ON A CONDITION THAT A SPACE IS AN H-SPACE

MASAHIRO SUGAWARA

1. Introduction.

We call a (continuous) map $p:(E, F)\rightarrow (B, C)$, between two pairs of topological spaces $E\supset F$ and $B\supset C$, a weak homotopy equivalence of pairs, if p induces isomorphisms p_* of all the relative homotopy groups $\pi_n(E, F)$ and $\pi_n(B, C)$, i.e.

$$p_*: \pi_n(E, F) \approx \pi_n(B, C),$$
 for any integer $n > 0$.

The purpose of this note is to prove the equivalences of the weak homotopy equivalence of pairs and the conditions (A_i) , i=1, 2, 3, some sorts of the homotopically lifting homotopy conditions, (cf. §2 and Theorem 3 of §3); and also, by making use of these equivalences, to prove the following theorem, which gives a necessary and sufficient condition that a space is an H-space (a space admitting a map of type (1, 1)).

Theorem 1. Let F be a CW-complex such that the weak topology of the product complex $F \times F$ is the ordinary product topology of the product space $F \times F^{(1)}$. Under these conditions, F is an H-space if, and only if, there exist topological spaces E and B and a map p of E into B, satisfying the following properties:

- (1) E contains F, and F is contractible in E to a vertex $\varepsilon \in F$ leaving ε fixed throughout the contraction, and
- (2) p(F) = b, a point of B, and the map $p: (E, F) \rightarrow (B, b)$ is a weak homotopy equivalence of the two pairs.

Also we have

Theorem 2. Let $p:(E, F) \rightarrow (B, b)$ is a given map, where E is a CW-complex, F is its locally finite subcomplex, and B is a space containing a point b. If

- (1) E is contractible in itself to a vertex $\varepsilon \in F$ being ε stationary throughout the contraction, and
- (2) p is a weak homotopy equivalence of pairs (E, F) and (B, b), then F is a homotopy-associative H-space having an inversion.

¹⁾ For examples, if F is a countable CW-complex, F has this property.

2. The conditions (A_i) , i = 1, 2, 3.

Let $E \supset F$ and $B \supset C$ be topological spaces and $p: (E, F) \to (B, C)$ a map of pairs. We shall consider the following conditions (A_i) , concerning such a map p, which may be considered as generalizations of the lifting homotopy conditions.

(A₁) Let K be any CW-complex, L its subcomplex, and M a subcomplex of the product complex $K \times I^{1}$. Let

$$\xi': (K\times 0) \cup (L\times I) \to E, \quad \eta: K\times I \to B$$

be given maps such that $\xi'(M') \subset F$, $(M' = ((K \times 0) \cup (L \times I)) \cap M)$, and $\eta(M) \subset C$, and the two maps $p \circ \xi'$ and $\eta \mid (K \times 0) \cup (L \times I)$ are homotopic each other by a homotopy of pairs

$$Y'_t: ((K\times 0) \cup (L\times I), M') \rightarrow (B, C), 0 < t < 1,$$

with $Y'_0 = p \circ \xi'$ and $Y'_1 = \eta \mid (K \times 0) \cup (L \times I)$.

From these assumptions, it follows that ξ' has an extension

$$\xi: K \times I \to E$$
, being $\xi(M) \subset F$,

and the two maps $p \circ \xi$ and η are homotopic each other by a homotopy

$$Y_t: (K \times I, M) \to (B, C), 0 < t < 1, with $Y_0 = p \circ \xi, Y_1 = \eta$$$

and also this homotopy Y_t is taken as an extension of the given homotopy Y'_t , i. e. $Y_t \mid (K \times 0) \cup (L \times I) = Y'_t$ for $0 \le t \le 1$.

- (A_2) In addition to the assumptions of (A_1) , we assume that $K = I^n$ (= $I \times \cdots \times I$ (n-times)) and its n-cell is $I^n \dot{I}^n$ (= the interior of I^n) only, and $L = \dot{I}^n$ (= the boundary of I^n)²⁾. Then the conclusions of (A_1) follow.
- (A₃) Moreover, we add the following assumptions to those of (A_2) : $p \circ \xi' = \eta \mid (I^n \times 0) \cup (\dot{I}^n \times I)$. Then we have the conclusions of (A_1) , i.e., there is an extension ξ of ξ' such that $\xi(M) \subset F$ and $p \circ \xi$ and η are homotopic by a homotopy $Y_t: (I^n \times I, M) \to (B, C)$ being stationary on $(I^n \times 0) \cup (\dot{I}^n \times I)$, i.e. $Y_t \mid (I^n \times 0) \cup (\dot{I}^n \times I) = p \circ \xi'$ for $0 \leqslant t \leqslant 1$.

¹⁾ I = [0, 1], the closed interval, is considered as a CW-complex whose 1-cell is (0, 1), the open interval, and 0-cells are the two points 0 and 1.

²⁾ We assume that the boundary \dot{I}^n is subdivided arbitrarily into finite cells forming a finite CW-complex.

It follows immediately from the above definitions that the condition (A_{i+1}) is weaker than (A_i) for i=1, 2, and we shall prove the equivalences of these conditions in this section.

Before these proofs, we notice about the homotopy extension theorem.

Lemma 1. Let K be a CW-complex and L, N and M_k (k=1, 2, ...) be its subcomplexes such that $M_k \cap M_{k'} = \emptyset$ (the empty set) if $k \neq k'$. Let T be any space and T_k (k=1, 2, ...) its subsets; and let a map $f_0: K \to T$ and a homotopy $g_t: L \to T$, 0 < t < 1, be so given that

$$g_0 = f_0 \mid L$$
, $f_0(M_k) \subset T_k$; $g_t \mid L \cap N = f_0 \mid L \cap N$, $g_t(L \cap M_k) \subset T_k$,
for $0 \le t \le 1$ and $k = 1, 2, \cdots$.

Then there is a homotopy $f_t: K \to T$, $0 \le t \le 1$, of f_0 , such that

$$g_t = f_t \mid L$$
, $f_t \mid N = f_0 \mid N$, $f_t(M_k) \subset T_k$,

for $0 \le t \le 1$ and $k = 1, 2, \dots$.

Proof. We define a homotopy $f_t \mid L \cup N : L \cup N \to T$, by setting $f_t \mid N = f_0 \mid N$ and $f_t \mid L = g_t$ for $0 \le t \le 1$. Since $f_0(M_k) \subset T_k$ and $g_t(L \cap M_k) \subset T_k$, the map $f_0 \mid M_k$ and the homotopy $f_t \mid (L \cup N) \cap M_k$ are considered as mapping into T_k . Hence, by making use of the ordinary homotopy extension theorem for CW-complexes, there are homotopies, of $f_0 \mid M_k$:

$$f_t \mid M_k : M_k \to T_k$$
, such that $f_t \mid L \cap M_k = g_t \mid L \cap M_k$,
 $f_t \mid N \cap M_k = f_0 \mid N \cap M_k$.

for $0 \le t \le 1$ and every $k = 1, 2, \cdots$. These homotopies and the above $f_t \mid L \cup N$ define immediately a homotopy $f_t \mid L \cup N \cup (\bigcup_k M_k) : L \cup N \cup (\bigcup_k M_k) \to T$, since $M_k \cap M_{k'} = \emptyset$ for $k \ne k'$. Using again the homotopy extension theorem to f_0 and the last homotopy $f_t \mid L \cup N \cup (\bigcup_k M_k)$, we obtain a homotopy $f_t : K \to T$, $0 \le t \le 1$, as desired.

Proofs of the equivalences of (A_i) , i = 1, 2, 3, are divided into the following two lemmas.

Lemma 2. If $p:(E, F) \to (B, C)$ satisfies (A_1) , then it also satisfies (A_2) .

Proof. Let maps

$$\xi^I: (I^n \times 0) \cup (\dot{I}^n \times I) \ (=J^n) \to E, \quad \eta: I^n \times I \ (=I^{n+1}) \to B,$$

and a homotopy

 $Y'_t: (J'', J'' \cap M) \to (B, C) \ (0 < t < 1)$ with $Y'_0 = p \circ \xi'$, $Y'_1 = \eta \mid J''$, be given by the assumptions of (A_2) . Applying Lemma 1 to η and Y'_t by taking $M_1 = M$ and $T_1 = C$, we have a homotopy $Y''_t: I^{n+1} \to B$, 0 < t < 1, such that

$$Y_1'' = r$$
, $Y_t'' \mid J^n = Y_t'$, and $Y_t''(M) \subset C$ for $0 < t < 1$.

We set $\overline{\gamma}=Y_0''$. Then $\overline{\gamma}(M)\subset C$ and $p\circ \xi'=\overline{\gamma}\mid J^n$, and hence maps ξ' and $\overline{\gamma}$ satisfy the assumptions of (A_3) . It follows from (A_3) that there is an extension $\xi:I^{n+1}\to E$ of ξ' , being $\xi(M)\subset F$, and a homotopy

$$\overline{Y}_t: (I^{n+1}, M) \to (B, C), \text{ with } \overline{Y}_0 = p \circ \xi, \overline{Y}_1 = \overline{\eta}, \overline{Y}_t \mid J^n = p \circ \xi'.$$

Let $\overline{\overline{Y}}_{l}: (I^{n+1}, M) \to (B, C)$ be a homotopy defined by

$$\overline{\overline{Y}}_t = \overline{Y}_{zt}$$
 for $0 < t < 1/2$, $\overline{\overline{Y}}_t = Y_{zt-1}^{"}$ for $1/2 < t < 1$.

