GALOIS THEORY OF SIMPLE RINGS 11
Hisao TOMINAGA

In his previous paper [15]V, the present author considered Galois
theory of simple rings under the conditions (*) and (*,), proved the exis-
tence of a one-to-one dual correspondence between closed regular subgrou-
ps of the total group and intermediate regular subrings, and showed the
validity of the so-called extension theorem, being parallel to the theory
for division rings constructed in [9] except the latter part of {9, Theorem
9].

The purpose of this paper is, giving some supplementary remarks to
the previous theory and introducing some more natural notions instead of
local simplicity and (*), to make our previous one more desirable.

In § 1, as preliminaries, we shall sketch the outline of the previous
theory, and in § 2 the notions of local finiteness and local finite-dimen-
sionality which are equivalent to that of local simplicity and the condition
(*) respectively will be defined and results in [15] will be restated in
these terminologies, some of which will be sharpened. §3 is devoted to
prove that our previous results are still true under the conditions similar
to (a) — (3) considered in [9, $3], and at the same time, the realization
of the analogy for the latter part of [9, Theorem 9] will be shown., At
last in §4, we shall try to weaken the notion of regular groups.

Here the author wishes to express his hearty thanks to the late Mrs.
E. Isizuka who gave him continuous encouragement both openly and sec-
retly.

1. Outline of the previous theory.

By a ring we mean, throughout this paper except §4, a ring with an
identity. By a subring we mean one which contains this identity element,
By a simple ring we shall mean a simple ring (with an identity) with
minimum condition. In this section, we assume R is a simple ring which
is Galois over a simple subring S. And we consider the following condi-
tions :

(x) For any finite subset F in R, there exists a simple subring

1) Numbers in brackets refer to the references cited at the end of this paper.
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N normal, finite over S and containing S(F)".

() [Va(S): ValR)] < oo,

We shall state here our previous results without proofs in order :

(a) Let R be locally simple over S. If & =®(R/S) is almost outer
then it is locally finite ([15, Theorem 4]).

(b) If the condition (*) is satisfied then either &(R/S) is outer or
Vi(S) is finite over the center of S ([15, Theorem 6]).

{¢) If the conditions (*) and (x,) are satisfied then any closed regular
subgroup of ®(R/S) is a regular total subgroup, and conversely ([15,
Theorem 7)]2.

(d) Let the condition (*) be satisfied. Then &(R/S) is compact if
and only if it is locally finite, or if it is almost outer. And it is discrete if
and only if R is finite over S ([15, Theorem 8]).

‘(e) Under the condition (*), there holds J(&(R'), R) =R’ for any
intermediate regular subring R' finite over S (|15, Lemma 81).

We consider here the following additional condition : ¥

(*,) For any finite set F in R, there exists a simple subring N
s-normal, finite over S and containing S(F).

(f) If the condition (x,) is satisfied then H= V,(V:(S)) is simple
and (x)) is satisfied with respect to R/ H ({15, Theorem 11]).

(g) If the condition (*,) is satisfied then ¥ is dense in &(R/H),
where I is the totality of inner automorphisms contained in &(R/S)
and H=V,(Vx(S)) ([15, Theorem 12]).

(h) Let the condition (*,) be satisfied. Then &(R/S) is locally com-
pact if and only if [V.(S) : Va(R)] <o ([15, Theorem 14]).

(i) Under the conditions (*) and (*,), the condition (*) is fulfilled
with respect to H/S and ®&(H/S) =O(R/S), (|15, Lemmas 12, 13]).

(j) Under the conditions (¥) and (), there holds J(&(R'), R)=R'
for any intermediate regular subring R’ ([15, Lemma 14]),

(k) Under the conditions (*) and (*,), there exists a one-to-one dual
correspondence between closed regular subgroups of the total group and
intermediate regular subrings in the usual sense of Galois theory ([15,
Theorem 15]).

(1)  Under the conditions (*) and (x,), for any intermediate regular
subring R', each S-isomorphism p of R’ into R can be extended to

1) Whenever the condition (*) is satisfied, ®(R/S) should be considered as a
topological group in the sense of [15].

2) This fact is required only to prove (k).

3) Soon one will see that this additional condition is superfluous (Corollary 2).
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an ‘automorphism in ®&(R/S), where we assume that Vx(R") is simple
([15, Theorem 16]).

(m) Under the conditions (%) and (), any intermediate regular
subring T with simple V(S) is Galois over S if and only if T is
dense in G(R/S), where T is the composite of T = {s=®(R/S); T" =
T} and the totality of J(¥, R)-inner automorphisms of R ({15, Remark
3o,

2. Local finite-dimensionality.

Throughout this section, we assume that R = >De;; is a simple
ring, where e;;’s are matric units and D = Vx({e;;}) is a division ring,
and that S is a simple subring of R. Further we set S,=S({e,})? =

ﬁ_}D,e,j, where D, = V ({e,}).

