varphi = \int T\lambda \ d\rho(\lambda)$ by a suitable Radon measure with the total mass 1.

If Ω is compact and if $\lambda \to T_{\lambda}$ is continuous, the measure ρ can be chosen as a normalized regular measure on Ω .

Proof. The totality \mathbf{R} of Radon measures on Ω with the total mass 1 is the smallest regularly convex sub-set of the dual space $B^*(\Omega)$ of $B(\Omega)$, which contains the totality of point measures $\partial_{\lambda}:\int f\,d\partial_{\lambda}=f(\lambda)$ ($\lambda\in\Omega$). Since $\rho\in\mathbf{R}\to\int T\lambda d\,\rho(\lambda)$ is weakly continuous on \mathbf{R} , its Range is weakly compact, convex and contains every $T\lambda=\int T\nu d\,\partial_{\lambda}(\nu)$ ($\lambda\in\Omega$). Then it is identical with the set Co(A).

If Ω is compact and if the mapping is continuous, a weak Radon integral $\int T \lambda d\rho(\lambda)$ is equal to a weak integral $\int T \lambda d\mu(\lambda)$ by a regular measure μ . μ is the restriction of the positive linear functional ρ on $B(\Omega)$ within the space $C(\Omega)$.

Corollary. (Extention theorem of the measure). Let Ω be a topological space, and Λ be a compact space. If $\lambda \to T\lambda$ is a mapping of Ω in a dense sub-space of Λ , every regular measure μ on Λ , as a positive linear functional on $C(\Lambda)$, is extended to a Radon integral ρ

on $B(\Omega)$ so that

$$\int_{\Omega} f(T\lambda)d\rho(\lambda) = \int_{\Lambda} f(\nu)d\mu(\nu).$$

If Ω is compact, and if T is continuous, ρ is chosen as a regular measure on Ω .

Proof. We apply Theorem 4 to the mapping $\lambda \to \delta_{T\lambda}$. The point mass $\delta_{T\lambda}$ at $T\lambda$ in Λ is a positive linear functional on $C(\Omega)$. Then every positive linear functional μ on $C(\Lambda)$ in the set $X = Co(\delta_{T\lambda}: \lambda \in \Omega)$ is a weak Radon integral $\int \delta_{T\lambda} d\rho(\lambda)$. X is the totality of normalized regular measures on Λ , and every normalized regular measure μ is a weak integral $\mu = \int \delta_{T\lambda} d\rho(\lambda)$. Then for every $f \in C(\Lambda)$,

$$\int f d\mu = \int \partial_{T\lambda}(f) d\rho(\lambda) = \int f(T\lambda) d\rho(\lambda).$$

§ 5. Convex sets of semi-norms.

A set Λ of semi-norms is called L^p -sum convex $(1 \le p \le \infty)$ if every normalized L^p -sum of every pair of elements in Λ belongs to Λ . Λ is called *universally convex* if it is L^1 -sum convex, and $s, t \in \Lambda$ imply $\max(s, \alpha t) \in \Lambda$ for every $0 \le \alpha \le 1$.

Theorem 5. The totality $Co^{p}(\Lambda)$ of normalized L^{p} -sums on a bounded set Λ of semi-norms on \mathcal{L} is the smallest closed L^{p} -sum convex set which contains Λ .

Theorem 6. The totality $Co^{u}(A)$ of normalized compositions on a bounded set A of semi-norms on \mathcal{L} is the smallest closed universally convex set which contains A.

Proof of Theorem 5. In case $p < \infty$, $Co^p(A)$ is the range of the weakly continuous mapping $\mu \to |\mu|_p^\Lambda = (\int \lambda^p \ d\mu(\lambda))^{\frac{1}{p}}$ defined on the totality $\mathscr{M}(A)$ of normalized regular measures on A. This mapping transposes the addition $\alpha\mu + \beta\nu(\alpha + \beta = 1)$ in $\mathscr{M}(A)$ to the L^p -sum operation $\{\alpha(|\mu|_p^\Lambda)^p + \beta(|\nu|_p^\Lambda)^p\}^{\frac{1}{p}}$ in $Co^p(A)$. $\mathscr{M}(A)$ is the smallset weakly compact convex set which contains those point measures δ_λ at λ in A, then $Co^p(A)$ is the smallest compact L^p -sum convex set which contains all elements $\nu = (\int \lambda^p d\hat{\sigma}_\nu(\lambda))^{\frac{1}{p}}$ in A.