Then $\overline{\overline{Y}}_0 = p \circ \xi$, $\overline{\overline{Y}}_1 = \eta$; and also, since \overline{Y}_t is stationary on J^n , $\overline{\overline{Y}}_t \mid J^n$ is homotopic to $Y_t^{ll} \mid J^n$ considering as the maps of $J^n \times I$ into B, and this homotopy is taken to be stationary on $J^n \times I$ and to be mapping $(J^n \cap M) \times I$ into C. Applying Lemma 1 to the map $\overline{\overline{Y}}_t$ and the last homotopy by taking $N = I^{n+1} \times I$, $M_1 = M \times I$ and $T_1 = C$, we have a homotopy of pairs

$$Y_t: (I^{n+1}, M) \to (B, C) \ (0 < t < 1) \text{ with } Y_0 = p \circ \xi, Y_1 = \eta,$$

and also $Y_t \mid J'' = Y_t'' \mid J'' = Y_t'$. Therefore the map ξ and the homotopy Y_t satisfy the conclusions of (A_t) , and we have the above lemma.

Lemma 3. If $p:(E, F) \to (B, C)$ satisfies (A_2) , then also (A_1) Proof. For this lemma, we can apply the same principles of the proofs of Theorem (5.1) of [1], and we follow proofs briefly.

Let CW-complex K, L and M and maps ξ' and η and a homotopy $Y'_l(0 \le t \le 1)$ be so given as to satisfy the assumptions of (A_l) for the map $p: (E, F) \to (B, C)$, and let $\overline{K}^q = K^q \cup L \ (q \ge -1)^{1}$ and $P_q = (K \times 0) \cup (\overline{K}^q \times I) \subset K \times I$.

Let $n \geqslant 0$, and assume inductively that ξ' has an extension ξ_{n-1} : $P_{n-1} \to E$ such that $\xi_{n-1}(P_{n-1} \cap M) \subset F$, and also that Y'_t has an ex-

¹⁾ K^q is the q-section of K.

tension $Y_t^{n-1}:(P_{n-1},P_{n-1}\cap M)\to (B,C)$, which is a homotopy between $Y_0^{n-1}=p\circ \xi_{n-1}$ and $Y_1^{n-1}=\eta\mid P_{n-1}$. Let $\{e_r^n\mid r\in R\}$ be the set of all n-cells of K-L. For each $r\in R$, let $\phi_r\colon I^n\to K$ be a map such that $\phi_r(\dot{I}^n)\subset K^{n-1}$ and $\phi_r\mid I^n-\dot{I}^n$ is a homeomorphism onto e_r^n . Let $\psi_r\colon I^n\times I\to P_n$ be defined by

$$\psi_r(z,t)=(\phi_r(z),t), \quad \text{for } z\in I^n, t\in I.$$

Then $\psi_r(J^n) = P_{n-1} \cap \psi_r(I^{n+1})$ $(J^n = (I^n \times 0) \cup (I^n \times I), I^{n+1} = I^n \times I).$ Also, as easily seen, there is a subcomplex M_r of the product complex $I^n \times I$ such that $\psi_r(M_r) = \psi_r(I^{n+1}) \cap M$, since M is a subcomplex of the product complex $K \times I$, for each $r \in R$.

It follows immediately from the above hypotheses that the maps

$$\xi_{n-1} \circ \psi_r \mid J^n : J^n \to E$$
 and $\eta \circ \psi_r : I^{n+1} \to B$

and the homotopy of pairs

$$Y_t^{n-1} \circ \psi_r \mid J^n : (J^n, J^n \cap M) \to (B, C) \quad (0 \le t \le 1)$$

satisfy the assumptions of (A_2) by taking M_r instead of M. Since the given map $p:(E,F)\to (B,C)$ satisfies the condition (A_2) , we have a map $\lambda_r:(I^{n+1},M_r)\to (E,F)$ and a homotopy $Z_t^r:(I^{n+1},M_r)\to (B,C)$ $(0\leqslant t\leqslant 1)$ such that

$$\lambda_r \mid J^n = \xi_{n-1} \circ \psi_r \mid J^n; \ Z^r_0 = p \circ \lambda_r, \ Z^r_1 = \eta \circ \psi_r, \ \text{and}$$

$$Z^r_t \mid J^n = Y^{n-1}_t \circ \psi_r \mid J^n, \ \text{for} \ 0 \leqslant t \leqslant 1.$$

Therefore, it follows from the property $\psi_r(J^n) = P_{n-1} \cap \psi_r(I^{n+1})$ that a map $\xi_n: P_n \to E$ and a homotopy $Y_t^n: P_n \to B \ (0 \leqslant t \leqslant 1)$ are defined by

$$\begin{array}{c|c} \xi_n \mid P_{n-1} = \xi_{n-1}, & \xi_n \circ \psi_r(z) = \lambda_r(z); \\ Y_t^n \mid P_{n-1} = Y_t^{n-1}, & Y_t^n \circ \psi_r(z) = Z_t^r(z); \end{array} \quad \text{for } z \in I^{n+1}.$$

It is easy to see that the map ξ_n and the homotopy Y_t^n satisfy the above hypotheses of the induction. Therefore, starting with $\xi_{-1} = \xi'$ and $Y_t^{-1} = Y_t'$, we can construct ξ_n and Y_t^n of above sorts for every $n \geqslant 0$. Since $K \times I = \bigcup_n P_n$ and $K \times I$ has the weak topology, a map $\xi : K \times I \to E$ and a homotopy $Y_t : K \times I \to B$ $(0 \leqslant t \leqslant 1)$ are defined by $\xi \mid P_n = \xi_n$ and $Y_t \mid P_n = Y_t^n$. Clearly ξ and Y_t satisfy the conclusions of the condition (A_1) and Lemma 2 is proved.

As a consequence of these two lemmas, we have the equivalences of the conditions (A_i) , i = 1, 2, 3.

- 3. The weak homotopy equivalence and the conditions (A_i) . We shall prove the following two lemmas.
- Lemma 4. If $p:(E, F) \to (B, C)$ is a weak homotopy equivalence, then it satisfies the codition (A_3) .
- **Proof.** Let $\xi': (I^n \times 0) \cup (\dot{I}^n \times I) (= J^n) \to E$ and $\eta: I^n \times I (= I^{n+1}) \to B$ be the given maps such that $p \circ \xi' = \eta \mid J^n$. We consider two cases separately by the situation of the subcomplex M, which satisfies $\eta(M) \subset C$, of the product complex $I^n \times I$.
- (a) The case either $M \cap ((I^n \dot{I}^n) \times 1) = \emptyset$ or $M = I^{n+1}$. Let $\theta: I^{n+1} \to J^n$ be a strong deformation retraction, i. e. $\theta \mid J^n = t$ he identity map and $\theta \sim t$ he identity map: $I^{n+1} \to I^{n+1}$, relative J^n . We consider the map $\xi: I^{n+1} \to E$, defined by $\xi = \xi' \circ \theta$. ξ , thus defined, is clearly an extension of ξ' . In the first case, $M \subset J^n$ and so $\xi(M) \subset F$, and also $p \circ \xi = p \circ \xi' \circ \theta = \gamma \circ \theta \sim \gamma$, relative J^n . In the second case, $\xi(I^{n+1}) \subset F$ and the conclusions of (A_n) are satisfied evidently.
- (b) The case $I'' \times 1 \subset M \subset I''^{+1}$. Let $y = \xi'(*)$, b = p(y), $(* = (0, \dots, 0, 1) \in J'')$, and let $\alpha \in \pi_n(E, F, y)$ and $\beta \in \pi_n(B, C, b)$ be the elements determined by the maps

$$\xi': (J^n, \dot{J}^n, *) \to (E, F, y) \text{ and } \eta \mid J^n: (J^n, \dot{J}^n, *) \to (B, C, b),$$

respectively, $(\dot{J}^n = \dot{I}^n \times 1)$. Since η is defined on I^{n+1} and $\eta(I^n \times 1) \subset \eta(M) \subset C$, the map $\eta \mid J^n$ is homotopic, relative \dot{J}^n , to the map whose image is contained in C, and hence $\beta = 0$. Since $p \circ \xi' = \eta \mid J^n$, $p_*(\alpha) = \beta$ and so $p_*(\alpha) = 0$, and we have $\alpha = 0$ because $p_* : \pi_n(E, F, y) \to \pi_n(B, C, b)$ is an isomorphism by the weak homotopy equivalence of p.