We introduce here the following definitions :

Definition 1. R is said to be locally finite over S¥ if, for any
finite set F in R, S(F) is finite over S (as a left S-module), accord-
ingly [S(F):S] <o (|1, p. 68]).

Definition 2. S is said to be fwofold regular in R if Vg(Vy(S))
is a simple subring.

Definition 3. Let & be a group of S-automorphisms in R. We
say that (R/S, ®) is locally finile-dimensional (abbreviated, l.f.d.)?
if for any finite set F in R, S(F®) is finite over S. Particularly, in
case R is Galoisover S and ® coincides with the total group &(R/S),
we say simply @ is L. f.d.

Definition 4. Let ® be a group of automorphisms in R. Then S
is said to be ®-normal if S°=S forall ¢ in ©.

1) This is the so-called normality theorem in our case, however in [15], we did
especially ignore it. Because, for the theorem, it seems that more general considera-
tions as in [10] should be carried out. But such considerations will contain many
difficulties, and will be liable to be mistaken. For instance, the proof of [13, Theo-
rem 5] will be not yet complete without the supplementary assumption that Vg(Co)
is regularly generated. (This is the case when the characteristic C is different from
2) .
2) For a subset F in R, S(F) mean the subring of R generated by F over S.
3) CIL.|9].

4) Cf.[9]).
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The next two lemmas are clear, and the former has been noted in
[15].

Lemma 1. Let T be aring with the identity element 1. 1f D’
and T’ are a division subring and a simplc subring of T containing
1 respectively then D'M\T' is a division ring.

Lemma 2. If a division ring K is locally finite over a division
subring L then any intermediate subring is a division subring.

Corollary 1. If R islocally finite over S then any intermediate
subring containing S, is a regular subring.

Proof. As S, is finite over S, it possesses minimum condition for
left ideals, accordingly so does D);. Hence D, is a division ring, and
so S, is simple. And one will readily see that D is locally finite over
D.. The rest of the proof is clear from Lemma 2 and the fact that Vg(T)

= Vp(E), where T = i}EeU is an arbitrary subring containing S,.

By Corollary 1, we see that the local finiteness of R over S is
equivalent to the local simplicity in [15], and (7, Satz 3] proves the
following precision of (a). :

(@*) &(R/S) islocally finite if and only if it is almost outer and
R islocally finite over S.

Proof. We shall prove here only that if & =@®(R/S) is locally
finite then R is locally finite over S. For any finite subset F in R,
consider T =S({{ey}, F}I® and T=S({{e,}, F, Vr(S)}¥) according

as ®© is outer or not. Clearly T=i}BeU with B = V;({ei;}). Taking

the division subring B* of D generated by B, T* = >)B*e,, is simple,
and is the least subring of R containing 7" such that if &€ T* is regu-
lar then ¢7' is contained in T*. (One can construct such 7* in the
obvious way.) Then noting that, in case ® is non-outer, Vx(S) is finite
by [7, Satz 3], we can readily see &;* is a finite regular group of T*/S
in Nakayama’s sense [10]. Hence we have [T*:S] < e by [10, Theo-
rem 1], and so R is locally finite over S.

Lemma 3. Let T be a (simple) subring of R finite over S and
containing S, and let D be a set of S-automorphisms in R. Then
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there holds i Cl,ﬁo'” V(S), with some '’sin DY,
Proof. As 9:R, is contained in M (T) with [ (D) : R.] < oo
(115, §11), ©.R, is finite over R,. Thus, there exists the least integer

# such that ©.R,=>la7' R,. Then, by making use of the same method
as in the proof of [15, Theorem 4], one will readily see that O:R, =

}_,ﬁ-'o",-’R and that $,C E@a"“(VR(S))

For a while, we assume that R is locally finite over a regular sub-
ring S, and denote by &, X the groups of all S-automorphisms, of all
S-inner automorphisms in R respectively. We consider here the follow-
ing conditions :

(I) Forany reR, [S({r}¥) :S] < oo.

(I') Forany &R, [S(r}3) :S] (oo,

(II) [VR(S) . Vs(S)] < oo,

(II')  [S(Vz(S)) : S] < oo,

(I Ve(S) = Ve(R).

Clearly, under the local finiteness of R over S, (I), (I') mean that
(R/S,®), (R/S,J) are 1. f.d. respectively, and (III) is nothing but to say
that ® is an outer group.

Lemma 4. (I) — (I), (II) & (II), (II') = Q).

Proof. (I) — (I') and (II) < (I') are almost clear, because S(Vx(S))
=S Xy Ve(S). (In particular, we have [ Vi(S) : Vs(S)] = [S(Va(S))
Sl.)