In case $p=\infty$, $Co^{\infty}(\Lambda)$ is compact as the image of the continuous mapping $k\to |k_1^{\Lambda}|$ of the compact set of the totality of L^{∞} -semi-norms on $C(\bar{\Lambda})$. (c. f. Lemma 3.2), then it is sufficient to see that $Co^{\infty}(\Lambda)$ contains everywhere densely those L^{∞} -sums $\max(\lambda_1,\ldots,\lambda_n)$ of finite elements in Λ , that is, every neighbourhood $U(|X|^{\Lambda}:f_1,\ldots,f_n,\varepsilon)$ of an L^{∞} -sum $|X|^{\Lambda}=\sup_{\lambda\in X}\lambda$ (the least upper bound on a closed set X in Λ) contains such an L^{∞} -sum $\max(\lambda_1,\ldots,\lambda_n)$. Let ν_i be a point in X so that $\nu_i(f_i)=\sup_{\lambda\in X}\lambda(f_i)=|X_i^{\Lambda}(f_i)|$, then we can choose $\lambda_1,\ldots,\lambda_n$ in Λ so that $|\nu_i(f_i)-\lambda_i(f_i)|<\varepsilon$ ($i,j=1,2,\ldots,n$). The $\max(\lambda_1,\ldots,\lambda_n)$ is a requiered one. Thus the Theorem is valid in every case.

Proof of Theorem 6. By (3.4) in §3 an orderly seminorm k satisfies $k(f) = \sup_{\mu \in U^+(k)} \int |f| d\mu = \sup_{\mu \in U^+(k)} |\mu|_{\mathbb{I}}(f)$. Then the composition k^{Λ} is a L^{∞} -sum of L^1 -sums on Λ :

$$k^{\Lambda}(f) = \sup_{\mu \in U^{+}(k)} |\mu|_{1} (|f_{\lambda}|) = \sup_{\mu \in U^{+}(k)} |\mu|_{1}^{\Lambda} (f).$$

Lemma 5.2. Every composition k^{Λ} on Λ is a L^{∞} -sum of a system of L_1 -sums on Λ .

Let Λ be a bounded set and let W denote the smallest universally convex set which contains Λ . Then $W = Co^p(W)$ for p = 1 and $p = \infty$. Let k^{Λ} be an arbitrary normalized composition. Then k is a L^{∞} -sum of a suitable set Ω of L^1 -sums $|\mu|_{\Lambda}^{\Lambda}$ on Λ by measures μ with masses $\mu(\Lambda) \leq 1$. On the other hand k^{Λ} is normalized, and there is at least one measure ν in $U^+(k)$ so that $k(1) = |\nu|_{\Lambda}(1) = 1$. Then k is a L^{∞} -sum $k = \sup_{\mu \in \Omega} (\max(|\nu|_{\Lambda}^{\Lambda}, |\mu|_{\Lambda}^{\Lambda}))$. Every $|\mu|_{\Lambda}^{\Lambda}$ is a multiplication $|\mu|_{\Lambda}^{\Lambda} = \alpha \mu_0$ of $0 \leq \alpha \leq 1$ and a normalized L^1 -sum μ_0 in Λ . Since $|\nu|_{\Lambda}^{\Lambda}$ and μ_0 belong to $Co^1(\Lambda) \subseteq W$, $\max(|\nu|_{\Lambda}^{\Lambda}, |\mu|_{\Lambda}^{\Lambda}) = \max(|\nu|_{\Lambda}^{\Lambda}, \alpha \mu_0)$ belongs to W (by the definition of the univresal convexity), then $k = \sup_{\mu_1 \in \Omega} \max(|\nu|_{\Lambda}^{\Lambda}, |\mu|_{\Lambda}^{\Lambda})$) belongs to $Co^{\infty}(W) = W$.

§ 6. An extremal theorem of semi-norms.

An element of an L^p -sum convex compact set Λ of semi-norms is called L^p -sum indecomposable if, whenever s be a normalized L^p -sum of two elements q, r in Λ , we have either s = q or s = r. The next Theorem will be applied to decomposing operator algebras in §8.

Theorem 7. If Λ is a compact L^p -sum convex set of semi-norms,

A contains sufficiently many indecomposable elements in it. Then every element of Λ is an L^p -sum on the totality E^p of L^p -sum indecomposable elements in Λ (i. e. $\Lambda = Co^p(E^p)$).

Proof. Let q denote an upper bound of Λ . In case $p \leq \infty$, the Theorem follows the Krein-Milman's theorem. Replace each λ in Λ by a bounded functional $(\lambda(f)/q(f))^p$ on $\mathscr L$ provided $(\lambda(f)/q(f))^p = 0$ whenever q(f) = 0, then the set Λ and its L^p -sum operation are transposed to a set Λ^p of bounded functionals and the usual addition of functionals, respectively. $\Lambda^p = ((\lambda/q)^p : \lambda \in \Lambda)$ is a bounded regularly convex sub-set of the Banach space B^1 of the totality of bounded functionals on $\mathscr L$, and $\lambda \to (\lambda/q)^p$ is a weak homeomorphism between Λ and Λ^p . Λ^p contains sufficiently many extremal elements in it, while $(\lambda/q)^p$ in Λ^p is extremal if and only if λ is L^p -sum indecomposable in Λ . Λ contains therefore sufficiently many indecomposable elements in it.