Therefore there exists a map $\xi_1:(J^n\times I,\ J^n\times I,\ *\times I)\to (E,\ F,\ y)$ such that $\xi_1(z,\ 0)=\xi'(z)\ (z\in J^n)$ and $\xi_1(J^n\times 1)=y$. Since $p\circ \xi_1(z,\ 0)=p\circ \xi'(z)=\eta(z)$ for $z\in J^n,\ p\circ \xi_1:(J^n\times I,\ J^n\times I,\ *\times I)\to (B,\ C,\ b)$ is a homotopy of $\eta\mid J^n$. Since $p\circ \xi_1((J^n\cap (I^n\times 1))\times I)=p\circ \xi_1(J^n\times I)\subset C,$ we can apply Lemma 1 of §2 to η and $p\circ \xi_1$ by taking $M_1=I^n\times 1$ and $T_1=C$, and hence we have a map $\eta_1:I^{n+1}\times I\to B$ such that

$$\eta_1(z, 0) = \eta(z) \text{ for } z \in I^{n+1}; \ \eta_1((I^n \times 1) \times I) \subset C;$$

$$\eta_1(z, t) = p \circ \xi_1(z, t) \text{ for } z \in I^n \text{ and } t \in I.$$

Since $\gamma_1(J^n \times 1) = p \circ \xi_1(J^n \times 1) = b$ and $\gamma_1((J^n \times 1) \times 1) \subset C$, the map

 $\eta_1 \mid I^{n+1} \times 1: (I^{n+1} \times 1, \dot{I}^{n+1} \times 1, J^n \times 1) \to (B, C, b)$ determines an element of $\pi_{n+1}(B, C, b)$. Therefore there is a map $\xi_1': (I^{n+1} \times 1, \dot{I}^{n+1} \times 1, J^n \times 1) \to (E, F, y)$ such that

$$p \circ \xi_1' \sim \gamma_1 \mid I^{n+1} \times 1 : (I^{n+1} \times 1, \dot{I}^{n+1} \times 1, J^n \times 1) \rightarrow (B, C, b),$$

because the induced homomorphism $p_*: \pi_{n+1}(E, F, y) \to \pi_{n+1}(B, C, b)$ is onto by the weak homotopy equivalence of p. We denote this homotopy by $\zeta_t: (I^{n+1}, \dot{I}^{n+1}, J^n) \to (B, C, b), \ 0 \leqslant t \leqslant 1$, with $\zeta_0 = p \circ \xi_1'$ and $\zeta_1 = \eta_1 \mid I^{n+1} \times 1$.

The map $\xi_1: J^n \times I \to E$, defined previously, gives clearly an homotopy of $\xi_1' \mid J^n \times 1 =$ the constant map. If we apply Lemma 1 to ξ_1' , ξ_1 and $M_1 = I^n \times 1$ and $T_1 = F$, we have a map $\xi_1: I^{n+1} \times I \to E$ such that

$$\xi_1 \mid I^{n+1} \times 1 = \xi_1', \quad \xi_1 \mid J^n \times 0 = \xi', \quad \xi_1((I^n \times 1) \times I) \subset F.$$

We now show that the map $\xi: I^{n+1} \to E$, defined by $\xi(z) = \xi_1(z, 0)$ for $z \in I^{n+1}$, satisfies the conclusions of (A_3) . It is an extension of ξ' , and $\xi(M) \subset \xi(M \cap J^n) \cup \xi(I^n \times 1) \subset F$, since $I^n \times 1 \subset M \subset \dot{I}^{n+1} = (I^n \times 1) \cup J^n$. We define a map $\overline{Y}: I^{n+1} \times I \to B$ and a homotopy $\overline{Y}_s: J^n \times I \to B$, $0 \le s \le 1$, as follows:

$$\overline{Y}(z, t) = p \circ \xi_1(z, 4t),$$
 for $0 < t < 1/4$,
 $= \xi_{(4t-1)/2}(z),$ for $1/4 < t < 3/4$,
 $= \gamma_1(z, 4(1-t)),$ for $3/4 < t < 1$,

where $z \in I^{n+1}$; and

where $z \in J^n$. The map \overline{Y} is well defined and it gives a homotopy of $p \circ \xi$ and η . The homotopy \overline{Y}_s is well defined, since $p \circ \xi_1 \mid J^n \times I = \eta_1 \mid J^n \times I$ and $\xi_t(J^n) = b$. Also $\overline{Y}_0 = \overline{Y} \mid J^n \times I$, $\overline{Y}((I^n \times 1) \times I) \subset C$, $\overline{Y}_s(J^n \times I) \subset C$, and $\overline{Y}_s \mid J^n \times I$ is stationary. Therefore, by applying Lemma 1 to \overline{Y} , \overline{Y}_s and $N = I^{n+1} \times I$, $M_1 = (I^n \times 1) \times I$, and $T_1 = C$, we have a map $Y \colon I^{n+1} \times I \to B$ being homotopic to \overline{Y} ; and hence a homotopy $Y_t \colon I^{n+1} \to B$, $0 \le t \le 1$, defined by $Y_t(z) = \overline{Y}(z, t)$ for $z \in I^{n+1}$. The homotopy Y_t , thus defined, has the following properties: for $z \in I^{n+1}$,

$$Y_0(z) = \overline{Y}(z, 0) = p \circ \xi(z), \ Y_1(z) = \overline{Y}(z, 1) = \eta(z);$$

and, for $z \in J^n$ and $0 \le t \le 1$, $Y_t(z) = \overline{Y}_1(z, t) = p \circ \xi(z) = p \circ \xi'(z)$. Also $Y_t(I^n \times 1) \subset C$, and hence we have $Y_t(M) \subset C$, since $M \subset \mathring{I}^{n+1} = J^n \cup (I^n \times 1)$.

Therefore we have the map ξ and the homotopy Y_t satisfying the conclusions of (A_3) , and Lemma 4 is proved completely.

Lemma 5. If $p:(E, F) \to (B, C)$ satisfies the condition (A_1) , then it is a weak homotopy equivalence between two pairs (E, F) and (B, C). Proof. Let y be any point of F, b = p(y), and n be any positive integer.

(a) We show first that the induced homomorphism $p_*:\pi_n(E,F,y)\to \pi_n(B,C,b)$ is onto. Let α be any element of $\pi_n(B,C,b)$ and $\eta:(I^n,\dot{I}^n,\dot{I}^n,J^{n-1})\to (B,C,b)$ be a map which determines α . Further, let $\xi':J^{n-1}\to E$ be the constant map, defined by $\xi'(z)=y$ for $z\in J^{n-1}$. Then the maps ξ' and η satisfy the assumptions of (A_1) by taking $K=I^{n-1}$, $L=\dot{I}^{n-1}$, and $M=\dot{I}^n$, and $Y_t'=p\circ\xi'=b$. Hence it follows from (A_1) that there exists an extension $\xi:I^n\to E$ of ξ' such that

$$\xi(\vec{J}^{n-1}) = y$$
, $\xi(\vec{I}^n) \subset F$, and $p \circ \xi \sim \eta : (\vec{I}^n, \vec{I}^n, \vec{J}^{n-1}) \to (B, C, b)$.

Therefore the element β of $\pi_n(E, F, y)$ determined by the map $\xi: (I^n, I^n, J^{n-1}) \to (E, F, y)$ is mapped to α by p_* , and the onto-ness is proved.

(b) Let β be a element $\pi_n(E, F, y)$, and $\xi_0: (I^n, I^n, J^{n-1}) \to (E, F, y)$ be a map of the homotopy class β . We assume that $p_*(\beta) = 0$, i. e. the map $p \circ \xi_0: (I^n, \dot{I}^n, J^{n-1}) \to (B, C, b)$ is homotopic, relative J^{n-1} , to the constant map, remaining the image of \dot{I}^n in C. We denote this homotopy by $\eta: (I^n \times I, \dot{I}^n \times I, J^{n-1} \times I) \to (B, C, b)$ with $\eta(z, 0) = p \circ \xi_0(z)$ for $z \in I^n$ and $\eta(I^n \times 1) = b$. Let $\xi': (I^n \times 0) \cup (J^{n-1} \times I) \to E$ be the map defined by $\xi'(z, 0) = \xi_0(z)$ for $z \in I^n$ and $\xi'(J^{n-1} \times I) = y$. Then the maps ξ' and η satisfy the assumptions of (A_1) by taking $K = I^n$, $L = J^{n-1}$, $M = (\dot{I}^n \times I) \cup (I^n \times 1)$ and the homotopy $Y_{\iota'} = p \circ \xi'$.

Therefore, it follows from (A_1) that there is a map $\xi: I^* \times I \to E$ such that $\xi(z,0) = \xi'(z,0) = \xi_0(z)$ for $z \in I^*$, $\xi(J^{n-1} \times I) = y$, and $\xi((\dot{I}^n \times I) \cup (I^n \times 1)) \subset F$. Let $\xi_1: I^n \to E$ be the map defined by $\xi_1(z) = \xi(z,1)$ for $z \in I^n$. Then, ξ gives a homotopy $\xi_0 \sim \xi_1: (I^n, \dot{I}^n, J^{n-1}) \to (E, F, y)$, and so ξ_0 and ξ_1 determine the same element β of $\pi_n(E, F, y)$. Also, by the property of ξ , we have $\xi_1(I^n) \subset F$, and this shows that $\beta = 0$. These complete the proofs of the fact that p_* is isomorphic and hence that p is a weak homotopy equivalence of the pairs (E, F) and (B, C). Thus we have Lemma 5.