(II') > (I). For any rER, we set T=S,(»), which is a regular
subring of R finite over S by Corollary 1. From Lemma 3, we have
&, Ci\-bo'}“ V=:(S)), with some ¢*'s in &. Hence there holds S({r}®)

1) (n)

c S, 77, Va(S)), which proves (I).

Lemma 5. If ®© is almost ouler then it is locally finite, and con-
versely. In particular, (III) — (I).

Proof. The converse part is [7, Satz 3]. Now, for any #E R, we
set T=35,(r), which is a regular subring finite over S. Then, by

1) Here 9r be considered as a subset of the module of homomorphisms of the

123
left S-module T into R. And as is easily seen, if or = 3 ¢{'p0'V(0 € ) then non-
zero v®’s are regular elements.
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Lemma 3, we have ®; C 3 @s'%(Ve(S)), with some +*s in ®. The
rest of the proof is the latter half of the proof of |15, Theorem 4].

Lemma 6. (I") implies either (II') or (III).

!

Proof. Weset Vi(S)=>)Kg,, where g,’s are matric units and
K= Vy,s({gm}) is a division ring. To prove our assertion, it suffices to
show that, in case ® is non-outer, V(S) is contained in some simple
subring which is finite over S. To this end we shall distinguish two
cases: (1) V(S) is not a division ring, and (ii) Vu(S) is a division
ring. In these cases, considering N=S({{e;}, {gn}}S and N =
S({{ey}, 7, v}%) forany rER, vE Viu(S) with ros~vr respectively,
our present proof will proceed as in the proof of [15, Theorem 6], and
the details may be left to readers.

Now combining Lemmas 4, 5 and 6, we obtain the next which is
evidently a generalization of [9, Theorem 3] as well as of (b) in §1.

Theorem 1. Let a simple ring R be locally finite over a regular
subring S, and ®, I be the groups of all S-automorphisms, of
all S-inner automorphisms in R respectively. Then (R]S,®) isl. f.d.
if and only if either & is outer or [Va(S) : Vs(S)] { co. Moreover,
(R/S,®) is I.f.d. if and only if (RIS, Q) is I. f.d.

Lemma 7. If (R/S, ®) iés I.f.d. then (D/D, ®&(S),) is L f.d.
And if moreover R|S is Galois then so is D/D.

Proof. Evidently S, is a regular subring and (R/S,, &(Sy)) isl. f. d.
Noting that, for any o= ®(S,), there holds (Vi({ei;}))” = Vz({ey}), our
assertion will be readily seen.

Corollary 2. Let (R/S, ®) be l.f.d. Then, for any finite set
F in R, there exists a regular subring T containing S(F) which is
®-normal, finite over S and twofold regular in R. 1f moreover R[S
is Galois then the condition () is salisfied.

Proof. Taking the regular subring N = S({{ey}, F}@‘)=iEeU

which is @-normal and finite over S, we have Vi(Viz(N)) =iVD( Vo(E)ey,,
where E = Vx({e,}).

Remark 1. Let S=i}D*e*U be a simple subring of R, where
ex;;’s are matric units and D* = Vi({e*}) is a division ring. Then there
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holds R = iE*e*; ; with E* = Vi({e*,}) and any generating elements
of E* over D* arethose of R over S at the same time. If moreover R
is Galois over S thenso is E* over D* with the total group (&(R/S)).*.
Similarly R is locally finite over S when and only when E* is so over
D*. Hence we may say that Galois theory of simple rings can be reduced
to the case where the fixed subring is a division ring.

It is a pretty result of Nagahara that any division ring which is Galois
and finite over a division subring L is generated over L by two ele-
ments which are conjugate to each other ([8, Theorem 4]). Making use
of this fact and Lemma 7, we can prove the next corresponding to [6, Satz
14] :

Theorem 2. If R is Galois and finite over S then R =S(x,y,2)
with some regular elements x, y, 2.

Proof. As is noted in Remark 1, it suffices to prove our assertion
for the case where S is a division subring. We shall distinguish two
cases : (i) W = V4(R) is finite. As evidently Vi(R) is finite over
VR), V=(S) is finite, that is, &(R/S) is locally finite. &(D/D,) is
therefore locally finite, and so D = D,(x) by [12, Theorem 6]|. On the
other hand, as is easily verified, there holds ej;=y"" =

n n g %
where y’ = %‘leli—l and 2' = ;‘:et—u( =(>le .,._m)y'( >leiw—is1)”"). Hence