We next consider in the case of $p = \infty$. Given each s in Λ and each f in \mathcal{L} , we can choose an L^{∞} -indecomposable element t_f in Λ so that $t_f = s$ and $t_f(f) = s(f)$. In fact the totality of elements t in Λ so that $t \leq s$ and t(f) = s(f) is inductive by the inverse order of semi-norms, and contains a minimal element t_f by the Zorn's lemma. t_f has no seminorm r so that $t_f > r$ and $t_f(f) = r(f) = s(f)$. This t_f is indecomposable since $t_f = \max(q, r)$ $(q, r \in \Lambda)$ implies either $t_f(f) = q(f) = s(f)$ or $t_f(f) = r(f) = s(f)$, and either $t_f = q$ or $t_f = r$. The given semi-norm s is an L^{∞} -sum $s = \sup_{f \in \mathcal{L}} t_f$ of L^{∞} -indecomposable elements t_f in Λ , hence Λ contains sufficiently many L^{∞} -indecomposable elements.

Example. The totality \mathbf{P}^+ of normalized orderly semi-norms on the space $C(\mathcal{Q})$ of a compact space \mathcal{Q} is L^{∞} -sum convex. It is shown that

Theorem 8. A necessary and sufficient condition for an orderly semi-norm s to be indecomposable to any non-trivial L^{∞} -sum of orderly semi-norms is that s be an L^{1} -semi-norm.

Proof. If an L^1 -semi-norm $|\mu|_1$ is an L^{∞} -sum $|\mu|_1 = \max(q, r)$ of two orderly semi-norms q and r, then either $|\mu|_1(1) = q(1)$ or $|\mu|_1(1) = r(1)$. We can assume $|\mu|_1(1) = q(1)$ without loss of generality, then every f in $C(\Omega)$ with $0 \le f \le 1$ satisfies $|\mu|_1(1) = |\mu|_1(f) + |\mu|_1(1-f)$,

¹⁾ B is considered as a dual Banach space of a suitable normed space $l(\mathcal{L})$, the totality of functionals $\varphi(f)$ which vanishes except for finite elements in \mathcal{L} , and whose norm is $\sum_{f \in L} \varphi(f)$.

 $q(1) \leq q(f) + q(1-f), \ q(f) \leq |\mu|_1(f) \ \text{and} \ q(1-f) \leq |\mu|_1(1-f).$ This means $q(f) = |\mu|_1(f)$ and $q = |\mu|_1$, the indecomposability of $|\mu|_1$ to nontrivial L^{∞} sums.

Conversely let s be an L^{∞} -indecomposable orderly semi-norm in \mathbf{P}^+ . By (3.4) in §3 s is an L^{∞} -sum $s = \sup_{\mu \in U^+(s)} |\mu|_1 = \sup_{\lambda \in \Lambda} \lambda$ on a suitable set Λ of L^1 -semi-norms. Every neighbourhood $U = U(s:f_1,\ldots,f_m,\varepsilon)$ contains an element of Λ . In fact, let s_0 denote the least upper bound of semi-norms in the common-part of U and Λ , and let s_i denote the least upper bound of semi-norms r in Λ so that $r(f_i) \leq s(f_i) - \varepsilon$. Then s is an L^{∞} -sum $s = \max(s_0, s_1, \ldots, s_n)$. By the indecomposability of s, s is coincident with s_0 , and $U \cap \Lambda$ is non-empty. Then s is an L^1 -seminorm as a limit element of L^1 -semi-norms (Lemma 3.1).

§ 7. Decompositions of normed spaces and its dual spaces.

Let k be a composite semi-norm on a set Λ of semi-norms on \mathcal{L} .

Then the representation $\mathscr{L} \to \mathscr{L}(k^{\Lambda})$ is said to be composed of the system of those representations $(\mathscr{L} \to \mathscr{L}(\lambda) : \lambda \in \Lambda)$. The consistency of such a definition is asserted by the one-to-oneness of the correspondence between semi-norms and representations. To study the relation between $\mathscr{L}(k^{\Lambda})$ and $\mathscr{L}(\lambda)$ ($\lambda \in \Lambda$), we define the carrier of a composition.

The *carrier* of an orderly semi-norm k on the space $C(\Omega)$ of a compact space Ω is the smallest closed sub-set X of Ω so that every f in $C(\Omega)$ which vanishes on X belongs to $\mathscr{N}(k)$ (i. e. k(f)=0). The existence of the carrier is asserted by the next Lemma.

