ON A CONDITION THAT A SPACE IS AN H-SPACE
MASAHIRO SUGAWARA

1. Introduction.

We call a (continuous) map p:(E, F)—(B, C), between two pairs
of topological spaces ED F and BDC, a weak homotopy equivalence
of pairs, if p induces isomorphisms psx of all the relative homotopy
groups =,(E, F) and =.B, O), i.e.

ps: mlE, F) =~ 7B, C), for any integer # > 0.

The purpose of this note is to prove the equivalences of the weak
homotopy equivalence of pairs and the conditions (Ay), i=1, 2, 3, some
sorts of the homotopically lifting homotopy conditions, (cf. §2 and
Theorem 3 of §3); and also, by making use of these equivalences, to
prove the following theorem, which gives a necessary and sufficient con-
dition that a space is an H-space (a space admitting a map of type (1, 1)).

Theorem 1. Let F be a CW-complex such that the weak topology
of the product complex FXF is the ordinary product topology of the
product space FX FY. Under these conditions, F is an H-space if,
and only if, there exist topological spaces E and B and a map p
of E into B, satisfying the following properties:

(1) E contains F, and F is contractible in E lo a vertex c= F
leaving ¢ fixed throughout the contraction, and

(2) pF)=>b, a point of B, and the map p:(E, F)=(B, b) isa
weak homotopy equivalence of the two pairs.

Also we have

Theorem 2. Let p: (E, F)— (B, b) is a given map, where E is
a CW-complex, F is ils locally finite subcomplex, and B is a space
conlaining a point b. If

(1) E is contractible in itself to a vertex : = F being ¢ statio-
nary throughout the contraction, and

(2) p is a weak homotopy equivalence of pairs (E, F) and (B, b),
then F is a homolopy-associative H-space having an inversion. '

1) For examples, if F is a countable CW-complex, F has this property.
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2. The conditions (A;), i =1, 2, 3.

Let ED F and B D C be topological spaces and p: (E, F)— (B, C)
a map of pairs. We shall consider the following conditions (A,), concern-
ing such a map p, which may be considered as generalizations of the
lifting homotopy conditions.

(A) Let K be any CW-complex, L its subcomplex, and M a
subcomplex of the product complex KX IV, Let

E(KX0O)\J(LXI)—E, y: KxI—-B

be given maps such that £'(M')C F,(M' = (K x0O)\U(LXI)NM), and
7»(M)C C, and the two maps p°§ and 7 | (KX0)\J(LXI) are homo-
topic each other by a homotopy of pairs i

YI:(Kx0)\J(LXID), M)Y—(B, C), 0<t<1,

with Yi=peo& and Y| =y |(KX0)\U(LXI).
From these assumptions, it follows that &' has an extension

£E: KxXI— E, being EM)CF,
and the two maps p & and 7 are homotopic each other by a homotopy
Yi:(KXI, M)— (B, C), 0!t 1, with Yo=p§ Y, =y,

and also this homotopy Y, is taken as an extension of the given
homotopy Yi, i.e. Y, | (KXO)\ULXD=Y: for 0<t<1.

(Ao In addition to the assumptions 0f (A)), we assume that K =
I'(=1Ix - X I (n-times)) and its n-cell is I"— I" (=the interior of I")
only,and L=1" (=the bdundary of I"?. Then the conclusions of (A,)
follow.

(Ay) Moreover, we add the following assumptions lo those of
(A)): poll=y| (I"xO)\J(I"XI). Then we have the conclusions of
(A), i.e., thereis an extension ¢ of & such that EM)CF and poE
and y are homotopic by a homotopy Yo:(I"'x1, M)— (B, C) being
stationary on (I"X0)\J(I"XI), i.e. Y, | (I"X0O)\J(I"XI)=p-¥ for
01,

1) I=[0, 1], the closed interval, is considered as a C W-.complex whose 1l-cell is
(0, 1), the open interval, and O-cells are the two points 0 and 1.

2) We assume that the boundary I» is subdivided arbitrarily into finite cells
forming a finite C W-complex.
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It follows immediately from the above definitions that the condition
(A;;,) is weaker than (A,) for i=1, 2, and we shall prove the equiva-
lences of these conditions in this section.

Before these proofs, we notice about the homotopy extension theorem.

Lemma 1. Let K be a CW-complex and L, N and M, (k=1,2,
) be its subcomplexes such that M, N\ M. =@ (the empty set) if
k#Fk. Let T be any space and T,(k=1,2, -+) ils subsets; and let
amap fo: K— T and a homotopy g.:L— T, 0t <1, be so given
that

go=,f.. l L, f(,(ML‘C T gt I LmN:fo | LN N, gt(Lan)C T,

Jor 0<Ii<1 and k=1,2, ..
Then there is a homotopy f.: K— T, 0t <1, of f. such that

g=f\L, fi| N=f| N, fuMyc T,

for 0<t<1 and =1, 2, ..

Proof. We define a homotopy f, | L\UN:L\U N— T, by setting
JiIN=fi| N and f.| L=g, for 0<t<1. Since f(M,)C T, and
g(LNM,)C T, the map f,| M, and the homotopy f. | (L \U N) N\ M,
are considered as mapping into 7. Hence, by making use of the ordi-
nary homotopy extension theorem for CW -complexes, there are homoto-
pies, of f, | My:

fi| M: M. — T, suchthat f, | LN\ M.,=g, | LN M,
f:lelm:foanM,

for 0<¢<1 and every £=1, 2 ---. These homotopies and the above
Jfo| L\U N define immediately a homotopy f, | LUN\U (U M,) : L\UNU
k

(k“} M) — T, since MiN\ M, =@ for k% k. Using again the homo-
topy extension theorem to f, and the last homotopy f, | L\U N\ (UM,
P

we obtain a homotopy f,: K— T, 0<t<1, as desired.
Proofs of the equivalences of (A;), i =1, 2, 3, are divided into the
following two lemmas.