By the above four lemmas, we have

Theorem 3. A map $p:(E, F) \to (B, C)$ between two pairs of spaces $E \supset F$ and $B \supset C$ is a weak homotopy equivalence, i.e. the induced homomorphism $p_*: \pi_n(E, F) \to \pi_n(B, C)$ is an isomorphism onto for any positive integer n, if and only if the map p satisfies the condition (A_i) (i = 1, 2, 3).

Remark. For the case that $p: E \to B$ is a fibre map (in the sense of Serre) and $F = p^{-1}(b)$ the fibre over a point $b \in B$, the map $p: (E, F) \to (B, b)$ has the ordinary lifting homotopy property; and, for the case of a quasi-fibre space (introduced by A. Told and R. Thom), the projection p has the homotopically lifting homotopy property which is stronger than (A_i) , (cf. [7], §1). Therefore it may be considered as a generalization of the notion of the (quasi)-fibre space that a map $p: (E, F) \to (B, b)$ is a weak homotopy equivalence of pairs.

4. Some properties of H-spaces.

We say that a space F is an H-space (has an H-structure), if there is a multiplication μ in F, i. e. a map $\mu: F \times F \to F$, such that $\mu(\varepsilon, x) = \mu(x, \varepsilon) = x$ for some point ε (called an unit) of F and every $x \in F^{1}$. (We often write xy or $x \cdot y$ instead of $\mu(x, y)$.)

We consider the following condition (B) for an H-space F.

(B) Both of the two maps l_1 and l_2 of $F \times F$ into itself, defined by

$$l_1(x, y) = (x \cdot y, x), \quad l_2(x, y) = (x \cdot y, y),$$

for $x, y \in F$, are homotopy equivalences of $(F \times F, (\varepsilon, \varepsilon))$ into itself.

If (B) is satisfied, we denote a homotopy inverse of l_i by m_i , and a homotopy of $m_i \circ l_i$ and the identity map by $L_t^i : (F \times F, (\varepsilon, \varepsilon)) \to (F \times F, (\varepsilon, \varepsilon))$ (0 $\leq t \leq 1$) and that of $l_i \circ m_i$ and the identity map by $M_t^i : (F \times F, (\varepsilon, \varepsilon)) \to (F \times F, (\varepsilon, \varepsilon))$ (0 $\leq t \leq 1$), respectively, for i = 1, 2.

Remark. It is easy to see that a homotopy-associative H-space having an inversion satisfies the above condition (B); and (B) implies

¹⁾ More generally, H-spaces are defined by the weaker condition that there is a homotopy-unit \mathcal{E} , i.e. two maps $x \to \mathcal{E} \cdot \dot{x}$ and $x \to x \cdot \mathcal{E}$ of F into itself are both homotopic, relative \mathcal{E} , to the identity map $x \to x$. But, when F is a CW-complex such that the weak topology of the product complex $F \times F$ is the ordinary product topology, the conditions of the above definition are satisfied by H-spaces of generally defined, cf. Lemma (6.4) of [2].

the existence of right and left inversions, (more precisely, $q_2 \circ m_1(\varepsilon, x)$ and $q_1 \circ m_2(\varepsilon, x)$ are right and left inversions respectively, where q_i is the natural projections from $F \times F$ onto F of the i-th factor for i = 1, 2.

We now notice the following property.

Lemma 6. Suppose that F is a CW-complex and the weak topology of the product complex $F \times F$ is the ordinary product topology. Then, if F has an H-structure, it satisfies the property (B).

Proof. The map l_1 of $F \times F$ into $F \times F$ induces the homomorphisms l_{1*} of the homotopy groups:

$$l_{1*}:\pi_n(F\times F)\to\pi_n(F\times F)$$
,

for all positive integers n. We shall prove that l_{1*} are isomorphisms of $\pi_n(F \times F)$ onto itself.

Let q_i be the natural projections as in the above remark, and r_1 and r_2 be the natural imbedding homeomorphisms of F onto the subsets $F \times \varepsilon$ and $\varepsilon \times F$ of $F \times F$ respectively. Then we have the following two isomorphisms between $\pi_n(F \times F)$ and $\pi_n(F) + \pi_n(F)$ (the direct sum of two groups):

$$(q_{1*}, q_{2*}) : \pi_n(F \times F) \approx \pi_n(F) + \pi_n(F),$$

 $r_{1*} + r_{2*} : \pi_n(F) + \pi_n(F) \approx \pi_n(F \times F).$

From the definition of $l_1: F \times F \to F \times F$, it follows immediately

$$(q_{1*}, q_{2*}) \circ l_{1*} \circ r_{1*}(\alpha) = (\alpha, \alpha),$$

 $(q_{1*}, q_{2*}) \circ l_{1*} \circ r_{2*}(\beta) = (\beta, 0),$ for $\alpha, \beta \in \pi_n(F).$

Hence, $(q_{1*}, q_{2*}) \circ l_{1*} \circ (r_{1*} + r_{2*})$ $(\beta, \alpha - \beta) = (\alpha, \beta)$; and, if $(q_{1*}, q_{2*}) \circ l_{1*} \circ (r_{1*} + r_{2*})$ $(\alpha, \beta) = (\alpha + \beta, \alpha) = (0, 0) =$ the zero element of $\pi_n(F) + \pi_n(F)$, then $\alpha = 0$ and $\beta = 0$. Therefore l_{1*} is an isomorphism of $\pi_n(F \times F)$ onto itself, and it follows from Theorem of J. H. C. Whitehead that l_1 is an homotopy equivalence since $F \times F$ is a CW-complex by assumptions. Moreover, since $l_1(\varepsilon, \varepsilon) = (\varepsilon, \varepsilon)$, l_1 is also an homotopy equivalence of the pair $(F \times F, (\varepsilon, \varepsilon))$ to itself²⁾.

¹⁾ If two maps $(x, y, z) \to (xy)z$ and $(x, y, z) \to x(yz)$ of $F \times F \times F$ into F are homotopic each other, rel. $(\varepsilon, \varepsilon, \varepsilon)$, we say that F is homotopy-associative. F has an inversion, if there exists a map $\sigma: F \to F$ such that the two maps $x \to \sigma(x) \cdot x$ and $x \to x \cdot \sigma(x)$ of F into F are both homotopic, rel. ε , to the constant map $x \to \varepsilon$. If only one of these two maps has this property, we say σ is an one-sided (left or right) inversion.

²⁾ This is an immediate consequence of Theorem (3.1) of [1].

By the same way, Lemma 6 is proved for the map l_z .

5. Constructions and some properties of the map $p: F \circ F \rightarrow \hat{F}$.

In this section, let F be an H-space. The constructions of the map $p: F \circ F \to \hat{F}$ are the analogy of the constructions of n-universal bundle having a topological group as its structure group [3], and also generalizations of the Hopf fibering $S^{2k+1} \to S^{k+1}$ for k=1, 3, 7.

Let $F \circ F$ be the join of two copies of F, i. e. the identification space obtained from $F \times F \times I$ by identifying each set of the form $x \times F \times 0$ with $(x, 0) \in F \times 0$ and each set of the form $F \times x \times 1$ with $(x, 1) \in F \times 1$. The point of $F \circ F$, being the image of $(x_1, x_2, t_2) \in F \times F \times I$, will be denoted by the symbol $t_1x_1 \oplus t_2x_2$ where $t_1 + t_2 = 1$ and the element x_i may be chosen arbitrary or omitted whenever $t_i = 0$.

Let \hat{F} be the suspension of F, i.e., the identification space obtained from $F \times I$ by shrinking each of the subspaces $F \times 0$ and $F \times 1$ to different points respectively. A point of \hat{F} will be denoted by the symbol (x, t) $(x \in F, t \in I)$, where the element x may be chosen arbitrary or omitted whenever t = 0 or 1.

We also define notations as follows:

$$F \circ F \supset F_i = \{t_1 x_1 \bigoplus t_2 x_2 \mid t_i = 1\},$$

$$F \circ F \supset U_i = \{t_1 x_1 \bigoplus t_2 x_2 \mid t_i > 0\} \supset F_i, \ U_3 = U_1 \cap U_2,$$

$$F_i \ni \varepsilon_i = (t_1 x_1 \bigoplus t_2 x_2 \mid t_i = 1 \text{ and } x_i = \varepsilon), \quad \text{for } i = 1, 2;$$

$$\hat{F} \supset V_1 = \{(x, t) \mid t > 0\}, \quad V_2 = \{(x, t) \mid t < 1\}, \quad V_3 = V_1 \cap V_2,$$

$$V_1 \ni \overline{\varepsilon}_1 = (x, 1), \quad V_2 \ni \overline{\varepsilon}_2 = (x, 0).$$

Then U_i and V_i are open sets of $F \circ F$ and \hat{F} respectively for i = 1, 2, 3, and F_i is the homeomorphic image of F under the natural map $x \to 1x \oplus 0$ or $x \to 0 \oplus 1x$. We shall identify F_i with F by this natural homeomorphism.

Let p be the (continuous) map of $F \circ F$ into \hat{F} , defined by

$$p(t_1x_1 \oplus t_2x_2) = (x_1x_2, t_1), \qquad \text{for } t_1, t_2 \neq 1,$$

$$= \overline{\varepsilon}_i, \qquad \text{for } t_i, t_i = 1, i = 1, 2.$$

This map p is clearly continuous by the fact that the map $t_1x_1 \oplus t_2x_2 \to x_i$ of $F \circ F$ onto F is continuous whenever $t_i \neq 0$. Also $p^{-1}(V_i) = U_i$ and $p^{-1}(\overline{\epsilon}_i) = F_i$.