Lemma 7.1. The carrier D(k) of an orderly semi-norm k on $C(\Omega)$ is the closure of the set-theoretical sum of carriers of all regular measures in the space $U^+(k)$ ($U^+(k)$ is defined in 3.4, §3).

In fact, if a continuous function f vanishes on the carrier of every regular measure μ in $U^+(k)$, then by 3.4 $|\mu_1(f)| = \int |f| d\mu = 0$ and $k(f) = \sup_{\mu \in U^+(k)} \int |f| d\mu = 0$. Conversely, if a continuous function f does not vanish on the carrier of a measure μ in $U^+(k)$, then $k(f) \ge \int f|d\mu > 0$. Q. E. D.

If two functions f and g in $C(\mathfrak{D})$ has the same values on the carrier D(k) of an orderly semi-norm k, then k(f) = k(g). k is thus determined as an orderly norm on C(D(k)).

The *carrier* of a composition k^{Δ} on a compact space Λ of semi-norms

is defined as the carrier of the orderly semi-norm k on $C(\Lambda)$.

Lemma 7.2. If k^{Λ} is a composition on a compact set Λ of seminorms on \mathcal{L} , the zero-point-set $\mathcal{N}(k^{\Lambda})$ of k^{Λ} is contained in each zero-point set $\mathcal{N}(\lambda)$ of semi-norms in the carrier of k^{Λ} .

In fact, if $f \in \mathcal{N}(k^{\Lambda})$ and $k(|f_{\lambda}|) = 0$, then $|f_{\lambda}| = \lambda(f) = 0$ and f belongs to $\mathcal{N}(\lambda)$ for each λ in D(k).

A composition of normed spaces is now defined.

Definition. 1. Let $\mathfrak{N}(\lambda)$ be a system of normed spaces defined at each point λ in a compact space Λ . A normed space \mathfrak{N} is said to be composed of $(\mathfrak{N}(\lambda):\lambda \subseteq \Lambda)$ by an orderly semi-norm k on $C(\Lambda)$ if

- (1). For each $\mathfrak{R}(\lambda)$ a representation $f \to f_{\lambda}$ of \mathfrak{R} in $\mathfrak{R}(\lambda)$ exists.
- (2). If an f in \Re is fixed, a numerical function $|f_{\lambda}|$ of the variable λ is continuous on Δ .
- (3). Every two elements λ , μ in Λ are distinguished $(|f_{\lambda}| \neq |f_{\mu}|)$ by the norm-function $|f_{\lambda}|$ of a suitable f in \Re .
 - (4). The norm |f| of f in \mathfrak{R} is determined by $|f'| = k(|f_{\lambda}|)$.

Definition 2. If the space $\mathfrak R$ in Definition 1 is composed by an L^p -semi-norm $(p<\infty)$ by a regular measure μ on Λ , then $\mathfrak R$ is said to be an L^p -sum and denoted by $\mathfrak R=(\int \mathfrak R(\lambda)^p d\mu(\lambda))^{\frac1p}.$

If the space $\mathfrak R$ is composed by the L^{∞} -semi-norm A, then $\mathfrak R$ is said to be the L^{∞} -sum (or the least upper bound) of those spaces $(\mathfrak R(\lambda):\lambda \in A)$, and denoted by $\mathfrak R = \sup_{\lambda \in A} \mathfrak R(\lambda)$.

Theorem 9. Let k^{Λ} be a composite semi-norm on a compact set Λ of semi-norms on a linear space \mathcal{L} . Then the representative space $\mathcal{L}(k^{\Lambda})$ is a composition of those normed spaces $(\mathcal{L}(\lambda):\lambda \in D(k))$.

Proof. If $\lambda \in D(k)$, $\mathcal{N}(\lambda) \supseteq \mathcal{N}(k^{\Lambda})$ implies that $f_k \to f_{\lambda} = (f_k)_{\lambda}$ defines a representation of $\mathcal{L}(k^{\Lambda}) = \mathcal{L}/\mathcal{N}(k^{\Lambda})$ on $\mathcal{L}(\lambda) = \mathcal{L}/\mathcal{N}(\lambda)$. k is a semi-norm on C(D(k)), and the representation $f_k \to (f_k)_{\lambda}$ satisfies clearly (1), (2), (3) and

(4); $|f_k| = k^{\Lambda}(f) = k(|f_k|_{\lambda}).$

We now treat our final problem, the composition rules of the dual space of a composite normed space.