Lemma 2. If p:(E, F)— (B, C) satisfies (A.), then it also salis-
fies (A.).
Proof. Let maps

E ("X J(I"xD) (=])—> E, »:I"xI(=I*")— B,
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and a homotopy

Yi:(J"]NM—>(BC (0t with Yy=pot, Yi=y]|]J,
be given by the assumptions of (A,). Applying Lemma 1 to » and Y by
taking M, = M and T = C, we have a homotopy Y{': I"*'— B, 01,
such that

Yi'=5 Y!'| J’=Y!, and Y/(M)CC for 0<t<1.

We set =Y. Then 7(M)CC and pot'=7| J°, and hence
maps & and 7 satisfy the assumptions of (A;). It follows from (A;)
that there is an extension £:I"*'— E of ¢/, being #(M)C F, and a
homotopy

Y.: (I"', M) > (B, O), with Yo=p< Yi=7% Y.| J"=p-¢.
Let Y:: (I"*', M)~ (B,C) bea homdtopy defined by
Y; Yt for 0<t<1/2 Yg Y;{:_] for 1/2<t<1.

Then Y,=pc& Y,=y; and also, since Y. is stationaryon J', Y, | J*
is homotopic to ¥7' | J* considering as the maps of J*x1I into B, and
this homotopy is taken to be stationary on J* x I and to be mapping
(J'N\M)xXI into C. Applying Lemma 1 to the map Y, and the last
homotopy by taking N= I""'x 1, My=MxI and T,=C, we have a
homotopy of pairs

Y. i (I, M)~ (B, C) 0<t<1) with Yy=p°& Y=y

and also Y, | J=Y!| J'=Y|[. Therefore the map £ and the homo-
topy Y. satisfy the conclusions of (A.), and we have the above lemma.

Lemma 3. If p:(E, F)— (B, C) satisfies (A,), then also (A))

Proof. For this lemma, we can apply the same principles of the
proofs of Theorem (5. 1) of [1], and we follow proofs briefly.

Let CW-complex K,L and M and maps ¢ and 7 and a homo-
topy Y (0<t<C1) be so given as to satisfy the assumptions of (A, for
the map p:(E, F)—= (B, (), and let K=K'\UL(@>—1" and P,=
(Kx0)\U(K'xhc KxI.

Let # >0, and assume inductively that &' has an extension £,
P._.,— E such that E..(P..;\M)CF, and also that Y; has an ex-

1) K9 is the g-section of K.
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tension Y ': (P,_y, P..y\ M) — (B, C), which is a homotopy between

w'=pok,, and Y7 "=y | P._;.. Let {e!| =R} be the set of all
n-cqlls of K— L. For each. *yER, let ¢,:I"— K be a map such that
p A" C K" and ¢,| I"—1I" is a homeomorphism onto €. Let 4, :
I"x I = P, be defined by

'1]/-r(2, t)=(¢.(2), 1), for 2z EI", te 1.

Then o (J') = Pacy My (1) (J"=(I" X 0)U (I"x I), I'""" = I"x D).
Also, as easily seen, there is a subcomplex M, of the product complex
I'xI such that (M, = {I""') N\ M, since M is a subcomplex of
the product complex KX I, for each r ER.

It follows immediately from the above hypotheses that the maps

Eproyre | J':J"=E and 3 :: I"' > B
and the homotopy of pairs
Yi'eo, | iU POAM) (B, C) (0Kt 1)

satisfy the assumptions of (A.) by taking M. instead of M. Since the
given map p:(E, F)— (B, C) satisfies the condition (A.), we have a
map A,.:(I"*', M) — (E, F) and a homotopy Zi:(I"*', M, — (B, C)
(0 <t < 1) such that

/lwv I ]"=§14—]°’\Il'r I ]‘; ZB =p°z'7 Z;‘=7/‘°‘\[I‘7, and
Z| =Y e | 7 for 0Kt 1.

Therefore, it follows from the property «+(J") = P._; M\, (I"*") that a
map &,: P,— E and a homotopy Y?:P,— B (0<f{<1) are defined
by

A

~

L
I
ALY

=1y Ew ° "If'r(Z) = 11'(2) 5

: ; n+1
Y’t’ I R,_l = }’Zv—l, Y;' ° 1!/',(2) :Z{(Z); for z2eE I .

It is easy to see that the map £, and the homotopy Y7 satisfy the above
hypotheses of the induction. Therefore, starting with £.,=§¢' and Y;'=
Y! we can construct £, and Y of above sorts for every 2 >0. Since
KxI=\UP, and KxI has the weak topology, a map £¢: KXI— E

and a homotopy Y,: KXI—>B (0<t<1) are defined by & | P, =&,
and Y, | P.=Y; Clearly £ and Y, satisfy the conclusions of the
condition (A;) and Lemma 2 is proved.
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As a consequence of these two lemmas, we have the equivalences of
the conditions (Ay), £=1, 2, 3.

3. The weak homotopy equivalence and the conditions (A)).
We shall prove the following two lemmas.

Lemma 4. If p:(E, F)— (B, C) is a weak homolopy equivalence,
then it satisfies the codition (A,).

Proof. Let & :(I"X0)U (I"xI) (= J)— E and g I"}X I (=1")
— B be the given maps such that pc & =y | J'. We consider two cases
separately by the situation of the subcomplex M, which satisfies 7 (M)
C C, of the product complex I"XI. .

(a) The case either MN(I"—I'YX1)=@ or M= I"*", Let ¢:
I'*' > J* be a strong deformation retraction, i.e. 4 | J' =the identity
map and § ~ the identity map: I"*' — I"*!, relative J°. We consider
the map &:I""' — E, defined by £=§'06. £, thus defined, is clearly
an extension of £’. In the first case, M C J" and so £(M) C F, and also
poE=poE oh=y5°0~y relative J'. In the second case, &(I"*")CF
and the conclusions of (A;) are satisfied evidently.

(b) The case I"X1C MCI'. Let y=E'(%), b=p(y), (x=(0,
«, 0,1)e J), and let e ==, (E, F, y) and 3€ (B, C, b) be the ele-
ments determined by the maps

(], )= (E, F,9 and y | J': (J', J", %)= (B, C, b),

respectively, (jv = I"%1). Since 7 is defined on_ I'" and 7(I"X1)C
7(M)C C, the map # | J* is homotopic, relative J*, to the map whose
image is contained in C, and hence 3=0. Since pec&'=y | J', psxla)
=8 and so pi(a)=0, and we have a =0 because ps:=, (E, F, y)—
w.(B, C, b} is an isomorphism by the weak homotqpy equivalence of p.