About these spaces and maps, we have

Theorem 4. If the H-space F satisfies the condition (B) of §4,

the map $p:(F\circ F,F)\to (\widehat F,\overline \varepsilon_1)$, defined above, is a weak homotopy equivalence between two pairs, i.e. p induces isomorphisms $p_*:\pi_n(F\circ F,F)\to \pi_n(\widehat F,\overline \varepsilon_1)$ for all positive integers n.

Before proving this theorem, we consider some properties of $p: F \circ F \to \hat{F}$, where F is an H-space satisfying (B).

Define the maps $p_i:U_i\to F$ and $\phi_i:V_i\times F\to U_i$, for i=1,2, as follows:

$$p_{i}(t_{1}x_{1} \oplus t_{2}x_{2}) = x_{i}, \qquad \text{for } t_{1}x_{1} \oplus t_{2}x_{2} \in U_{i};$$

$$\phi_{i}((x, t), y) = tx_{1} \oplus (1 - t)x_{2}, \text{ with}$$

$$x_{i} = y, x_{j} = q_{j} \circ m_{i}(x, y), \{i, j\} = \{1, 2\},$$

$$\text{for } (x, t) \in V_{i}, y \in F,$$

where m_i is a homotopy inverse of l_i of (B). These maps p_i and ϕ_i are well defined and continuous, and have the following properties: $p_i \mid F_i$ is the natural homeomorphism; $\phi_i(V_3 \times F) \subset U_3$, and $\phi_i \mid \overline{\epsilon}_i \times F$ is a homeomorphism onto F_i . Also, it holds the following lemma among these maps:

Lemma 7. For i=1, 2, the two maps $(p, p_i): (U_i, U_3) \rightarrow (V_i \times F, V_3 \times F)^{1)}$ and $\phi_i: (V_i \times F, V_3 \times F) \rightarrow (U_i, U_3)$ are homotopy equivalences of pairs and they are homotopy inverses of the other, relative F_i and $\overline{\varepsilon}_i \times F$ respectively. More precisely speaking, there are homotopies $\varphi_i^i: (U_i, U_3) \rightarrow (U_i, U_3)$ and $\Psi_i^i: (V_i \times F, V_3 \times F) \rightarrow (V_i \times F, V_3 \times F), 0 \leqslant t \leqslant 1$, such that

$$\begin{aligned} & \varPhi_0^i = \phi_i \circ (p, p_i), \ \ F_0^i = (p, p_i) \circ \phi_i, \\ & \varPhi_1^i, \ \ \varPhi_t^i \mid F_i, \ \ F_1^i, \ \ F_t^i \mid \overline{\varepsilon}_i \times F \ \ are \ the \ identity \ maps \ of \\ & U_i, \ F_i, \ \ V_i \times F, \ \overline{\varepsilon}_i \times F \ \ respectively, \ for \ \ 0 \leqslant t \leqslant 1. \end{aligned}$$

Proof. We define a homotopy $\Psi_t^i: U_i \to U_i$, $0 \le t \le 1$, as follows, for i = 1, 2:

for $t_1x_1 \oplus t_2x_2 \in U_i$, where L_t^i is a homotopy between $m_t \circ l_t$ and the identity map mentioned in §4. This homotopy is well defined and continuous; and, for the special case $t_i = 1$, these definitions are read as follows: $\mathscr{O}_t^1(1x \oplus 0) = 1x \oplus 0$, $\mathscr{O}_t^2(0 \oplus 1x) = 0 \oplus 1x$. $\mathscr{O}_t^i(U_3) \subset U_3$ is evident.

By definitions, for $t_1x_1 \oplus t_2x_2 \in U_i$, i = 1, 2,

¹⁾ It is defined by $(p, p_i)(u) = (p(u), p_i(u)) \in V_i \times F$ for $u \in U_i$.

$$\phi_i \circ (p, p_i) \ (t_1 x_1 \bigoplus t_2 x_2) = \phi_i((x_1 x_2, t_1), x_i) = t_1 y_1 \bigoplus t_2 y_2,$$

with

$$y_{i} = x_{i} = {}^{i} \psi_{i}^{i}(x_{1}, x_{2}),$$

$$y_{j} = q_{j} \circ m_{i}(x_{1}x_{2}, x_{i}) = q_{j} \circ m_{i} \circ l_{i}(x_{1}, x_{2})$$

$$= q_{j} \circ L_{0}^{i}(x_{1}, x_{2}) = {}^{j} \psi_{0}^{i}(x_{1}, x_{2}),$$

where $\{i, j\} = \{1, 2\}$. Also ${}^{j} \psi_{1}^{i}(x_{1}, x_{2}) = q_{j} \circ L_{1}^{i}(x_{1}, x_{2}) = q_{j}(x_{1}, x_{2}) = x_{j}$. From these equations, it follows immediately that ψ_{t}^{i} satisfies the properties of Lemma 7.

We also define a homotopy $V_i^t: V_i \times F \to V_i \times F$, $0 \le t \le 1$, as follows, for i = 1, 2:

$$\begin{split} & \varPsi_1^t((x,t), y) = ((\overline{\varPsi}_t^t(x,y), t), y), \text{ with} \\ & \overline{\varPsi}_t^t(x,y) = (q_2 \circ M_{1-2t}^t(x,y)) \cdot (q_2 \circ m_1(x,y)), \text{ for } i = 1, \ 0 < t < 1/2, \\ & = (q_1 \circ m_2(x,y)) \cdot (q_1 \circ M_{1-2t}^2(x,y)), \text{ for } i = 2, \ 0 < t < 1/2, \\ & = q_1 \circ M_{2t-1}^t(x,y), \end{split}$$

for $(x,t) \in V_i$, $y \in F$, where M_t^i is a homotopy between $l_i \circ m_i$ and the identity map mentioned in §4. This homotopy is well defined and continuous; and, for the special case $(x,t) = \overline{\epsilon}_i$, these definitions are read as follows: $\Psi_t^i(\overline{\epsilon}_i, y) = (\overline{\epsilon}_i, y)$ for i = 1, 2. $\Psi_t^i(V_3 \times F) \subset V_3 \times F$ is evident. By definitions, for $(x, t) \in V_1$, $y \in F$,

$$(p, p_1) \circ \phi_1((x, t), y) = (p, p_1) (ty \bigoplus (1-t)q_2 \circ m_1(x, y))$$

$$= ((y \cdot (q_2 \circ m_1(x, y)), t), y)$$

$$= ((\overline{F_0}(x, y), t), y) = F_0((x, t), y),$$

since $q_2 \circ M_1^1(x, y) = y$. Similarly, we have $(p, p_2) \circ \phi_2 = \Psi_0^2$. Also, $\Psi_1^4((x, t), y) = ((q_1 \circ M_1^4(x, y), t), y) = ((x, t), y)$. These show that Ψ_1^4 satisfy the properties of Lemma 7, and proofs are completed.

6. Proof of Theorem 4 of § 5.

We shall prove that the map $p:(F\circ F,F)\to (\hat F,\overline{\varepsilon}_1)$ satisfies the condition (A_3) .

Let $\xi': (I''\times 0) \cup (\dot{I}''\times I) \ (=J^n) \to F \circ F$ and $\eta: I^n\times I \to \hat{F}$ be given maps such that $p\circ \xi' = \eta \mid J''$ and $\xi'(J''\cap M) \subset F$, $\eta(M) = \bar{\epsilon}_1$ for a given subcomplex M of the product complex $I''\times I$. Assume that I'' has been so finely subdivided, by (n-1)-planes perpendicular to the axes, into finite numbers of n-cubes $\{I_r^n\}$, $r=1,2,\ldots,N_1$, and also the unit interval I has been so finely divided at $0=t_1,\ t_2,\ldots,t_{N_2+1}=1$, in such a

way that $\gamma(I_r^n \times [t_s, t_{s+1}])$ is contained in either the open set V_1 or V_2 , for each $r=1,\ldots,N_1$ and $s=1,\ldots,N_2$.

Thus we have a sequence of finite numbers of (n+1)-cubes $\{I_k \mid k = 1, 2, \ldots, N_1 N_2\}$ such that $\bigcup_k I_k = I^{n+1} (= I^n \times I)$ and $\chi(I_k)$ is contained in either V_1 or V_2 for each $1 \le k \le N_1 N_2$, by setting $I_k = I_r^n \times [t_s, t_{s+1}], k = (r-1) N_2 + s$, $1 \le r \le N_1$, $1 \le s \le N_2$.

 I_k has 2(n+1) n-cubes on its boundary I_k for each k, and the total of these n-cubes will be denoted by $\{I_v^n\}$. For each i=1,2,3, we denote by W_i the point-set union of I_v^n such that $I_v(I_v^n) \subset V_i$. Then, we have immediately the following relations:

$$\chi(W_i) \subset V_i$$
, for $i=1, 2, 3$; $W_1 \cap W_2 \supset W_3$, $M \cap W_3$ is empty.