Let Λ be a compact set of semi-norms on \mathscr{L} . A spherical system $U(\Lambda)$ on Λ is the totality of those pairs (λ, φ) so that $\lambda \in \Lambda$ and $\varphi \in \Lambda$

 $U(\lambda)$ ($U(\lambda)$ is the unit sphere of $\mathcal{L}^*(\lambda)$.). $U(\Lambda)$ is a topological space, as a sub-space of the product space $\Lambda \times \mathcal{L}^*$.

Theorem 10. The spherical system $U(\Lambda)$ of a compact set Λ of semi-norms on $\mathcal L$ is weakly compact.

In fact, let q denote the least upper bound of Λ . The $U(\lambda)$ of every λ in Λ is contained in U(q), then $U(\Lambda)$ is contained in the compact space $\Lambda \times U(q)$. If f is a fixed element in \mathscr{L} , the functions $\lambda(f) - |\varphi(f)|$ is continuous on the product space $\Lambda \times U(q)$ with respect to the variables $\lambda \in \Lambda$ and $\varphi \in U(q)$. $U(\Lambda)$ is the common part of all those closed sets $((\lambda, \varphi) \in \Lambda \times U(q) : \lambda(f) - |\varphi(f)| \ge 0)$, then it is closed and compact in $U(q) \times \Lambda$ as well. Q. E. D.

If μ is a regular measure on U(A), μ determines a regular measure μ_{Λ} on A so that $\int f(\lambda) d\mu_{\Lambda}(\lambda) = \int f(\lambda) d\mu(\lambda, \varphi)$. μ_{Λ} is the *restriction* of the measure μ on A by the mapping $(\lambda, \varphi) \to \lambda$.

Theorem 11. Let k^{Λ} be a composite semi-norm on a compact set Λ of semi-norms on \mathcal{L} , and let $\mathrm{U}(\Lambda)$ denote the spherical system on Λ . Then every ψ in $\mathrm{U}(k_{\Lambda})$ is a weak integral $\psi = \int \varphi d\mu(\lambda,\varphi)$ by a suitable regular measure μ on $\mathrm{U}(\Lambda)$ whose restriction μ_{Λ} on Λ belongs to $\mathrm{U}^{+}(k)$.

Proof. If μ varies on a set of regular measures on U(A), the mapping $\mu \to \mu_{\Lambda}$ is weakly continuous. Then the totality W of those regular measures μ on U(A) whose restriction μ_{Λ} belongs to $U^+(k)$ is regularly convex and bounded (since $\int 1 \ d\mu = \int 1 \ d\mu_{\Lambda} \le 1$.). If $\mu \in W$, then the weak integral $\int \varphi \ d\mu(\lambda,\varphi)$ belongs to $U(k^{\Lambda})$. In fact by the relation $\lambda(f) \ge |\varphi(f)|$ for $(\lambda,\varphi) \in U(A)$, we have

$$\begin{aligned} |\varphi(f)| &= \int \varphi(f) d\mu(\lambda, \varphi)| \leq \int \lambda(f) d\mu(\lambda, \varphi) \\ &= \int |f_{\lambda}| d\mu_{\Lambda}(\lambda) \leq k(|f_{\lambda}|) = k^{\Lambda}(f). \end{aligned}$$

The weakly continuous mapping $\varphi \to \int \varphi d\mu(\lambda, \varphi)$ maps therefore the set W in a regularly convex symmetric sub-set U of $U(k^{\Lambda})$.

Now suffice it to say $U=U(k^{\Lambda})$. This follows the fact that for each f in $\mathscr L$ we can choose a weak integral $\psi=\int \varphi d\mu(\lambda,\varphi)$ in U with

 $k^{\Lambda}(f) = \psi(f)$, or $k(|f_{\Lambda}|) = \int \varphi(f) d\mu(\lambda, \varphi)$. The existence of such a measure μ is shown in the more stronger condition that

- (1). μ vanishes out-side of a compact set $V = ((\lambda, \varphi) \in U(\Lambda) : \lambda(f) = \varphi(f))$.
- (2). The restriction μ_{Λ} of μ within the space Λ belongs to $U^{+}(k)$ and satisfies $k(|f_{\lambda}|) = \int |f_{\lambda}| d\mu_{\Lambda}(\lambda) \ (= \int \varphi(f) \ d\mu(\lambda, \varphi)).$

In fact, by (3.4) we can choose a measure ν in $U^+(k)$ so that $k(f_{\lambda}) = \int_{-1}^{1} f_{\lambda} | d\nu(\lambda)$. It is sufficient to see the extensibility of the measure ν to a measure μ in the space V. This is done by the extension theorem of measures (Theorem 4 Remark in §4), and by the fact that the mapping $(\lambda, \varphi) \to \lambda$ maps the set $V = ((\lambda, \varphi) \equiv U(A) : \lambda(f) = \varphi(f))$ onto the set A, that is, for each λ in A, we can choose a φ in $U(\lambda)$ so that $\varphi(f) = \lambda(f)$. Thus such a measure μ exists, and U coincides with $U(k^{\Lambda})$.