Therefore there exists a map & :(J"X1I, J'"XI, *xI)—(E, F, y)
such that £,(z, 0)=¢£(z) (z= J°) and E.(]".X 1)=y. Since po£(z,0)=
peotl2)=7(a) for z€ ], po &t ("X, I"'XI,*xI)>(B, C, b) is a
homotopy of 7 | J*. Since peE("NI'Xx1)X)=p-E(J*}XI)CC,
we can apply Lemma 1 of §2to » and p <&, by taking M, =1I1"X1 and
T, = C, and hence we have a map 7 : I"*'X I — B such that

plz, 0 =752 for ze I, 7((I"X1)XDCC;
nz, )=p-Elz, t) for z€ ]’ and tE 1.

Since 7 (J'X1)=poE(J'X1)=b and 7 ((I"X1)X1)C C, the map



ON A CONDITION THAT A SPACE IS AN H-SPACE 115

| 'YX (X, I"”/<1 I"x1)—= (B, C, b) determines an element
of z#,u(B, C, b). Therefore thereis a map &': (I"*'x1, I"‘><1 J'x1)
—(E, F, ) such that

poEl~yp | PYX LI, ™1, J'x1) > (B, C, b),

because the induced homomorphism py 7, (E, F, ) > m,.., (B, C, b) is
onto by the weak homotopy equivalence of p. We denote this homotopy
by &.: (I, I"“ J)Y—=(B, C b, 0<t<1, with &, =p=£' and ¢,
= | I"v'%x1,

The map &,: J*X I — E, defined previously, gives clearly an homo-
topy of &'| J"X1 =the constant map. If we apply Lemma 1 to &/, &
and M,=1I"%X1 and T\, =F, we have amap &,: I"*'xX I — E such that

EI'x1=&" &|]'x0=¢, H(UI'X1)XI)CF.

We now show that the map £: ™' — E, defined by £(z) =E(z, 0)
for z= I"*', satisfies the conclusions of (Aj;). It is an extpnsion of &,
and EM)CEMN JHYJEI**x1)C F, since I"X1cMc ' =(I"x1)
UJ". Wedefineamap Y:I""X]— B and a homotopy Y,: J"X I- B,
0<s<1, as follows:

Y )=p- &z 4b), for 0 <t<1/4,
= & -n(2), for 1/4 <t <3/4,
=7z, 4(1—1)), for 3/4<t< 1,

IR BN

where ze I""'; and

Yz, t) = p o £z, 48—25). for 0<(s<1, s/2 <t<min ((2s+1)/4,1/2),
= b, o for 0<(s<C1/2, (254+1)/4<8<(3—25)/4,
=y1(2, 4 —4t—2s), for 0<s<1, max((3—2s)/4, 1/2)<t<(2—s)/2,
=p o E(z) =7(2), for otherwise,

where z€ J°. Themap Y is well defined and it gives a homotopy of
pe°& and 7. The homotopy Y. is well defined, since p< & | J*'XI=
| J'XI and §(J)=b. Also Y,=Y|J"xI, Y(I"x1)xDcC,
Y(]"X I)cCand V| J'x I is stationary. Therefore, by applying Lemma
1to Y, ¥, and N=1I""x1], M,=(I"x1)X I, and T,=C, we have a
map Y:I""'xX I — B being homotopic to ¥'; and hence a homotopy Y.:
I'"— B, 0t 1, defined by Y,(2) =Y(z, t) for z& I""". The ho-
motopy Y, thus defined, has the following properties: for z& I"*,

Yi2)=Y(z, 0)=pc ), Yiz)=Y(z 1) =95(&);
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and for z€ J"and 0 <t <1, Yi2) =Yz, ) =poEz)=p o E'(z). Also
Y.(I"x1)= C, and hence we have Y.M)C C, since MC ["*'= J*\U
(I % 1).
Therefore we have the map £ and the homotopy Y. satisfying the
conclusions of (A;), and Lemma 4 is proved completely.

Lemma 5. If p:(E, F)— (B, C) satisfies the condition (A,), then
it is a weak homotopy equivalence between two pairs (E, F) and (B, C).

Proof. Let y be any point of F, b= p(y), and # be any positive
integer,

(a) We show first that the induced homomorphism py : x.(E, F, y)—
(B, C, b) is onto. Let « beany element of =.(B, C, &) and 7:(I* I,
J'7) = (B, C,b) be a map which determines «. Further, let ‘g” n=1
E be the constant map, defined by &(z)=y for z& J*'. Then the
maps E' and 7 satisfy the assumptions of (A, by taking K=I"",
L=1I"" and M= I', and Y/ =p ¢t =b. Hence it follows from (A,)
that there exists an extension £:]"— E of £ such that

EJ )=y, EIVCF, and pog~y:(I I, ™) = (B, G b).

Therefore the element 2 of =.(E, F,y) determined by the map &:(I",
I J)—>(E, F,y) is mapped to « by ps, and the onto-ness is proved.