In—=1,,m—1

2"y

we have S, =S(y', 2)= i}D,e;;, and eventually R = S(x, y, z), where
y=1—y" and z=1—2. (ii) W isinfinite. In this case, W(le,})=
W(y') with some y’. In fact, y' =}‘3w.;e“ is a required (regular) one,
where w;'s are non-zero elements in W with w,s*w, (i ~j). And by
‘Nagahara’s result, D =D, (x, dxd™') withsome x, d in D. Now we
set t' = d(l - te.,,,_.) (1— en~]11—‘_’)- (1= 6-_:1) and ("= (1+ e‘,—]n) (1 +
€.-2,n_1). ... {1+ es), where w is an element in W such that w(w + 1)~
0. Then a similar computation as in [5, p. 98] will show that ('W (y")'~,
"W (y"t"*) contains all e;’s. And as t'xt'"' =dxd™ and {"xt" ' =x,
we obtain R=S{'W (x, »") ¢!, "W (x, y"M'"7)=S(t'xt'""", 'y't"", =,
t""y't"1). Noting that S is a division ring, we readily see that S('t"~")
contains the inverse of #'t""~'. We have therefore our assertion R = S(x,
y, z), where y=1t"yt"""' and z=1{1""".

By the latter part of Corollary 2, we can replace both (*) and (%,) in

1) As is easily seen from the proof, R=S(d,d’, r,7'), where d, d’ and r, 7’ are"
conjugate in D and R respectively. .
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(b)— (m) of §1 by the local finite-dimensionality of & =®&(R/S), how-
ever before the restatement of these propositions, we shall insert one
more supplementary remark about [15, Lemma 11] which played an im-
portant role in the previous theory.

Lemma 8. Let S be a regular subring of a simple ring R, N
be twofold regular in R and finite over S. If S is twofold regular
in N and N contains Vi(S) then S istwofold regularin R, T =
Vel Va(N)) is simple, and there holds that H= V(Vy(S)) and [T:
H|=[VS): Vo(T)] oo, where H signifies Va(Vi(S)).

Proof. As Vx,(Vx(S)) and Vx(S) are simple by assumption, N
is Galois and finite over Vy(Vx(S)). We see therefore [V4(S): Vi(N)]
< oo, and the rest of the proof is the sgme with that of [15, Lemma 11].

In particular, if R is a division ring then [9, Lemma 6] takes the
following simple form :

Corollary 3. Let S be a division subring of a division ring R,
N be a subring of R finite over S. If N contains Vg(S) then, set-
ting T= Vi Va(N)), there holds H=V(Vy(S) and [T: H|=[V.(S):
Vi) < o, where H= Vy(Vg(S).

Another easy consequence of Lemma 8 is (f), because if & = G(R/S)
is L. f. d. and non-outer, for any finite subset F in R, N = S({{e;}, F}9,
V:(S)) is Galois and finite over S, whence [Vi(S): Vi(N)] < e, and
so Vx(Vx(S)) is simple.

We shall restate here (b)— (m) of §1 in our present terminologies :

(b*) Let R be locally finite over S. Then & isl. f.d. if and
only if either & is outer or [Vi(S): Vi«(S)] < oo,

(d*) Let @ bel.f.d. Then il is compact if and only if it is local-
ly finite, or if it is almost outer. And il is discrete if and only if R
is finite over S.

(e*) If & isl.f.d. then, for any intermediate regular subving
R’ finite over S, J(®&(R'), R)=R'

%) If ® isl.f.d. then H=Vy(V(S)) is simple and SR/ H)
isl f.d.

(") If ®& isl.f.d. then I isdensein SR/ H).

(h*) Let & bel.f.d. Then © islocally compact if and only if
[ Ve(S): Ve(R)] £ oo.

1) In (b¥)—(m*), ® means ®(R/S), and for other notations, see the correspond-
ing propositions in §1.
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Accordingly we have:

(e*) If ® isl.f.d. and locally compact then any closed regular
subgroup of & is a regular total subgroup, and conversely.

(i*) If © is l f.d. and locally compact then the outer group
&(H/S) coincides with Oy,

(7%) If ® isl. f.d. and locally compact then, for any intermedi-
ate regular subring R', J(S(R'), R) =R,

(k*) If ® isl. f.d. and locally compact, there exists a one-to-one
dual correspondence between closed regular subgroupsof & and inter-
mediale regular subrings, in the usual sense of Galois theory.

() If © isl f.d. and locally compact then, for any intermedi-
ate regular subving R', each S-isomorphism p of R' inlo R can be
extended to an automorphism in O, where we assume that Vg(R") is
simple.

Corollary 4. If ® is l f.d. and locally compact then, for any
intermediate regular subring R’ normal and Galois over S, the
topological group S(R’'/S) is (topologically) isomorphic to G/S(R/R’).

m*) If Q@ is I f.d. and locally compact then an intermediate
regular subring T with simple V(S) is Galois over S if and only

if T isdensein ©.