Theorem 12.\(^1\) Let k^{Λ} be a composition on a separable compact set Λ of semi-norms, then every element ψ in the dual space $L^*(k^{\Lambda})$ is a weak integral $\psi = \int \psi_{\lambda} d\nu(\lambda)$ by a suitable regular measure ν in Λ , where ψ_{λ} is a weakly measurable function on Λ so that each ψ_{λ} is an element in $L^*(\lambda)$ of norm $\lambda^*(\psi_{\lambda}) \leq 1$, and ν is a measure in $U^+(k)$ of norm $k^*(\nu) = k^{\Lambda*}(\psi)$.

Proof. J. Dieudonné [2] extended the Doob's theorem to the following result. "If $\lambda \to T\lambda$ is a continuous mapping of a compact space Ω to another separable compact space Λ , every regular measure μ on Ω is a weak integral $\mu = \int \mu_{\lambda} d\nu(\lambda)$, where each μ_{λ} is a normalized regular measure on the space $\Omega_{\lambda} = (x: Tx = \lambda)$, and the measure ν is the restriction of the measure μ on the space Λ ". We now assume the space Λ in Theorem 11 be separable.

If ψ is an element of $\mathscr{L}^*(k^{\Lambda})$ with the norm $k^{\Lambda*}(\psi)=1$, ψ is a weak integral $\psi=\int \varphi \ d\mu(\lambda,\varphi)$ so that the restriction ν of μ within the space Λ belongs to $U^+(k)$. The Dieudonné's theorem is applicable to this measure μ with respect to the mapping $(\lambda,\varphi)\to\lambda$, and μ is a weak integral $\mu=\int_{\Lambda}\mu_{\lambda}\ d\nu(\lambda)$ of a weakly measurable function μ_{λ} . Each μ_{λ} is a normalized regular measure on the sphere $U(\lambda)$ (= the complete

¹⁾ Analogous cares to those of [2] must be exercised with the measurablility of the norm functions $\lambda^*(\psi_{\lambda})$, as well as the difference between weak equivalency and usual equivalency, of those functions ψ_{λ} in Theorem 12 and its Corollary.

inverse image of the point λ). Then

$$\psi(f) = \int_{\mathbf{U}(\lambda)} \varphi(f) d(\lambda, \varphi) = \int_{\Lambda} \left(\int_{U(\lambda)} \varphi(f) d\mu_{\lambda}(\varphi) \right) d\mu(\lambda)$$
$$= \int_{\mathbf{V}} \psi_{\lambda}(f) d\nu(\lambda).$$

Each ψ_{λ} is a weak integral $\psi_{\lambda} = \int \varphi d\mu_{\lambda}(\varphi)$ on the unit sphere $U(\lambda)$ by a normalized regular measure μ_{λ} and belongs to $U(\lambda)$ as well, then ψ is a weak integral $\int_{\Lambda} \psi_{\lambda} d\nu(\lambda)$. The norm $k^*(\nu)$ of ν is 1 because it is not smaller than the norm $k^{\Lambda *}(\psi) = 1$ of ψ . Q. E. D.

Corollary. Let s be a L^p -sum $(p < \infty)$ on a compact set Λ of semi-norms; $s = (\int_{\Lambda} \lambda^p d\nu(\lambda))^{\frac{1}{p}}$. Then every ψ in $\mathcal{L}^*(s)$ is a weak integral $\psi = \int \psi_{\lambda} d\nu(\lambda)$ so that

(1). In case p=1, $s^*(\psi)=\text{ess. max }\lambda^*(\psi_{\lambda})$.

(2). In case
$$p > 1$$
, $s^*(\psi) = \left(\int \lambda^*(\psi_{\lambda})^q d\nu(\lambda)\right)^{\frac{1}{q}}$. $\left(\frac{1}{p} + \frac{1}{q} = 1\right)$.

If s is the least upper bound on Λ , every ψ in $\mathcal{L}^*(s)$ is a weak integral $\psi = \int \psi_{\lambda} d\mu(\lambda)$ by a suitable regular measure μ on Λ so that

$$s^*(\psi) = \int \lambda^*(\psi_{\lambda}) \ d\mu(\lambda).$$

§ 8. Applications to decomposing operator algebras.

Let $\mathfrak R$ be a normed space, and $\mathscr A$ be a linear algebra of bounded operators on $\mathfrak R$ which contains the identity I. A semi-norm r on $\mathscr A$ so that r(I)=1 and $r(AB) \le r(A)r(B)$ is said to be algebraic. The norm n(A)=|A| of A as an operator is clearly algebraic. The totality of algebraic semi-norms on $\mathscr A$ is L^∞ -sum convex.