(b) Let 8 be aelement =.(E, F,y), and &,: (I", I" ]“")—)(E F, v)
be a map of the homotopy class 3. We assume that p4(3) =0, i.e. the
map po & (I, I I = (B, C b) is homotopic, relative J*', to the
constant map, remaining the image of I" in C. We denote this homo-
topy by »:(I"XI, I"X I, J*7'XI)— (B, C, b) with 7(z, 0) = p ° £(2) for
z€I" and 5(I"X1)=b. Let £':(I"'x0)\J(J*"'x I)—> E be the map

defined by £'(z,0)=E&\2) for z= I" and E(J*'XI)=y. Then the
maps &' and » satisfy the assumptions of (A,) by taking K=1I", L =
-, —(I"X I\U(I"X1) and the homotopy Y.'=p « &',

Therefore, it follows from (A,) that there isa map £: I"X [ — E such
that &(z,0) =&'(2,0) =E\(z) for z€ I, E(J'" X I)=y, and E(I"xD)\J
(I"X1))C F. Let &:I"— E be the map defined by &,(2) =£(z, 1) for
ze€ I". Then, £ gives a homotopy &~ &, :(I", I', J'') > (E, F, »), and
so & and & determine the same element 3 of =.(E, F,y). Also, by
the property of £, we have &(I") C F, and this shows that 3=0. These
complete the proofs of the fact that py is isomorphic and hence that p
is a weak homotopy equivalence of the pairs (E, F) and (B, C). Thus
we have Lemma 5.
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By the above four lemmas, we have

Theorem 3. A map p:(E, F) = (B, C) between two pairs of spaces
EDF and BDC is a weak homotopy equivalence, i.e. the induced
homomor phism Py : mE, F) = =.(B, C) is an isomorphism onlo for any
positive integer n, if and only if the map p satisfies the condition
(A) (1=1,2,3).

Remark. For the case that p: E — B is a fibre map (in the sense of
Serre) and F = p~'(d) the fibre over a point b B, the map p:(E, F)—
(B, b) has the ordinary lifting homotopy property ; and, for the case of a
quasi-fibre space (introduced by A. Told and R. Thom), the projection
p has the homotopically lifting homotopy property which is stronger
than (A)), (cf. [7], §1). Therefore it may be considered as a generaliza-
tion of the notion of the (quasi)-fibre space that a map p:(E, F) — (B; b)
is a weak homotopy equivalence of pairs.

4. Some properties of H-spaces.

We say that a space F is an H-space (has an H-structure), if there
is a multiplication g in F, i.e. a map p: FXF— F, such that p(e, x)
= p(x,e) =% for some point ¢ (called an unit) of F and every x& FV.
(We often write xy or x-y instead of u(x, y).)

We consider the following condition (B) for an H-space F.

(B) Both of the two maps I, and 1, of FXF into itself, defined
by

ll(x, y) =(x-y, X), Iy(x, y) =(x+9,),

Jor x,yEF, are homotopy equivalences of (FXF, (¢, ¢)) into itself.

If (B) is satisfied, we denote a homotopy inverse of I; by #, and a
homotopy of m;, = 1, and the identity map by Li:(FXF, (e, ¢)) = (FXF,
(e, €)) (0Lt < 1) and that of I; em; and the identity map by M;: (FX
F, (e, e)) = (FXF, (e, ) (0<t <1), respectively, for i =1, 2.

Remark. 1t is easy to see that a homotopy-associative H-space
having an inversion satisfies the above condition (B); and (B) implies

1) More generally, H-spaces are defined by the weaker condition that there is a
homotopy-unit &, i.e. two maps ¥ 5 &-x'and x = x-& of F into itself are both homo-
topic, relative & to the identity map x = x. But, when F is a C W-complex such that
the weak topology of the product complex FX F is the ordinary product topology, the
conditions of the above definition are satisfied by H-spaces of generally defined, cf.
Lemma (6.4) of [2].
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the existence of right and left inversions, (more precisely, ¢.° m,(e, %)

and g, ° ma(e, x) are right and left inversions respectively, where g; is

the natural projections from FX F onto F of the i-th factor for i =1, 2).¥
We now notice the following property. v

Lemma 6. Suppose that F is a CW-complex and the weak topology
of the product complex FX F is the ordinary product topology. Then,
if F has an Hstructure, it satisfies the property (B).

Proof. The map I, of FX F into FX F induces the homomorphisms
1,5 of the homotopy groups :

ll* . 'leu(FX F) -—)‘-:ﬂ(Fx F)’

for all positive integers #. We shall prove that [,y are isomorphisms of
m(FX F) onto itself,

Let g¢:; be the natural projections as in the above remark, and 7; and
7. be the natural imbedding homeomorphisms of F onto the subsets FXe
and e X F of FXF respectively. Then we have the following two iso-
morphisms between . (FXF) and =.(F)-+=.(F) (the direct sum of two
groups) :

(qH:v 02*) . 7:11(FX F) = Z;,(F)*"’?Z‘,,(F),
Vis+ 2o wF) 42 (F) =~ g (FXF).

From the definition of I: FX F— FXF, it follows immediately

(q14, 42*) o lyy o 7’1*(68)::(61’, o), . .
. for o, fE=.(F).
(@1s @) © L © 713 = (8, 0), i

Hence, (g%, @os) © L © (#15+724) (B, a— ) =(a, @); and, if (g @) -
Lig o (15 +724) (@, 3)=(a+ 8, a) = (0, 0) = the zero element of =, (F) +m.(F),
then @« =0 and 3=0. Therefore l,x is an isomorphism of =(FXF)
onto itself, and it follows from Theorem of J. H. C. Whitehead that [, is
an homotopy equivalence since FX F is a CW -complex by assumptions.
Moreover, since li(e, ) = (s, ¢), I, is also an homotopy equivalence of the
pair (FXF, (e, ) to itself?,

1) If two maps (x,9,2) > (xy)z and (x,9,2) > x2(y2) of FX FXF into F are homo-
topic each other, rel. (&, & &), we say that F is homotopy-associative. F has an in-
version, if there exists a map ¢: F— F such that the two maps x - ¢(x)-x and x—-x-6(x)
of F into F are both homoatopic, rel. & to the constant map x— & If only one of
these two maps has this property, we say ¢ is an one-sided (left or right) inversion.

2) This is an immediate consequence of Theorem (3.1) of [1].
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By the same way, Lemma 6 is proved for the map [..

5. Constructions and some properties of the map p: Fo F— F,

In this section, let F be an H-space. The constructions of the map
p:F: F— F are the analogy of the constructions of n-universal bundle
having a topological group as its structure group [3], and also generaliza-
tions of the Hopf fibering S¥*!' — §**! for k=1, 3, 7.