In the sequel, we shall continue our consideration under the addi-
tional assumption that S is finite over the center Vi(S). Our first lemma
is the next:

Lemma 9. Let U be a simple subring of a ring T (with an
identity). If (U: Vi(U)]< o then H=UXy,anVu(H), where H=
Vol V(DY) In particular, [H: U]l oo if and only if [Vu(H):
V()] < oo,

Proof. As U is a central simple algebra (of finite rank) and H is
an algebra over V (U)(C Vu(H)), we have H=UXy o, VualU)=U
Xy @) Vu.(H) by a well-known theorem of Wedderburn”. The rest of
the proof is clear.

As an easy consequence of the preceding lemma, we obtain the next
([15, Theorem 13]):

1) Wedderburn’s thecrem [1, Theorem 7.3F] asserts the following: If a central
simple finite dimensional algebra A, over a field, is a subalgebra of an algebra B
and if the identity element of A is also that of B, then B=AX ;rAu)VB(A).
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Corollary 5. Let R/S be Galois and S(R/S) bel. f.d. and non-
outer. If [S: VyS)] L oo then H= Vu(Vx(S)) is finite over S.

Proof. [Va(S): Vs(S)] <o by (b*), and so [Vu(H):V«(S)] <
oo, whence it follows our assertion.

And we have the next which will contain [9, Theorem 8].

Theorem 3. Let a simple ring R be locally finite over a simple
subring S. If Vi(S)=Vu(R) and S is finite over Vs(S) then any
‘inlermediate subring is simple, and there exisls a one-to-one correspon-
dence between intermediate (simple) subrings R’ and subfields Z' of
Vx(R) containing VS) under the relations R' =S Xy 52" and Z'=
Vi (R').

Proof. At first we note V(S) C Vp(R') C Vz(R), and then we have
R =S X y s Ve (R) (=S Xyys) Var(S)) by Wedderburn’s theorem. As R

is locally finite over S, Vi,(R) is locally finite (algebraic) over V(S),
whence Vg (R’) is a subfield of Vy(R). This fact means also that R’ is
a simple ring. Conversely, if Z' is asubfield of Vi(R) containing Vi(S)
then S(Z') =S X ypysZ' and Z'= Viszi(S(Z')).

In particular, if R/S is Galois (and & =®&(R/S) is outer) then the
preceding theorem permits us to say that Galois theory of R/S can be
reduced to that of Vu(R)/Vi«(S)Y. In case R is a division ring, the
local finiteness of G(R/S) and [S: V«(S)] < o imply that G(R/S) is
outer, however in the present case, it follows only that if &(R/S) is non-
outer then R is a complete matrix ring over a finite field. Excluding
this finite case, we may rcgard Theorem 3 as a generalization of [9,
Theorem 8].

Remark 2. As is casily seen from Theorem 1 (or (b*)), if S(R/ Vi(R)) -
is L. f.d.then R is finite over its center. This fact will suggest that
Galois theory of R/V(R) with really infinite [R: V.(R)| is different
from our present one.

3. A generalization of the previous theory.

In this section, our consideration will proceed under the assumptions
rather general which should be fulfilled when &(R/S) is I f. d. and
locally compact. The author hopes that such a treating will be not mea-

1) In case [R: S]<{oo, [S: Vs(S)]<<eo is equivalent with [R: VR(R)]<°° ([14,
Lemma]). Accordingly this is a well-known fact for algebras of finite rank.
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ningless from the view-point to make clear the essential part of our theory.

Throughout this section we assume again R =31De;; is a simple
ring which is Galois over a simple subring S. Now we consider the
following condition :

(1) [Va(S): Ve(R)]  oo.

In case (1) is satisfied, as is well-known, H = Vi(Vx(S)) is simple and
there holds [R: H] = [ Vx(S): Vi(R)], accordingly there exists a finite

independent H-basis {7,...,7} of R. We set here H=2>]Cdw, where
d,.’s arc matric units and C= Va({du}) is a division ring, and consider
the following condition :

(2) So=SUey}, {du}, {7.}) is finite over S.
Under these assumptions, we can easily see that S, is simple. (See the
proof of Corollary 1.) In the rest of this section, unless otherwise specified,
we assume the following conditions besides (1) and (2):

(3) H=Va(Vg(S)) is locally finite over S.

(4) R is Galois over S,.
And {r,...,7}, H and S, will mean always these mentioned above.

Clearly by (e*) and (h*), the conditions (1), (2), (3) and (4) are
satisfied if ®(R/S) is 1. f. d. and locally compact, and which, in case R is
a division ring, correspond to (3), (r), (a) and (8) in [9] respectively.