If x is an element of \Re , the semi-norm p(A) = |Ax| on \mathscr{A} satisfies $p(AB) \leq n(A)p(B)$. In general, a semi-norm p on \mathscr{A} so that sup $p(B) \leq 1$ $p(AB) < \infty$ ($A \in \mathscr{A}$), is said to be operative. And if r is an algebraic semi-norm so that $p(AB) \leq r(A)p(B)$, r is said to operate on p, and p is said to be operated by r.

The canonical representation of \mathcal{A} by an algebraic semi-norm r

is an algebraic representation of \mathscr{A} to another normed algebra $\mathscr{A}(r)$. If p is an operative semi-norm, then \mathscr{A} operates bounded linearly on the normed space $\mathscr{A}(p)$. That is, there is an algebraic representation $A \in \mathscr{A} \to A(p)$ on a linear algebra of bounded operators on $\mathscr{A}(p)$ so that p(A) = |A(p)x| for a suitable cyclic element x in $\mathscr{A}(p)$. If p is operated by an algebraic semi-norm r moreover, then $A_r \to A(p)$ determines a topologico-algebraic representation of the normed algebra $\mathscr{A}(r)$ on an operator algebra on $\mathscr{A}(p)$. The totality of semi-norms operated by a fixed algebraic semi-norm r is universally convex.

An operative semi-norm p on \mathscr{A} is said to be *normalized* if p(I) = 1. If p is normalized and operated by an algebraic semi-norm r, then $p \le r$. (In fact, $p(A) = p(AI) \le r(A)p(I) = r(A)$). Thus

Lemma 8.1. The totality of semi-norms on a linear algebra \mathscr{A} operated by a fixed algebraic semi-norm r on A is compact, universally convex and bounded by r.

The present problem is to decompose a given (algebraic or operative) semi-norm p into simpler pieces.

The past works for operator-algebras were almost restricted to that of C^* -algebras, but for the G.E. Šilov's several early works. Then we shall reconstruct once more the decomposition theory of C^* -algebras in a new point of view. It may be perhaps useful to extend the result to general Banach algebras in a feature.

Let \mathscr{A} be a C^* -algebra (i. e. a uniformly closed self-adjoint algebra of bounded linear operators on a Hilbert space.) with the identity I. An algebraic semi-norm p on \mathscr{A} so that $p(A^*A) = p(A)^2$ and $p(A^*) = p(A)$ is said to be a B^* -semi-norm. If \mathscr{N} is a two-sided closed ideal of \mathscr{A} , by the theorem of Gelfand-Kaplansky ([4] and [6]) the residue algebra \mathscr{A}/\mathscr{N} with the norm $|A/\mathscr{N}| = \inf_{x \in \mathscr{N}} |A - X|$ is a C^* -algebra. Those natural representations $A \to A/\mathscr{N}$ by closed ideals \mathscr{N} exhaust the totality of representations of \mathscr{A} to C^* -algebras. Then the zero-point-set $\mathscr{N}(p)$ of a B^* -semi-norm p is a two-sided ideal, and $A \to A/\mathscr{N}(p)$ is the canonical representation of \mathscr{A} on the C^* -algebra $\mathscr{A}/\mathscr{N}(p)$ so as to be $p(A) = \inf_{x \in \mathscr{N}(p)} |A - X| = |A/\mathscr{N}(p)|$.

In such a way, B^* -semi-norms and two-sided closed ideals of \mathscr{A} correspond one-to-one with each other, however, the correspondence reverses their respective orders. The totality B^* of B^* -semi-norms on \mathscr{A} is L^{∞} -sum convex, closed and bounded by the norm n(A) of \mathscr{A} . If p is a least upper bound $p = \sup_{\lambda \in \Lambda} \lambda$ on a set Λ of B^* -semi-norms, then the

ideal $\mathcal{N}(p)$ should be the greatest lower bound (the common ideal) of the system of corresponding ideals $(\mathcal{N}(\lambda):\lambda\in A)$. In particular, $p\in \mathbf{B}^*$ is L^{∞} -sum indecomposable if and only if the ideal $\mathcal{N}(p)$ (and the algebra) $\mathcal{N}(p)$ is irreducible (c. f. [7]), that is, $\mathcal{N}(p)$ has no expression as the common ideal of any pair of ideals containing $\mathcal{N}(p)$ properly. Thus

Lemma 8.2. Every C^* -algebra with the identity I is a L^{∞} -sum of (ideal theoretically) irreducible algebras.

If \mathscr{A} is a projective C^* -algebra (A C^* -algebra \mathscr{A} is said to be *projective* if it is spaned uniformly by its projection elements.), then the result is more strengthened.