Let Fo F be the join of two copies of F, i.e. the identification space
obtained from FX FX I by identifying cach set of the form xX FX0
with (x, 0) & F X0 and each set of the form FXxX1 with (x,1)e Fx1,
The point of Fe F, being the image of (x,, x., &.) € FX FX I, will be de-
noted by the symbol ¢,x, & t.x, where ¢, + £.=1 and the element x, may
be chosen arbitrary or omitted whenever ¢, =0.

Let F be the suspension of F, i.e., the identification space obtained
from FXxI by shrinking each of the subspaces FX0 and FX1 te dif-
ferent points respectively. A point of F will be denoted by the symbol
(x,t) (x= F, t I), where the element ¥ may be chosen arbitrary or
omitted whenever {=0or 1.

We also define notations as follows :

FoFOF, ={tx;Dtx.| t: =1},

Fe FOU ={tx,Dtx, |, D0} 2 F, Uy;=U N U,
FSe=0x, Pt | ti=1and x,=¢), for i=1, 2;
FovVi={x,)|t>0}, Vo={(x,0) | t<{1}, Vo=V, NV,
V28 =(x, 1), V,3& =(x, 0).

Then U; and V, are open sets of Fo F and F respectively for i =1,
2, 3, and F; is the homeomorphic image of F under the natural map
x—>1x@P0or x >0 1x. We shall identify F; with F by this natural
homeomorphism.

Let p be the (continuous) map of F« F into F, defined by

p(11x1 @ tgxg) = (x|xg, t]), fOI' t], tg 7é 1,
=75, for t;,=1, i=1, 2.

This map p is clearly continuous by the fact that the map #,x, P t.x: —
% of Fo F onto F is continuous whenever ¢, 0. Also p (V) = U,
and p(z,)=F,

About these spaces and maps, we have

Theorem 4. If the H-space F satisfies the condition (B) of §4,
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the map p :(F- F, F)—->(ﬁ‘ %)), defined above, is a weak homotopy
equivalence between two pairs, i. e. p induces isomor phisms py:=.(F< F,
F)— “,,(F, €) for all positive integers n.

ABefore proving this theorem, we consider some properties of p: Fo F
— F, where F is an H-space satisfying (B).

Define the maps p,: U, — F and ¢.: Vi XF—> U, for i=1, 2, as
follows :

pi(tlxl @t.ix.’) = X, for 5hx; @ tox, = Ui B
¢:((x, 2), ) =tx, P (1—1)x., with

for (x,)e V,yEF,
=y, % =q;° m(x, ), {i, j} = {1, 2}, oY

where m; is a homotopy inverse of I; of (B). These maps p: and ¢;
are well defined and continuous, and have the following properties :
p: | Fi is the natural homeomorphism; ¢(Vy;x F)C U,, and ¢;| & X F
is a homeomorphism onto Fi. Also, it holds the following lemma among
these maps :

Lemma 7. For i=1, 2, the two maps (p, p): (U, Us) = (V. XF,
VaX )Y and ¢.: (ViXF, VoxX F)— (U, U,) are homotopy equivalences
of pairs and they are homolopy inverses of the other, relative F, and
&, X F respectively. More precisely speaking, there are homotopies &;:
(U, Up) = (U, Uy) and i (VX F, Vix F)— (VX F, VyxF), 0<t<1,
such that

(l) =¢; " P’ Pi), allﬂ—‘ P’ pl ¢'i;
P, G| F, v, W § X F are the identity maps of
U, F, ViXF, ¢XF respectively, for 0t <1.

Proof. We define a homotopy ¢i: U, — U, 0<t<1, as follows,
for i=1,2:

b, D tax.) = 1, P, xv)EBt (%, %), with
Pixy, x.) = %y, X, x.) =g, ° Lix, %2), {4, 7} ={1, 2},

for t,x, D t.x. = U,, where L; is a homotopy between mi !, and the
identity map mentioned in §4. This homotopy is well defined and conti-
nuous; and, for the special case #,=1, these definitions are read as follows :
P(1xP0)=1xP0, 20D 1x)=0DP1x. @¢i(U,) < U, is evident,

By definitions, for ix, D tx.c U, i=1, 2,

1) It is defined by (p, pi){u) = (p(u), pi(u)) € ViX F for u € Uy
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do < (P, pi) (B1x, P t.x.) = ¢illx,xo, 1), %) = iy, D 1>y,
with

y‘ = x‘ = [(ﬂ;(xl, x2)»
¥=q;° mX,%5, %:) = q; ° my o L(x,, %)
=gy ° Li%), %) =0{(x,, %),

where {7, j} = {1, 2}. Also "i(x, %,) = g, = Li(x;, %) = g,(%), %) = %, From
these equations, it follows immediately that &} satisfies the properties of
Lemma 7.

We also define a homotopy 4!:ViXF—> VixF, 0<t1, as
follows, for i=1, 2:

Ti(x, 1), ¥) = ((Fiz, ), 1), y), with

Tix, 9)=(g2° Mi_alx,9) * (gomi(x,3), for i=1, 0t 1/2,
=(q, c mAx, ) » (g1°> Mi_x(x,9), for i =2, 0<t<1/2,
=q ° Ms_(x,y), for 1/2 <t <1,

for (x,1)e V,, y= F, where M; is a homotopy between [,  #2;, and the

identity map mentioned in §4. This homotopy is well defined and con-

tinuous ; and, for the special case (x,t)=¢, these definitions are read as

follows : ¥i(€, y) =G, y) for i=1,2. #I(V:XF)C VyxF is evident.
By definitions, for (x,)eV,,yEF,

(P) Pn) ¢ ¢1((x,'t); y)=(p, P;) (ty @ (1—t)Q'z o m,(x, v))
=y ¢ (gzomy(x, ), 1), y)
= ((Talx, ), 1), ) = Fil(x, D), y),

since ¢,° M\(x,y)=y. Similarly, we have (p, p.)c ¢.= ¥; Also,
riix, 1), y) = (g, « Mi(x, ), 1), ¥) =((x,1), ). These show that 7 satisfy
the properties of Lemma 7, and proofs are completed. .