Lemma 10. R is locally finite over S.
Proof. Evidently & =®(R/S,) is outer and H,= HNS, = J(BY,
H). Hence & is aregular (outer) group of H/ H, (Note here Vi (H)

11
=VaS).) Now let F={a, =2 u=1,...,w; b= H be an
arbitrary finite set in R, and set H* = Hy({hw}), &% =&"(H*). Then
there holds J(®&*y, H) = H* because H* is (simple and) finite over
H, (Recall here that (3) and Vu(S) = V,(H) imply the local finite-di-
mensionality of &(H/S), in virtue of (a*).) From this fact, one can

readily see J(®* R)=>@H*r,, which is a subring containing S(F)
and finite over H®*, and so finite over S. We have proved therefore
our lemma.

In the sequel, FH, always signifies the simple subring HNS, and
& means G(R/S).

The next propositions correspond to (ii), (iii) of [9, Lemma 9] respec-
tively. The proofs of these can be similarly obtained, and may be left to
readers.
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Lemma 11. There exists a one-to-one correspondence belween
subrings H' of H with [H': H,)) < o and subrings S’ of R with

[S': 4] < o in the relations H'=S'NH and S =S@H'r. In this
correspondence, H' is S(HfHy)-normal if and only if S' is &(R]/So)-
normal.

Lemma 12. G(H/ H) =®&R/S))z and GH/S)=G,.

Proof. We shall sketch here the outline of the proof. Consider the
homomorphism ¢: ¢ — ¢, of the compact Hausdorff group & = &(R/S,)
into the compact Hausdorff group &(H/ H,). Then Lemma 11 and the
fact that @ is a regular group of H/H, show that ¢ is continuous
and that &9 is dense in &(H/H,) respectively, and so we have & =
&(H/H,). Now, set H'=S(H,9), which is a simple subring of H that
is normal and finite over S. If the finite group &(H'/S) is induced

t
by {o™,..., 6™} C®, then G(H/S) is done by {s""& Sl@H7),...,

«“S(SI@H'7,)}, whence B(H/S) =G

Then by [15, Lemma 9], we have the following :

Corollary 6. If R’ is a simple subring of H containing S then
there holds J(S(R"), R)=R'.

Now we shall prove three more lemmas.

Lemma 13. If ® is l. f.d. and locally compact then, for any

intermediate regular subring T containing S,= S({e,}) =2’D,e‘,,
&R/T) isl. f.d.

Proof. Since &(D/D) isl. f. d. and [ V(D)) : V(D)) = [ V:(S):
V(R)] < oo, D is totally locally finite over D; ([9, Theorem 9]). If we

set T=>)Ee, then, for any subring 7¥=>)E’e;; containing 7, T’
is normal over T° when and only when E’ is normal over E. Our asser-
tion is clear from these facts.

Lemma 14. If R is locally finite over S and © is ouler then,
for any intermediate simple subring T, SR/T) isl. f.d.

Proof. Let N= i‘,Een = iS}‘k be a simple subring normal, finite
over S and containing S,=S({ey}). Then T* = T(N) is simple and
normal over 7" by Corollary 1. Since ® is locally finite, the set {fj,...,
/:1@ is finite, accordingly ®&(R/T).* is a finite outer group of T*/T.
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Hence [T*: T'] < o by [10, Theorem 1]. Now, for any finite set F in
R, weset M= N(F®). Then T**= T*(M) (DS, is finite over T* by
Lemma 13, and so finite over T. As evidently T** contains T(FO*'™),
our proof is complete.

Lemma 15. For any intermediate regular subring S' finite over
S, there holds JI&(S",R)=S".

Proof. As any simple ring is regularly generated, we can choose
such an independent Vi.(R)-basis {v,,..., v} of Vg(S) that all v/’s are

t
regular elements. Then, by Lemma 11, Sv,,..., v.)=>@H'r, with
some H’ finite over H, Now let H" be a simple subring of H con-

t
taining H’ and normal, finite over S, and we set &' =G> I@H"r.).
If the finite group OH"/S) = {s",..., 6™} with some ¢'*’s in &
1A

then ®(H/S) = {s"0",..., ¢ ® '} We set here 75 = Slhir, (i =1,

..,u;j=1,..., t) and let N be a simple subring of H containing

t A

H"({h:»}) and normal, finite over S. If we set M= > @Nr, then ©

={e€®: M" =M} contains {c"®", ..., "} as well as Vu(S)V

(0 {d,...,3.}), and so we have IS, R c J{s®",. .. , aM@", RN

J(oy ..., 5, R=J{s"®",..., 68"}y, H)=S, thatis, J&, R)
=S.

a 4

Next we shall prove (R/S, ®) is 1.f.d. Let F= {ay = D twsrv; %’

=1,...,w ; hy,= H} be an arbitrary finite set in R, and we set E =

(g 0 =1,...,w";v=1,..., t; e =@}, which is evidently a finite

set. Then S(F®) c M(E), and M(E) is finite over S. Hence S(F%) is
finite over S.