Let $Q_k = J^n \cup (\bigvee_{k'=1}^k I_{k'})$ and $Q_0 = J^n$. Let k be $1 \le k \le N_1 N_2$, and we assume that ξ' is extended to a map $\xi_{k-1} \colon Q_{k-1} \to F \circ F$ and also there is a homotopy $Y_{t-1}^{k-1} \colon Q_{k-1} \to \hat{F}$, $0 \le t \le 1$, with the following properties:

$$(1_{k-1}) \xi_{k-1}(Q_{k-1} \cap M) \subset F$$
, $\xi_{k-1}(Q_{k-1} \cap W_i) \subset U_i$, $(i=1, 2, 3)$,

$$(2_{k-1}) Y_0^{k-1} = p \circ \xi_{k-1}, \qquad Y_1^{k-1} = \gamma \mid Q_{k-1}, \qquad Y_t^{k-1} \mid J'' = p \circ \xi',$$

$$(3_{k-1}) Y_t^{k-1}(Q_{k-1} \cap M) = \overline{\varepsilon}_1, Y_t^{k-1}(Q_{k-1} \cap W_t) \subset V_t, (i=1, 2, 3).$$

Then we have the following

Lemma 8. From these hypotheses, it follows that ξ_{k-1} and Y_t^{k-1} have extensions $\xi_k: Q_k \to E$ and $Y_t^k: Q_k \to B$ $(0 \le t \le 1)$ satisfying (1_k) , (2_k) and (3_k) .

It follows from this lemma and the induction on k, starting with $\xi_0 = \xi'$ and $Y_t^0 = p \circ \xi'$, that there is a map $\xi : I^{n+1} \to E$ and a homotopy $Y_t : I^{n+1} \to B$ ($0 \le t \le 1$) satisfying the conclusions of the condition (A₃), since $Q_{N_1N_2} = I^{n+1}$. Therefore, to prove Theorem 4 of §5, it is sufficient to prove the above lemma, by Theorem 3 of §3.

Proof of Lemma 8. By the definition of $\{I^k\}$, $\eta(I_k)$ is contained in either V_1 or V_2 . Let $i_k=1$ or 2 be such that $\eta(I_k) \subset V_{i_k}$.

We set $J_k = I_k \cap Q_{k-1}$. Then J_k is a union of *n*-cubes of $\{I_{\nu}^n\}$ and is a strong deformation retract of I_k , as be easily seen. This retraction will be denoted by $\theta_k: I_k \rightarrow J_k$. Also, $\xi_{k-1}(J_k) \subset U_{i_k}$ and $Y_i^{k-1}(J_k) \subset V_{i_k}$, from $J_k \subset W_{i_k}$ and $(1_{k-1}), (3_{k-1})$.

We now define a map $\zeta': I_k \to U_{i_k} \subset F \circ F$ and a homotopy $X_l': J_k \to U_{i_k} \subset F \circ F$, $0 \le t \le 1$, as follows:

$$\begin{split} & \zeta'(z) = \phi_{i_k}(\gamma(z), \ \ p_{i_k} \circ \xi_{k-1} \circ \theta_k(z)), & \text{for } z \in I_k; \\ & X'_t(z) = \phi_{i_k}(Y_{1-2t}^{k-1}(z), \ \ p_{i_k} \circ \xi_{k-1}(z)), & \text{for } 0 \leqslant t \leqslant 1/2, \ z \in J_k; \\ & = \theta_{z,-1}^{i_k} \circ \xi_{k-1}(z), & \text{for } 1/2 \leqslant t \leqslant 1, \ z \in J_k; \end{split}$$

where p_i , ϕ_i and θ_t^i are maps and homotopies, mentioned in Lemma 7. X_t^i is well defined, since, for $z \in J_k$,

$$\phi_{i_k}(Y_0^{k-1}(z), \ p_{i_k} \circ \xi_{k-1}(z)) = \bigcap_{i_k} \circ (p, \ p_{i_k}) \circ \xi_{k-1}(z) = \emptyset_0^{i_k} \circ \xi_{k-1}(z).$$

Also, for $z \in J_k$, $\zeta'(z) = \phi_{i_k}(\gamma(z), p_{i_k} \circ \xi_{k-1}(z)) = X_0'(z)$; and hence X_t' is a homotopy of $\zeta' \mid J_k$. Further ζ' and X_t' have properties:

 $\zeta'(I_k \cap M) \subset F$, $\zeta'(I_k \cap W_3) \subset U_3$; $X'_t(J_k \cap M) \subset F$, $X'_t(J_k \cap W_3) \subset U_3$; which are shown immediately from Lemma 7 and (1_{k-1}) , (3_{k-1}) of above. Hence, by applying Lemma 1 of § 2 to ζ' and X'_t , and $M_1 = I_k \cap M$, $T_1 = F$, $M_2 = I_k \cap W_3$, and $T_2 = U_3$, we have a homotopy $X_t : I_k \to U_{i_k} \subset F \circ F$ such that

$$X_0 = \xi'$$
, $X_t \mid J_k = X'_t$, $X_t(I_k \cap M) \subset F$, $X_t(I_k \cap W_3) \subset U_3$, for $0 < t < 1$. The second equation shows $X_1 \mid J_k = X'_1 = \xi_{k-1} \mid J_k$. From the last property, we can define a map $\xi_k : Q_k \to F \circ F$ by

$$\xi_k \mid Q_{k-1} = \xi_{k-1}, \quad \xi_k \mid I_k = X_1.$$

This map ξ_k has the property (1_k) , as be easily seen from the above constructions and (1_{k-1}) .

We now consider the map $p \circ \xi_k$. We denote by $q: V_i \times F \to V_i$ the natural projection. Let $Z: I_k \times I \to V_{i_k} \subset \hat{F}$ be a map defined by, for $z \in I_k$,

$$\begin{split} Z(z,t) &= p \circ X_{(z-t)/2}(z), & \text{for } 0 \leqslant t \leqslant 2/3, \\ &= q \circ \mathscr{V}_{3t-2}^{t_k}(\gamma(z), \ p_{t_k} \circ \xi_k \circ \theta_k(z)), & \text{for } 2/3 \leqslant t \leqslant 1, \end{split}$$

where \mathcal{F}_t^i is a homotopy of $(p, p_i) \circ \phi_i$ and the identity map, mentioned in Lemma 7. Z is well defined, since $X_0 = \zeta' = \phi_{i_k} \circ (\gamma, p_{i_k} \circ \xi_k \circ \theta_k)$ and $q \circ \mathcal{F}_0^i = p \circ \phi_i$. Also,

$$Z(z, 0) = p \circ X_1(z) = p \circ \xi_k(z), \quad Z(z, 1) = \gamma(z), \text{ for } z \in I_k;$$

and $Z((I_k \cap M) \times I) = \tilde{\epsilon}_1$, $Z((I_k \cap W_3) \times I) \subset V_3$, by making use of Lemma 7. By definitions, the map $Z \mid J_k \times I$ is read as follows, for $z \in J_k$,

$$Z(z, t) = p \circ \emptyset_{1-3t}^{i_k} \circ \xi_k(z), \qquad \text{for } 0 < t < 1/3,$$

$$= p \circ \phi_{i_k}(Y_{3t-1}^{k-1}(z), p_{i_k} \circ \xi_k(z)), \qquad \text{for } 1/3 < t < 2/3,$$

$$= q \circ \Psi_{3t-2}^{i_k}(\zeta, z), p_{i_k} \circ \xi_k(z), \qquad \text{for } 2/3 < t < 1.$$

Let $Z'_s: (J_k \times I) \cup (I_k \times \dot{I}) \rightarrow V_{i_k} \subset \hat{F}, \ 0 \leqslant t \leqslant 1$, be a homotopy defined

by, for $z \in J_k$,

$$\begin{split} Z_s^t(z,t) &= p \circ \mathcal{Q}_{1-3t-3s}^{t_k} \circ \xi_k(z), & \text{for } 0 < t < 1/3, \ 0 < s < (1-3t)/3, \\ &= q \circ \mathcal{W}_{(3t+3s-1)/2}^{t_k} \circ (p,p_{i_k}) \circ \xi_k(z), & \text{for } 0 < t < 1/3, \ (1-3t)/3 < s < 1-t, \\ &= q \circ \mathcal{W}_{3s/2}^{t_k}(Y_{3t-1}^{k-1}(z), \ p_{i_k} \circ \xi_k(z)), & \text{for } 1/3 < t < 2/3, \ 0 < s < 2/3, \\ &= q \circ \mathcal{W}_{(6t+3s-4)/2}^{t_k}(\gamma_s(z), p_{i_k} \circ \xi_k(z)), & \text{for } 2/3 < t < 1, \ 0 < s < 2(1-t), \\ &= \gamma(z), & \text{for } 2/3 < t < 1, \ 2(1-t) < s < t, \\ &= Y_{(t+s-1)/(2s-1)}^{k-1}(z), & \text{for } 2/3 < s < 1, \ 1-s < t < s; \end{split}$$

and, for $z \in I_k$,

$$Z'_{s}(z, 0) = p \circ \mathscr{O}^{i_{k}}_{1-3s} \circ \xi_{k}(z), \qquad \text{for } 0 < s < 1/3,$$

$$= q \circ \mathscr{V}^{i_{k}}_{(3s-1)/2} \circ (p, p_{i_{k}}) \circ \xi_{k}(z), \qquad \text{for } 1/3 < s < 1,$$

$$Z'_{s}(z, 1) = \gamma(z), \qquad \text{for } 0 < s < 1.$$

From the properties concerning \mathcal{Q}_i^t , ψ_t^t and Y_t^{k-1} for t=0, 1, simple calculations show that this homotopy is well defined; and also $Z_0'=Z \mid (J_k \times I)$, $\bigcup (I_k \times I)$ and $Z_1'(z,0) = p \circ \xi_k(z)$, $Z_1'(z,1) = \eta(z)$, for $z \in I_k$; and

$$Z'_{s}(z, t) = \overline{\varepsilon}_{1}$$
 if $z \in M$, $Z'_{s}(z, t) \in V_{3}$ if $z \in W_{3}$.