6. Proof of Theorem 4 of §5. )

We shall prove that the map p: (F e F, F) — (F, ¢,) satisfies the con-
dition (Ay). . )

Let #: (I"x0O)\JI"XI)(=])—> F- F and 5:I"XI — F be given
maps such that pot'=5| J and E(J*"NM)CF, »M)=¢ for a
given subcomplex M of the product complex I“XI. Assume that I*
has been so finely subdivided, by (z—1)-planes perpendicular to the axes,
into finite numbers of n-cubes {I?}, =1,2,..., N,, and also the unit
interval I has been so finely divided at 0 =1¢,, f,,...,¢v,.y =1, insuch a
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way that 7 (I X [{, t...]) is contained in either the open set V, or V,, for
eachr=1,..., Nyand s=1,..., N..

~ Thus we have a sequence of finite numbers of (s2+1)-cubes {1 | &
=1,2,..., N;N.} such that klj I.=I""" (=I"x 1) and 7(I;) is contained in

either Vior V. for each 1 <2< N,N., by setting L,=I'X[t,t..], k=
(r—1) N,+s, 1<r<N, 1<s<N.

I has 2(n+1) n-cubes on its boundary fb for each %k, and the total
of these n-cubes will be denoted by {I:}. For each i=1, 2,3, we denote
by W: the point-set union of Ij such that 7 (I3) C V,.. Then, we have
immediately the following relations:

W(WOCV,, fori=1,2,3; WiN\W.D Wi, MW, is empty.

&
Let Q,=]"\U EUI I.) and @,=]". Let 2 bel<k< N,N,, and we

assume that £’ is extended to a map &.,: @..,—F o F and also there is a
homotopy Y%™': @y — F, 0<t < 1, with the following properties :
(1im)) Ee QMM CF, E(@NWHCU, (i=1,23),
i) YiTl=pekiy, Yi'l=5|GQw,, Yi'|J'=p-¥,
(3e-) YiUQ ooNM) =5, YT ( Qe NW)CV, (i=1,2,3).
Then we have the following

Lemma 8. From these hypotheses, it follows that &i_, and Yi™
have extensions &,:Qy— E and Y% :Q,—B(0<t<1) satisfying (1),
(2:) and (3,).

It follows from this lemma and the induction on %, starting with &,=
& and Yi=p - £/, that there is a map £: I"*'>FE and a homotopy Y,: I"™
— B (0 <t < 1) satisfying the conclusions of the condition (Aj;), since
Qy,»,=I"". Therefore, to prove Theorem 4 of §5, it is sufficient to prove
the above lemma, by Theorem 3 of §3.

Proof of Lemma 8. By the definition of {I*}, 7(I,) is contained in
either V, or V.. Let ix=1 or 2 be such that 7(I)C V,,.

We set Ju=I,MNQ:,. Then J, is a union of #-cubes of {I;} and is a
strong deformation retract of I,, as be easily seen. This retraction will
be denoted by 0 : I,—Ji. Also, &.(J) C U, and Yi'(J) C Vi, from Ji
CWtk and (1;-4), (3e-)).

We now define a map ¢’ : ,—» U, C F o F and a homotopy X{: J,—U,,
CFoF, 0L t<1, as follows:
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EN2) =0, (7(2), P, © Exy ° 02)), for z&€1,;
Xi(2) =0 (YiTh (2), Py, = Ea(2)), for 0 1< 1/2, z€ ],
=% o Ery(2), for 1/2 <t <1, 2€ Ji;

where p;, ¢, and @} are maps and homotopies, mentioned in Lemma 7.
X! is well defined, since, for z€ J,,
¢ Y572), Py * Eeerl@) =1y ° (b, B,) © Excal2) =05F © Eu(2).
Also, for &€ Ji, §'(2) = ¢:,(4(2), Py © & x-1(2))= X(2) ; and hence Xiis a
homotopy of {' | J:. Further ¢’ and X] have properties :
SLNMCF, {(LNW)CUs ;s XU TNMCF, X{(IiNW3)CUs;
which are shown immediately from Lemma 7 and (1,-;), (3,;-,) of above,

Hence, by applying Lemma 1 of § 2to ¢’ and X!, and M,=1."\M, T, =
F, M.=I,\W;, and T>=U, we have a homotopy X;: I;— U, CF- F

such that
)(0=§', Xt I ]kZX;., K(Ian)CF, Xz(lzf\Wo)C U.';,

for 0 <t <{1. The second equation shows X, | Je=X]=&-1 | Jo
From the last property, we can define a map &, : Q.—F < F by

& | Qua=&, & L=X.
This map &, has the property (1), as be easily seen from the above
constructions and (1._;).
We now consider the map p - £;. We denote by ¢: Vi X F— V,; the

natural projection. Let Z: I, X I— V..C Fbea map defined by, for z€ I,
Zz,t)=p o Xeuay(2), for 0 <it<2/3,
=g WEa(5(2), pi, *Ex © 0,(2)), for 2/3<t< 1,
where ¥} is a homotopy of (p, p:) > #; and the identity map, mentioned in
Lemma 7. Z is well defined, since X,={'=4 - (5, py °&x° 0:) and
g ¥o=p e ¢ Also,
Z(z,00=p > Xi((2)=p < E2), Z(2,1)=7(2), for zEI;;

and ZULNM X D=¢§,, Z(IL,NWy)xI)CV,; by making use of Lemma
7. By definitions, the map Z | JiX I is read as follows, for z€ J;,

Z(z, ) =p o P oy < Enla), for 0 < t<1/3,
=p° ¢ (YE(2), pi, © E(2)), for 1/3 <t < 2/3,
=g P2, Py, - ELD), for2/3 <t < 1 .

Let Z,: (Jox H\U (I x H— e F, 0<t <1, be a homotopy defined
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by, for z€ Js,
Ziz, D=p o Dy, o Ei2), for 01 <C1/3, 0<s<(1—31)/3,
=q-° ”::’:‘:«-33—1)12 o (P, pik) > £x(2),
for 0<2<C1/3, (1—38)/3<s<{1— ¢,
=g o P Y2, by o E2), for 1/3<t<2/3, 0<s<2/3,
=g T drnonly(2), pro E2),  for 2/3K<1, 0521 1),

=y%(2), for 2/3<1<C1,2(1-)<s<t,
=Y -nies-n(2), for 2/3<s<1, 1—s<t<s;
and, for z€ I, .
Zl(z,0) =p o By, 0 Ex2), for 0 <s<1/3,
=gq° I[/‘ti];a—l),"l ° (p, pi) © Exl2), for 1/3<s< 1,
Zi(z, 1) = 7(2), for 0 <s< 1.