l 14

Now we set Vi(S) =>Kgm Vr(S)=D1K'g',,, where g,'s, g'we’s
are matric units and K= Vi s,({g,}), K = Vipgsn({g ww}) are division
rings. Then we consider S* =S({{ei;}, {gwm}, {g've}, b, S’} O for any
be R\S'. Evidently S* is a simple ring (Corollary 1), and is finite
over S by the above remark. And, as is easily verified, V(S) and
V(S’) are simple rings by Lemma 1. Clearly S*& = S* andso S* is
Galois and finite over S. Hence by {10, Theorem 5], there exists some

1) In general, for a subset F in R, F means the totality of inner automorsphism
induced by regular elements constained in F,
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+E®(S*/S) such that "~ b and ¥’ =« for all x=S'. As G(S*/S)

= @S* . % by [15, Theorem 1], we can extend = to an automorphism
in &(S'), which proves J(&(S"), R) =S

Now Lemmas 10, 11, 12, 14 and 15 enable us to apply the same
method as in the proof of [9, Theorem 9]to obtaint the next:

Theorem 4. Under the conditions (1) — (4), for any intermediate
regular subring R', there holds J(&(R'), R)=R', and R is locally
JSinite over R'.

Proof. The proof is similar to that of [9, Theorem 9]. However,
we state the proof briefly, for the sake of completeness.

In virtue of (1), there exists a simple subring R of R’ containing
S with [R":S] <o and Vi(R'")= Vx(R"). By Lemma 10 and Lemma
15, the conditions (1) — (4) are satisfied with respect to R/R", hence
we can apply Corollary 6 for R, H"= Vy(V.(R")) instead of S, H
respectively to obtain JIG(R'), R) =R

Next to prove the second part, it suffices to show that our assertion
is true in the case where R’ is contained in H. Set H'= R'(H,), which
is a simple subring of H finite over R' by Lemma 14. Then, by Lemma

t
12, one will readily see > @H'r,= J(*(H’), R), which shows that
&
Sl@H'7r, is a simple subring containing R' as well as S, (Lemma 11),
t

where 8 =@(R/S,). We obtain therefore [>i@H'7,: Rl =t-[H': R']
{ o0, On the other hand, as ®&(R/S,) is outer also, R is locally finite
1

over Z@H'r,, again by Lemma 14, and hence so is over R’
Clearly (§*) is a direct consequence of this theorem, and moreover
we have the next: ;
Corollary 7. If ® isl. f.d. and locally compact then, for any
intermediate regular subring R', &(R[R') isl. f.d., and the topology
of O(R/R') cownsidered as the total group is equivalent to the topology
induced in it as a subgroup of O.

Remark 3. Applying the same method as in the proof of [11, The-
orem 7], we obtain (¢*) as an easy consequence of Theorem 4, however
it seems to the present author that the proof given in [15] is more elemen-
tary. .
In this connection, we shall show that [15, Theorem 16] is still valid
under the conditions (1) — (4). For this end, the following lemmas will
be required.
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Lemma 16. For any intermediate vegular subring S’ finite over
S, each S-isomorphitsm o of S’ into R can be extended 1o an automor-
phism in O, where we assume that Vi(S") is simple.

Proof. Here we make use of the same notations as in the proof of

Lemma 15. Set VR(S"’)=12K” " ovegrr, Where g, s are matric units
and K" = Vys#({g"s}) isa division ring, and consider S5=S5( {{eu},
{gsa}, 18wl (8w}, S S$¥}8). Then we can easily verify as for
S* in the proof of Lemma 15 that S% is a simple ring which is Galois

and finite over S such that &(S5%/S) =(§js§- /175%(5/), and that V(S
and V(S®) are simple. The rest of the proof is therefore clear from
{10, Theorem 6].

The proof of the next is, in virtue of Lemma 12 and Lemma 16, simi-
larly obtained as in that of [15, Lemma 15].

Lemma 17. If R' is a simple subring of H conlaining S, for
any S-isomorphism p of R' into R, there holds R"C H, where we
assume that Vix(R") is simple.

Now we are going to prove our last theorem of this section.

Theorem 5. Under the conditions (1) — (4), for any intermediale
regular subrving R', each S-isomorphism p of R' into R can be ex-
tended to an automorphism in O, where we assume Vi(R") is simple.

Proof. By (1), we can find a simple subring R" of R’ finite over
S with ViR = Vi(R'") and Vz(R")= Vi(R'"™). Since (1)— (4) are
satisfied with respect to R/R' by Lemmas 10 and 15, we see pg+= oz~
for some ¢=® by Lemma 16. Clearly ps™' is an R"-isomorphism of
R' into R and Vi(R"™ ') =(V.(R™) issimple. Andas R"CR'C H"
= Vi Va(R"), there holds R" ' H” by Lemma 17. Hence, applying
[15, Theorem 10] for R", H" instead of S, R respectively, we see
po~' =zp for some +ESH"/R")=S(R/R")y (Lemma 12), accord-
ingly po~'=<'» with some '€G(R/R"”). Clearly ‘s is a required
extension of p.