We extend Z_t' on $I_k \times I$, by applying Lemma 1 of § 2 to Z and Z_t' , and $M_1 = (I_k \cap M) \times I$, $T_1 = \bar{\varepsilon}_1$, $M_2 = (I_k \cap W_3) \times I$, and $T_2 = V_3$. Therefore, we have a map $Z_1: I_k \times I \to V_{i_k} \subset \hat{F}$, being homotopic to Z and having the following properties:

$$Z_{1}(z, 0) = Z'_{1}(z, 0) = p \circ \xi_{k}(z), \quad Z_{1}(z, 1) = Z'_{1}(z, 1) = \gamma_{i}(z), \text{ for } z \in I_{k};$$

$$Z_{1}(z, t) = Z'_{1}(z, t) = Y_{t}^{k-1}(z), \text{ for } z \in J_{k} \text{ and } 0 < t < 1;$$

$$Z_{1}((I_{k} \cap M) \times I) = \overline{\varepsilon}_{1}, \quad Z_{1}((I_{k} \cap W_{3}) \times I) \subset V_{3}.$$

From these properties, we can define a homotopy $Y_t^k: Q_k \rightarrow \hat{F}, \ 0 \le t \le 1$, by

$$Y_t^k \mid Q_{k-1} = Y_t^{k-1}, Y_t^k(z) = Z_1(z, t)$$
 for $z \in I_k$.

It follows immediately, from the above constructions and (2_{k-1}) , (3_{k-1}) , that this homotopy Y_t^k has the desired properties (2_k) and (3_k) .

Therefore we have Lemma 8, and Theorem 4 of §5 is proved completely.

Remark. In the above proofs, we use only Lemma 7. Therefore, if there are open sets $U_i \subset E$, $V_i \subset B$ and maps p_i and q_i , i=1, 2, such that $\{V_i\}$ is a covering of B and they satisfy Lemma 7, then we can prove that $p:(E,F)\to(B,b)$ satisfies the condition (A_i) , and hence, that p is a weak homotopy equivalence.

We also notice that the number of the index set $\{i\}$ of the covering $\{V_i\}$ of B may be infinite, if homotopies \emptyset_t^i and Ψ_t^i of Lemma 7 can be taken as $\emptyset_t^i(U_i \cap U_{i_1} \cap \cdots \cap U_{i_n}) \subset U_i \cap U_{i_1} \cap \cdots \cap U_{i_n}$ and $\Psi_t^i((V_i \cap V_{i_1} \cap \cdots \cap V_{i_n}) \times F) \subset (V_i \cap V_{i_1} \cap \cdots \cap V_{i_n}) \times F$ for $0 \leqslant t \leqslant 1$ and for all n and i_1, \dots, i_n .

7. Proof of Theorem 1 of § 1.

From the fact that $F = F_1$ is contractible to a point ε in $F \circ F$ leaving $\varepsilon \in F$ fixed, and from Lemma 6 and Theorem 4, it follows that $F \circ F$, \vec{F} and $p: (F \circ F, F) \rightarrow (\hat{F}, \bar{\varepsilon}_1)$, constructed in § 5, satisfy (1), (2) of Theorem 1. Therefore the existence of E, B, B and B in Theorem 1 is proved.

To prove the sufficiency of Theorem 1, and also for the later purpose, we prove the follwing lemma.

Lemma 9. Let $E \supset \overline{F} \supset F$ and $B \ni b$ be given spaces such that \overline{F} is a CW-complex, F its subcomplex and also the weak topology of the product complex $\overline{F} \times F$ is the ordinary product topology of $\overline{F} \times F$; and let $p:(E,F) \to (B,b)$ be a weak homotopy equivalence between two pairs. Further, we assume that \overline{F} is contractible to a vertex $\varepsilon \in F$ in E with ε stationary. Then there is a map $\overline{\mu}: \overline{F} \times F \to E$ such that

- (1) $\overline{\mu}(F \times F) \subset F$ and $\overline{\mu}(u, \varepsilon) = u$, $\overline{\mu}(\varepsilon, x) = x$, for $u \in F$, $x \in F$, and
- (2) the map $p \circ \overline{\mu} : \overline{F} \times F \to B$ is homotopic, relative $F \times F$, to the map $\overline{p} : \overline{F} \times F \to B$ defined by $\overline{p}(u, x) = p(u)$ for $u \in \overline{F}$, $x \in F$.

Proof. Since $\overline{F} \times F$ is a CW-complex and $\overline{F} \vee F = (\overline{F} \times \varepsilon) \cup (\varepsilon \times F)$ is its subcomplex by assumptions, we can apply the same processes of the proof of Theorem 2 of [6].

Let $k_t: (\overline{F}, \varepsilon) \to (E, \varepsilon)$ $(0 \le t \le 1)$ be the contraction of \overline{F} into ε , i. e. $k_t(\overline{F}) = \varepsilon$ and k_0 = the identity map of \overline{F} . We define a map $g_0: \overline{F} \times F \to E$ by $g_0(u, x) = x$, and a homotopy $g_t': \overline{F} \vee F \to F$ $(0 \le t \le 1)$ by

$$g'(u, \varepsilon) = k_{1-t}(u), \ g'_t(\varepsilon, x) = x,$$
 for $u \in \overline{F}, x \in F$.

Then g_i^l is a homotopy of $g_0 \mid \overline{F} \vee F$, and hence, by extending this homotopy, we have a homotopy $g_i : \overline{F} \times F \rightarrow E$, $0 \le i \le 1$. The map g_i satisfies

$$g_1(u, \varepsilon) = u$$
, $g_1(\varepsilon, x) = x$, $p \circ g_1(u, x) = p(u)$, for $(u, x) \in \overline{F} \vee F$.

By using this homotopy, we also define a map $h': \overline{F} \times F \times I \rightarrow B$ as follows:

$$h'(u, x, t) = p \circ g_{1-2t}(u, x),$$
 for $0 < t < 1/2,$
= $p \circ k_{2-2t}(u),$ for $1/2 < t < 1$.

Then $h'(u, x, 0) = p \circ g_1(u, x)$, $h'(\varepsilon \times F \times I) = b$ and h'(u, x, 1) = p(u). Also, $h' \mid (\overline{F} \vee F) \times I$ is homotopic, relative $(\overline{F} \times \varepsilon \times \mathring{I}) \cup (\varepsilon \times F \times I)$, to the map $h: (\overline{F} \vee F) \times I \to B$ such that h(u, x, t) = p(u). We can extend this homotopy on $\overline{F} \times F \times I$ so that it is stationary on $\overline{F} \times F \times \mathring{I}$. Therefore, we have a map $h: \overline{F} \times F \times I \to B$, being homotopic to h' and satisfying the following properties:

$$h(u, x, 0) = p \circ g_1(u, x), \qquad \text{for } (u, x) \in \overline{F} \times F,$$

$$h(u, x, t) = p(u), \qquad \text{for } \begin{cases} t = 1, \text{ and } (u, x) \in \overline{F} \times F, \\ 0 \leqslant t \leqslant 1, \text{ and } (u, x) \in \overline{F} \vee F. \end{cases}$$

Let $g': (\overline{F} \times F \times 0) \cup ((\overline{F} \vee F) \times I) \to E$ be the map defined by, for $u \in \overline{F}$, $x \in F$.

$$g'(u, x, 0) = g_1(u, x), g'(u, \varepsilon, t) = u, g'(\varepsilon, x, t) = x.$$

Then, as be easily seen, the maps g' and h satisfy the assumptions of (A_1) by taking $K = \overline{F} \times F$, $L = \overline{F} \vee F$, $M = (F \times F \times 1) \cup ((F \vee F) \times I)$, and Y'_i is stationary. Since $p: (E, F) \to (B, b)$ is a weak homotopy equivalence and hence it satisfies (A_1) , it follows that there is a map $g: \overline{F} \times F \times I \to E$ such that $g \mid (\overline{F} \times F \times 0) \cup ((\overline{F} \vee F) \times I) = g', g(F \times F \times 1) \subset F$, and $p \circ g \sim h: \overline{F} \times F \times I \to B$, relative $(\overline{F} \times F \times 0) \cup ((\overline{F} \vee F) \times I) \cup (F \times F \times I)$. We define $\overline{\mu}: \overline{F} \times F \to E$ by $\overline{\mu}(u, x) = g(u, x, 1)$ for $u \in \overline{F}$, $x \in F$. It follows immediately from the above properties that the map $\overline{\mu}$ satisfies (1), (2) of Lemma 9.