Theorem 13. Every projective C^* -algebra \mathscr{A} with the identity I is a L^{∞} -sum of several sub-direct sum irreducible C^* -algebras.

Proof. \mathscr{A} is said to be sub-direct sum irreducible (c. f. [1], [7]) if it contains the smallest closed two-sided ideal. For each projection E, we consider a minimal B^* -semi-norm p_E so that $p_E = E = 1$. If q is a B^* -semi-norm properly smaller than p_E , then q(E) < p(E) and $q(E) = q(E^2) = q(E)^2$ imply q(E) = 0. The least upper bound r of all those B^* -semi-norms properly smaller than p_E vanishes at E as well. r is then the largest B^* -semi-norm properly smaller than p_E , and $\mathscr{N}(p_E)$ is the smallest closed ideal which contains $\mathscr{N}(p_E)$ properly. Thus $\mathscr{N}(p_E)$ and $\mathscr{N}(p_E)$ are totally irreducible. Since \mathscr{A} is projective, the least upper bound s of those B^* -semi-norms p with the totally irreducible zero-point-sets (ideals) $\mathscr{N}(p)$ does not vanish at any projections in \mathscr{A} . This means $\mathscr{N}(s) = 0 = \mathscr{N}(n)$, the equality of the semi-norm s and the norm s of \mathscr{A} . Q. E. D.

If \mathscr{A} is a C^* -algebra with the identity on a Hilbert space \mathfrak{D} , every element x in \mathfrak{D} determines an semi-norm p on \mathscr{A} operated by the norm n(A) of \mathscr{A} . An H-semi-norm on \mathscr{A} operated by the norm n is defined in the following condition. The space $\mathscr{A}(p)$ of the canonical representation $A \to A_p$ is a Hilbert space, \mathscr{A} operates on which as a self-adjoint algebra, that is, $((AB)_p, C_p) = (B_p, (A^*C)_p)$ for every A, B, C in \mathscr{A} .

Notice that $p(A) = (A_p, A_p)^{\frac{1}{2}}$, then an H-semi-norm p determines the inner-product $(A_p, B_p) = \frac{1}{4} \{ p(A+B)^2 - p(A-B)^2 + ip(A+iB)^2 - ip(A-iB)^2 \}$ of \mathscr{A}_p , and the totality of normalized H-semi-norms on \mathscr{A} operated by the norm of \mathscr{A} is compact and L^2 -sum convex. An normalized H-semi-norm p is L^2 -sum indecomposable if and only if the algebra \mathscr{A} operates irreducibly on the Hilbert space $\mathscr{A}(p)$.

The above-stated is of cause merely a reproduction of the I. Gelfand's theory. His theory of the canonical representation of a positive definite function consists of two relation-theories. One treats the relation between positive definite functions and H-semi-norms. Another treats the relation between H-semi-norms and the canonical representations. We can eliminate its somewhat superfluous former half.

Coincidence between indecomposability of (operative and algebraic) semi-norms and algebraic irreduciblity of canonical representations observed in B^* - and H-semi-norms may not be expectable for general operator-algebras. However, to investigate the propereies of general algebraic and operative semi-norms may be an important remained problem.

REFERENCES

- G. BIRKOFF: Sub-directunions in universal algebra, Bull. Amer. Math. Soc. vol. 50 (1954) pp. 764-768.
- [2] J. DIEUDONNÉ: Sur le théorème de Lebesgue-Nykodym IV. Jour. Indian Math. Soc. N. S. 15 (1951).
- [3] ——: La dualité dans les espaces vectoriels topologiques Ann. École Norm. Sup. vol. 54 (1941) pp. 107—139.
- [4] I. GELFAND and NAIMARK: On the imbedding of normed rings into the ring of operators in Hilbert space. Rec. Math. (Mat Sbornik) N. S. 12 (1943) 197—213.
- [5] R. GODEMENT: A theory of spherical functions I. Trans. Amer. Math. Soc. vol. 73 (1952) pp. 555-596.
- [6] I. KAPLANSKY: Normed algebras, Duke Math. Jour. vol. 16 (1949) 339-418.
- [7] N. H. MACCOY: Sub-direct sums of rings. Bull. Amer. Math. J. vol. 53 (1947) 856-877.
- [8] G. W. MACKEY: On infinite-dimensional linear spaces Trans. Amer. Math. Soc. vol. 57 (1945) 155-207.
- [9] I.E. SEGAL: Irreducible representations of operator algebras. Bull. Amer. Math. Soc. 53 (1947) 73—88.
- [10] G. E. ŠILOV: Rings of type C. Rings of type C on the line and on the circumference. Doklady Akad. Nauk SSSR (N.S.) 66 (1949) pp. 813-816 and pp. 1063-1066.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received March 17, 1957)