Remark 4. In [9] and [15], we were open to the charge of un-
necessary use of the assumption that a simple ring considered is Galois
over a simple subring, however in the present paper, we try hard to
consider our theory without the assumption as possible as one can. More-
over, as one will readily see, some lemmas (and definitions) in [9] and
[15] become needless and some previous results will be shown somewhat
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briefly. And the validity of Theorems 1, 4, 5 and (h*) will permit us to
come to the conclusion that Galois theory of division rings constructed in
[9] has been thoroughly extended to simple rings.

4. A pgeneralization of the notion of regular groups.

In his paper [2], G. Azumaya introduced the notion of strong regula-
rity of ring elements: ILet @ be an element of a ring A. a is strongly
regular if there exist x, y € A such that ¢’x =a, ya’*=a. And, mak-
ing use of this notion, he proved several interesting properties of (strong-
ly) =-regular rings”. Now we shall begin this section by setting the next
lemma concerning strongly =-regular rings.

Lemma 18. Let © be a set of automorphisms in a strongly
=regular ring A. Then T = J(D, A) is strongly =-regular too.

Proof. Let t be an arbitrary element in 7. Then " is strongly
regular for some positive integer 2. And so, by [2, Lemma 1], there
exists a unique element ¢ = A such that 'a=qaf", a=1t" and t'a" =
a. Clearly, for any s, we have t"a”° =a’t*, t"a° =t" and t"(a°)®
=a°. Hence the uniqueness of @ shows a” =a, whence @ is contained
in 7. This proves that T is strongly =-regular.

It has been desired, throughout our consideration, to give some more
intrinsic characterization of regular total subgroups. In relation to this
request, we shall introduce here the next which is evidently a generaliza-
tion of the notion of regular groups:

Definition 5. An automorphism group $ of a simple ring R is
said to be (x)-regular if Vg= Ve(J(, R)) is simple and $ contains
V&.

In the rest of this section, we assume R is a simple ring which is
Galois over a simple subring S and ® signifies the total group G(R/S).

Lemma 19. Let R be finite over S. Then any (x)-regular sub-
group O of © isregular.
Proof. Denote by J the totality of inner automorphisms in S,

1) A ring A is called a wm-regular ring [strongly m-regular ring] if for any
element a € A there exist an element x € A and a positive integer n such that
avxar =av [if there exist elements x, y € A and positive integers m, n such that
amtly =gm, yaw+!=gn). Of course a strongly ®-regular ring is 7-regular ([2], [4]).
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then there holds [@:J]« [Va(S): Vi(R)] =[R:S] by [15, Theorem
1]. Noting that $/HNJ= H+ J/JCB/I and that Viu T Vu(S), we
see that £ is regular in the sense of Nakayama [10], whence J(9, R)
is simple by [10, Theorem 1].

In case ® isl. f. d. and locally compact, the next will enable us to
characterize regular total subgroups of & in somewhat autonomous man-
ner.

Theorem 6. Let R be a simple ring which is Galois over a simple
subring S. If @ =Q(R/S) isl. f.d. and locally compact then any
(x)-regular subgroup O of & isregular.

Proof. By [3, Theoreml3], a two-sided simple ring with an identity
is primitive. And any primitive =-regular ring of bounded index is simple
by [4, Theorem 2.3]. Hence, by the light of Lemma 18, it suffices to
prove that T'= J(, R) is two-sided simple, for a simple ring is (strong-
ly) =regular and of bounded index. To this end, we shall distinguish
two cases: (i) @ 7s outer. In this case, we have T= k&}(Nﬂ T), where

N runs over all simple subrings which are normal and finite over S. As
Va(N)= Vx(S), D, is a finite outer group, and so NN T = J(H», N)
is simple. Now the two-sided simplicity of 7" is an easy consequence of
this fact. (ii) @ is non-outer. In this case, [Vu(S): Vs(S)]< o by
(b*), so that there exists a simple subring S* containing Vx(S) and
finite over S such that Vi(T)= Vr(T MNS*) (by the local compactness
of ®). As is easily seen, we have T = k\’J(N(\ T), where N runs over

all simple subrings containing S* and normal, finite over S. Further,
as 9y isevidently (#)-regular, by Lemma 19, it follows that T\ N =
J(H~, N) is simple, accordingly T is two-sided simple.

Combining the above with (e*), we obtain:

(c**) If ® isl. f.d and locally compact then any closed (x)-regu-
lar subgroup of & is a regular total subgroup, and conversely.
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