Proof of the sufficiency of Theorem 1. By the conditions (1), (2) of Theorem 1, Lemma 9 is able to be applied by taking $\overline{F} = F$. Therefore the sufficiency is an immediate consequence of Lemma 9.

Remark. The sufficiency is a generalization of Theorem (1.1) of [5] and the above proofs are similar to it.

8. Proof of Theorem 2 of § 1.

By the assumptions of Theorem 2, we can apply Lemma 9 by taking $\overline{F} = E$. Therefore Theorem 2 follows immediately from the following theorem:

Theorem 5. Suppose that $p:(E, F) \rightarrow (B, b)$ is a weak homotopy equivalence and there is a map $\overline{\mu}: E \times F \rightarrow E$ satisfying (1), (2) of Lemma 9 by taking $\overline{F} = E$. Further we assume that E is contractible in itself to $\varepsilon(=unit)$ with ε stationary.

Then there is an H-homomorphism¹⁾ f, which is also a weak homotopy equivalence, of the H-space F, having the multiplication $\mu = \bar{\mu} \mid F \times F$, into the H-space A(B) of loops in B with the base point b, having the natural multiplication (composition of loops).

Further, if F is a locally finite CW-complex, the H-structure $\mu = \bar{\mu} \mid F \times F$ of F is homotopy-associative and also has a (two-sided) inversion.

This is a generalization of Theorem 1 of [4] and Theorem 3 of [6], and is proved by the essentially same manner, and we follow several lemmas.

Lemma 10. Under the assumptions of Theorem 5, the map $f: F \rightarrow A(B)$, defined by

$$f(x)(t) = p \circ k_t(x),$$
 for $x \in F$, $0 < t < 1$,

where $k_t: (E, \varepsilon) \to (E, \varepsilon)$ is a homotopy between k_0 =the identity map and $k_1(E) = \varepsilon$, is a weak homotopy equivalence, i. e. f induces isomorphisms f_* of all the homotopy groups of F and A(B).

Proof. This lemma is an immediate consequence of the commutativity of the following diagram:

$$\begin{array}{ccc}
\pi_{n+1}(E, F) & \xrightarrow{\widehat{\partial}} & \pi_n(F) \\
\downarrow p_* & & \downarrow f_* \\
\pi_{n+1}(B) & \xrightarrow{} & \pi_n(\Lambda(B)),
\end{array}$$

where ∂ is the homotopy boundary homomorphism, which is an isomorphism since $\pi_m(E) = 0$, and T is the natural isomorphism.

The commutativity is proved as follows. If a map $\varphi: (I^n, \dot{I}^n) \to (F, \varepsilon)$ represents an element $\alpha \in \pi_n(F)$, the map $\overline{\varphi}: (I^{n+1}, \dot{I}^{n+1}, J_1^n) \to (E, F, \varepsilon)$, defined by $\overline{\varphi}(x, t) = k_t \circ \varphi(x)$ for $(x, t) \in I^n \times I = I^{n+1}$, $(J_1^n = (I^n \times 1) \cup (\dot{I}^n \times I))$, represents $\beta \in \pi_{n+1}(E, F)$ being $\widehat{\sigma}(\beta) = \alpha$. Since $T(p \circ \overline{\varphi}(x))(t) = p \circ \overline{\varphi}(x, t) = p \circ k_t \circ \varphi(x) = (f \circ \varphi(x))(t)$, we have $T \circ p_*(\beta) = f_*(\alpha) = f_* \circ \widehat{\sigma}(\beta)$.

¹⁾ For H-spaces X and Y with multiplications μ and μ' respectively, a map $f: X \to Y$ is called an H-homomorphism, if two maps $(x_1, x_2) \to f \circ \mu(x_1, x_2)$ and $(x_1, x_2) \to \mu'(f(x_1), f(x_2))$ of $X \times X$ into Y are homotopic each other.

Lemma 11. The map f, defined above, is an H-homomorphism. Proof. As the same to § 4 of [4], we define a map $\Phi: F \times F \times I^2 \rightarrow E$, first on $F \times F \times I^2$ by, for $x, y \in F$,

$$\psi(x, y, t, s) = \varepsilon,$$
 $= \mu(x, y),$
 $= k_t(\mu(x, y)),$
 $= \overline{\mu}(k_{2t}(x), y),$
 $= k_{2t-1}(y),$
for $t = 1, 0 < s < 1,$
for $t = 0, 0 < s < 1,$
for $s = 0, 0 < t < 1,$
for $s = 1, 0 < t < 1/2,$
for $s = 1, 1/2 < t < 1,$

and then on $F \times F \times I^2$, by mapping the segment from $(t,s) \in \dot{I}^2$ to (1/2, 1/2) on the path, described by the point $\psi(x,y,t,s)$ under the contraction $k_t : E \to E$. Then the homotopy $\Psi_* : F \times F \to \Lambda(B)$, $0 \le s \le 1$, defined by $\Psi_*(x,y)(t) = p \circ \psi(x,y,t,s)$, is a homotopy of $\Psi_0 = f \circ \mu$ and Ψ_1 . The map $p \circ \psi \mid F \times F \times [0,1/2] \times 1$ is the map $(x,y,t) \to p \circ \overline{\mu}(k_{2\ell}(x),y)$, and hence, is homotopic, relative $((F \times F \times 0) \cup (F \times F \times 1/2)) \times 1$, to the map $(x,y,t) \to p \circ k_{2\ell}(x)$, since $\overline{\mu}$ has the property (2) of Lemma 9 of § 7 by taking $\overline{F} = E$. Therefore the map Ψ_1 is homotopic to the map $\mu' \circ (f \times f)$, where μ' is the natural multiplication (composition of loops) on the loop-space $\Lambda(B)$. This shows that two map $f \circ \mu$ and $\mu' \circ (f \times f)$ of $F \times F$ into $\Lambda(B)$ are homotopic, and so, f is an H-homomorphism.

Proof of Theorem 5. The first half is the above two lemmas.

Since f induces isomorphisms between every homotopy groups of F and $\Lambda(B)$, two maps of CW-complex into F are homotopic if, and only if, the two composed maps of these maps and f are homotopic each other. Therefore, the homotopy-associativity of F, i. e. the fact that two maps $(x, y, z) \rightarrow \mu(x, \mu(y, z))$ and $(x, y, z) \rightarrow \mu(u(x, y), z)$, of $F \times F \times F$ into F, are homotopic, is an immediate consequence of the fact that f is an H-homomorphism and that the H-space $\Lambda(B)$ of loops in B with natural multiplication is homotopy-associative.

On the other hand, by Lemma 6 and Remark of §4, μ has a left inversion; and we show the latter is also a right inversion as follows, by using the homotopy-associativity of μ .

Let $\sigma: (F, \varepsilon) \to (F, \varepsilon)$ be a left inversion. As the map $x \to \mu(\sigma(x), x)$ is homotopic, relative ε , to the constant map $x \to \varepsilon$, the map $x \to \sigma \circ \sigma(x) = \mu(\sigma \circ \sigma(x), \varepsilon)$ of F into itself is so to the map $x \to \mu(\sigma \circ \sigma(x), \mu(\sigma(x), x))$, and latter to the map $x \to \mu(\mu(\sigma \circ \sigma(x), \sigma(x)), x)$, and so, to the identity map $x \to x$. Therefore the map $x \to \mu(x, \sigma(x))$ is homotopic, relative ε , to the map $x \to \mu(\sigma \circ \sigma(x), \sigma(x))$, and hence to constant map $x \to \varepsilon$ of F into itself.

This shows that σ is also a right inversion of μ .

Thus we have Theorem 5, and Theorem 2 of § 1 is proved.

Remark. I cannot prove the inverse of Thenrem 2 yet. The inverse may be proved, by generalizing the methods of constructions in [3], if the H-structure μ of F is restricted by additional conditions: $\mu(x, y) = \mu(x', y)$ and $\mu(x, y) = \mu(x, y')$ imply x = x' and y = y', respectively.

REFERENCES

- [1] I.M. JAMES and J.H.C. WHITEHEAD, Note on fibre spaces, Proc. London Math. Soc. (3), 4 (1954), 129-137.
- [2] —, The homotopy theory of sphere bundles (I), ibid., 196-218.
- [3] J. MILNOR, Construction of universal bundles, II, Ann. Math., 63 (1956), 430—436.
- [4] H. SAMEISON, Groups and spaces of loops, Comm. Math. Helv., 28 (1954), 278

 -287.
- [5] E. H. SPANIER and J. H. C. WHITEHEAD, On fibre space in which the fibre is contractible, ibid., 29 (1955), 1-8.
- [6] M. SUGAWARA, On fibres of fibre space whose total space is contractible, Math. J. Okayama Univ., 5 (1956), 127-131.
- [7] A. TOLD et R. THOM, Une généralization de la notion d'espace fibré. Application aux produits symétriques infinis, Comptes Rendus, Paris, 242 (1956), 1680-1682.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received December 24, 1956)