From the properties concerning %, #%and Y;™' for t =0, 1, simple calcu-
lations show that this homotopy is well defined; and also Z;=Z | (JiX
D, \Ux I) and Zi(z, 0)=p < Exl(2), Zi(z, 1)=7(2), for zE L, ; and
Ziz, =%, ifzeM, Ziz, eV, if zeW,.
We extend Z! on I, X I, by applying Lemma 1 of §2 to Z and Z/, and
M =(I.N\MXxXI, Ty=%, M,=I.N W) X1, and Tz:=V, Therefore,
we have amap Z,: X I-V, C 15’, being homotopic to Z and having the

following properties : 7
Zi(2,0)=Zl(2,00=p = E4(2), Z\(2,1)=2Z}(z,1)=1(2), for zEI;;
Ziz, Y=Z(z, 1))=Y (2), for z€ ], and 0<¢<1;
Z(A(LNMXx D=z, Z{ITNW)IXxCV.

From these properties, we can define a homotopy Y7 : Q—F, 0t

<1, by

Yi | Qi =Y, YH2)=2Z(2,1) for ze I,.
It follows immediately, from the above constructions and (2;.;), (3x-1),
that this homotopy Y7 has the desired properties (2,) and (3.).

Therefore we have Lemma 8, and Theorem 4 of §5 is proved comple-
tely. _

Remark. In the above proofs, we use only Lemma 7. Therefore, if
there are open sets U;C E, V,CB and maps p, and ¢,, i=1, 2, such that
{V.} is a covering of B and they satisfy Lemma 7, then we can prove
that p : (E, F)— (B, b) satisfies the condition (A.), and hence, that p is
a weak homotopy equivalence.
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We also notice that the number of the index set {i} of the covering
{V.} of B may be infinite, if homotopies ¢ and #i of Lemma 7 can be
taken as #(UNU,N- NU )CUNU, N NU;, and 7. (Vi NV N

NV )X )T (ViINV NNV, ) X F for 0<{<1 and for all 2 and i, -,

1n.

7. - Proof of Theorem 1 of § 1.
From the fact that F=F] is contractible to a point ¢ in F o F leaving

e= F fixed, and from Lemma 6 and Theorem 4, it follows that F o F, F

and p: (Fo F, F)—>(F, 7)), constructed in §5, satisfy (1), (2) of Theorem
1. Therefore the existence of E, B, b and p in Theorem 1 is proved.

To prove the sufficiency of Theorem 1, and also for the later pur-
pose, we prove the follwing lemma.

Lemma 9. Let ED FOF and B3b be given spaces such that F is
a CW-complex, F its subcomplex and also the weak topology of the pro-

duct complex Fx F is the ordinary product topology of FXF; and let
p :(E, F)—> (B, b) be a weak homotopy equivalence between two pairs.

Further, we assume that F is contractible to a vertex ¢=F in E with ¢
stationary. Then there is a map u : Fx F—E such that '
(1) W(FX F)CF and ju,e)=u, jle; %) =%, for ucF, x€F, and
(2) the map p o ji: FX F— B is homotopic, relative FxF, to the
map p: Fx F-B defined by p(u, x)=p(u) for ucF, xF.

Proof. Since Fx Fis a CW-complex and F\/F=(Fx )\ J(e X F) is
its subcomplex by assumptions, we can apply the same processes of the
proof of Theorem 2 of [6].

Let &, : (F, ¢)>(E, ¢) (0 <t < 1) be the contraction of F into ¢, i. e.
k(F)=¢ and k,=the identity map of F. We define a map g,: FX F—E
by g%, X)=x, and a homotopy g!: F\/F—F (0<t<1) by

g'(u, &) =ki_n), gie, ¥ =%, for ucF,x F.

Then g! is a homotopy of g, | F\/F, and hence, by extending this homo-

topy, we have a homotopy g, : Fx F—E, 0<{< 1. The map g, satisfies
giu, ) =u, gile, x)=%, poglu, x)=plu), for (u, x)€F\/F.

By using this homotopy, we also define a map h': FXFX I-B as
follows :
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B, x, t)=p o gi_o(u, %), for 0 <t<1/2,
=p o ka_ulue), for1/2<{t<C 1.
Then A'(%, x,0)=p o gilu, x), B (e X FxI)=>b and h'(u, x, 1)= p(u). Also,
A | (F\/F)x I is homotopic, relative (FX e X H\Ulex Fx D), to the map
h: (F\/F)x I— B such that h(u, x, t)=p(ux). We can extend this homotopy
on Fx Fx I so that it is stationary on Fx FX 1 Therefore, we have a
map h : Fx Fx [-B, being homotopic to 4’ and satisfying the following
properties :
h(u, %,0)=p - g\u, %), ‘ for (u, x)€Fx F,
t=1, and (#, x)FXF,
0<t<1, and (, x)E F\/F.

Let g' : (FX FXO\J((F\/F)x I)>E be the map defined by, for u&
F, x<F,

hu, x, t)=plu), for {

g, x,0)=g,(u, x), g'u,c,)=u, g's, x,1)=x.

Then, as be easily seen, the maps g’ and h satisfy the assumptions of
(A)) by taking K=FXF, L=F\/F, M=(Fx Fx1)\U(FVF)xI), and
Y! is stationary. Since p : (E, F)—(B, b) is a weak homotopy equivalence
and hence it satisfies (A,), it follows that there is amap g: FXFXI—-E
such that g|(FX FXO\J(FNVF)x I)=g', g(FX Fx1)CF, and pog~h:
Fx Fx I—B, relative (FX FX0)\U(F\VF)X)\U(Fx FxI). We define
i2: Fx F—E by fi(u, x)=g (u, x, 1) for uc F, x&F. It follows immediate-
ly from the above properties that the map y satisfies (1), (2) of Lemma 9.

Proof of the sufficiency of Theorem 1. By the conditions (1), (2)
of Theorem 1, Lemma 9 is able to be applied by taking F=F. Therefore
the sufficiency is an immediate consequence of Lemma 9.

Remark. The sufficiency is a generalization of Theorem (1. 1) of [5]
and the above proofs are similar to it.

8. Proof of Theorem 2 of § 1.
By the assumptions of Theorem 2, we can apply Lemma 9 by taking

F=E. Therefore Theorem 2 follows immediately from the following the-

orem :
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Theorem 5. Suppose that p: (E, F)— (B, b) is a weak homotopy
equivalence and there is a map ji : EX F—E satisfying (1), (2) of Lemma
9 by taking F=E. Further we assume that E is contractible in itself to
e(=unit) with ¢ stationary.

Then there is an H-homomorphism" f, which is also a weak homolo-
py equivalence, of the Hspace F, having the multiplication p=p | FX
F, into the H-space A(B) of loops in B with the base point b, having the
natural multiplication (composition of loops).

Further, if Fis alocally finite CW -complex, the H-structure n=
it | FX Fof F is homotopy-associative and also has a (two-sided) inver-
ston.

This is a generalization of Theorem 1 of [4] and Theorem 3 of [6], and
is proved by the essentially same manner, and we follow several lemmas.

Lemma 10. Under the assumptions of Theorem 5, the map f:

F—A(B), defined by
fx))=p o k(x), for xe F, 0t <1,

where k. : (E, ¢)—(E, ¢) is a homotopy between k,=the identity map and
E(E)=¢, is a weak homotopy equivalence, i.e. f induces isomorphisms
f« of all the homotopy groups of F and A(B).

Proof. This lemma is an immediate consequence of the commuta-
tivity of the following diagram : '

Tai(E, F) L x.(F)
li’* T lf*

Tan(B)  —> = (A(B)),
where & is the homotopy boundary homomorphism, which is an isomor-
phism since 7,(E)=0, and T is the natural isomorphism.
The commutativity is proved as follows. If a map ¢ : (I, I")—(F, ¢)
represents an element a €z, (F), the map ¢ : (I"", ", J5)—(E, F, ¢),

defined by @(x, t) =k, ° ¢(x) for (x, Y EI"X [=1"", (Jr=(I"x 1)\ % D),
represents 3€x,,,(E, F) being 6(3)=a. Since T(p o ¢(x)()=p = ¢(x, )=
o heogx)=(f > 0)(®), we have T o pi(B)=fula)=fx (.

1) For H-spaces X and Y with multiplications u and u’ respectively, a map f : X
-Y is called an H-homomorphism, if two maps (xj, X2)—>f o u(xy, x2) and (xy, x2) >
p(f(x)), flxz9)) of XXX into Y are homotopic each other.
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Lemma 11. The map f, defined above, is an H-homomor phism.
Proof. As the sameto § 4 of [4], we definea map ¢ : FX FX I'-E,

first on Fx Fx I? by, for x,yEF,

P(x, 9,1, 5)=¢, fort=1, 0 <s< 1,
=n(x, ), for t=0, 0 <s< 1,
=ki(p(x, 3)), fors=0, 0 <t 1,
=ulku(x), ¥), for s=1, 0 <t<1/2,
=Rar-1(¥), for s=1, 1/2<t < 1,

and then on FX FX I?, by mapping the segment from ({, s)E I*to (1/2,
1/2) on the path, described by the point ¢@(x, v, {, s) under the contraction
k. : E-E. Then the homotopy #.: FX F— 4(B), 0 < s <1, defined by
P, 9)Xt)=po?(x,y,1,5), isa homotopy of #y=f° x and ¥,. The map
peo@®| FXFx[0,1/2] X1 is the map (x, y, 1)—p ° p(kx(x), ¥), and hence,
is homotopic, relative ((FX FXO0\J(Fx FX1/2))X1, to the map (%, y,?)

—p ° ku(x), since jz has the property (2) of Lemma 9 of § 7 by taking F=
E. Therefore the map #, is homotopic to the map g’ o (fX f), where p’is
the natural multiplication (composition of loops) on the loop-space A(B).
This shows that two map f o g and g/ o (fXf) of FXF into A(B) are
homotopic, and so, f is an H-homomorphism.

Proof of Theorem 5. The first half is the above two lemmas.

Since f induces isomorphisms between every homotopy groups of F
and A(B), two maps of CW-complex into F are homotopic if, and only if,
the two composed maps of these maps and f are homotopic each other.
Therefore, the homotopy-associativity of F, i.e. the fact that two maps
(x, 9, 2)>p(x, p1(y, 2)) and (%, , 2) = pe(u(x, ), 2), of FXFXF into F, are
homotopic, is an immediate consequence of the fact that f is an H-
homomorphism and that the H-space A(B) of loops in B with natural
multiplication is homotopy-associative.

On the other hand, by Lemma 6 and Remark of §4, , has a left in-
version ; and we show the latter is also a right inversion as follows, by
using the homotopy-associativity of f.

Let o: (F, &) > (F, ¢) be a left inversion. As the map x — u(a(x), x) is
homotopic, relative ¢, to the constant map x — ¢, the map x — g a(x) =
placa(x), ) of Finto itself is so to the map x — p(oa(x), n(a(x), x)), and
latter to the map x — p(u(o < o(x), 4(x)), %), and so, to the identity map
x — x. Therefore the map x — p(x, 4(x)) is homotopic, relative ¢, to the
map x — p(a°a(x), a(x)), and hence to constant map x — ¢ of F into itself.
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This shows that « is also a right inversion of p.

Thus we have Theorem 5, and Theorem 2 of § 1 is proved.

Remark. 1 cannot prove the inverse of Thenrem 2 yet. The inverse
may be proved, by generalizing the methods of constructions in [3], if
the H-structure ¢ of F is restricted by additional conditions : p(x, y) =
p(x', ) and p(x, ¥) = p(x,y") imply x=x" and y =3y', respectively.
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