‘ON THE REPRESENTATIONS OF THE GENERALIZED
SYMMETRIC GROUP II

Masaru OSIMA

Introduction. We have determined [11] the ordinary irreducible
characters of the generalized symmetric group S(s, m). As a sequel of
[11], we shall investigate in this paper some modular properties of
irreducibe representations of S(72, ). In §§1 and 2 we shall give, as
preliminaries, some general results concerning the induced representations
of a group. Some of them are well known. In §§3 and 4, using these
results we shall obtain necessary and sufficient conditions that two irre-
ducible representations of S(#2, m) belong to the same block and deter-
mine the defect groups of the blocks of S(12, m). We shall also deal with
the modular irreducible representations of S(#, m).

1. Let & be a group of finite order g and let © be an invariant
subgroup of ®. We consider the representations of & in the field K of
the g-th roots of unity. Then every absolutely irreducible representation
of ® can be written with coefficients in K. We denote by 7(®) the
group ring of & over K and by A(®) its center. Similarly we define
() and 4(D) of H. Let ey, e, ..., €, be the primitive idempotents of
A(®) such that 3l e, = 1. Asis well known, 7'(9) is semisimple and is
a direct sum of m simple two-sided ideals /'(9)e. which themselves are
matric algebras over K:

(1.1) r(®) =r®e + e+ ... + re,.

Let H—V,(H) be the irreducible representation of $ defined by a
simple left-ideal contained in f(9)e. and let ¢, be its character. Evi-
dently Ge,G', Ge.G™',..., Ge,G ' is a permutation. of e, e, ..., €,.
The totality of elements G of & which satisfy Ge.G™' =¢, for a fixed
idempotent e, constitutes a subgroup &, of & We say that ®, is a
subgroup of & corresponding to e.. '

Lemma 1. ((G'HG)=¢(.(H) for all HE  if and only if G
belongs to &,.
Proof. Let G be an arbitrary element of &. The simple two-sided

81



82 Masaru OSIMA

ideal I'(9)Ge,G™'=GIr'De.G' of I'(P) determines the irreducible
representation H — V(G 'HG) of . This shows that the lemma is
true.

Let ®:8)=s.and let @ ({=1,2,...,5,) be a complete residue
system of ® (mod &) :

(102) @ = @KQI + ®uQ2 +... + @KQ“K’ Q] = 1-
We set
(1.3) Qe Q' = e,V (t=1,2,..., Sg)}-

Let us denote by &, the character of  corresponding to ¢, We then
say that two characters ¢, and £ of © are associated in ®. Thus
the characters ¢ of © are distributed in % classes of characters of 9
which are associated in ®, where % is equal to the number of classes of
conjugate elements of @ which are contained in . Let &, &5 ..., be
a complete system of representatives for these classes. We set

(1.4) E.=e!” +e®+ ...+ el

We then have GE,G™' = E, for all G =® and hence E, is an idempotent
of A(®). Since 3 E,=1, we have

(1.5) r®)=r®E+r®E.+... +r®E,

where the two-sided ideals I"(®)E, can be represented as direct sums
since the E, are not primitive in A(®) in general. The irreducible re-
presentation of @ defined by a simple left-ideal contained in I'(@)E, is
called the representation of & determined by {. We say that the
representations of & determined by &, are conjugate with respect to 9.

It follows from Ge,G™' = e, for all G ®, that e, is an idempotent
of A(®,). We shall first investigate the structure of the two-sided ideal
r®,e. of '{®, by the same way as in [7]. Since GI'(9)e.G™' = I(D)e,
for all G ®, the mapping @ — GaG™, (@<= (9)e,) is an automor-
phism of the simple algebra I'(9)e, and hence there exists an element
m{(G) of I'(D)e, such that

(1.6) GaG™' =m(Glam(G)™ (@€ r9e.).

The element »(G) is determined by G € @, uniquely apart from a factor
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belonging to K. We can put
m(H) = He, (He D).
Let 1,S,,...,S, be a complete residue system of &, (mod 9):

(1.7) G=95+9S,+...+ $S..

We determine an element #(S,) of I'(D)e, by (1.6) for every S, and
define for any G = HS, & ®,

m(G) =m(H)m(S,).
It is easily seen that

m(S, ) m(H) = m(S, H) (HE ),
m( H)m(G) = m(HG) G=6,).

Then we can show that the factor set ¢(G,, G.) arising from the relations
(1.8) m(G)m(G,) = ¢(G;, GaIm(G,G.) (G, G. €6,
is essentially a factor set of &,/$, that is,
(1.9) c(HS,, H'S,)) =¢(S,, S,).
Hence we may denote ¢(HS,, H'S,) by cls,7), 6, c =8, /9.
If we set
(1.10) a, =m(S,)'S,,
then we have
(1.11) a,a. = c(a, ) 'Agr.
It follows from (1.11) that the totality of elements of the form

>0 Xols (.= K)
o€®,/9

constitutes an algebra 2, over K isomorphic to the generalized group
ring 'S/ 9D, cla, )~") with a factor set ¢(a, r)”'. Moreover we see that
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Ha, =a,H for any H & 9 so that we have

(1.12) 1'(8)e = 1'(P)e.x A,
where
(1.13) W = 1B/, cla, 27,

If the semisimple algebra ¥, is a direct sum of #, simple two-sided ideals
4y, then (1.12) implies that /'(®,)e, is also a direct sum of #, simple two-
sided ideals 7'(D)e.X Ji. Let o — Wila), (s €O, /D) be the irreducible
projective representation of 2, defined by a simple left-ideal contained in

.
Since
S,( Ha-r) = (Su-Hsd_l)Scrar
= m(S,) Hm(S,)™'S.a, = (m(S,) H)a.a.,
(1.14) G - Vm(G)) X Wils) (G = 9HS,)

is the irreducible representation of & defined by a simple left-ideal con-
tained in 7'(9)e.X 4;. The representation (1.14) of &, determined by Vi
of $ and W: of G,/ will be denoted by Z,:

(1.15) Z(G) =Vm(G)) X Wila).

We set Z4(G)=0 if G does not belong to &, so that Z.(G) is
defined for all elements of & and define

~

(1.16) Z(G) =(Z4(QuGR,™")

(2 row index, » column index). This is a representation of & and is
called the representation of & induced by Z,; of &, As is well known
(5], Z« is irreducible and every irreducible representation of & deter-
mir}gd by ¢, is obtained in this form. Let us denote by ‘92,4 the character
of Z4. Let K, be a class of conjugate elements of @ and let g, be the
number of elements in K.. The character ;C'A.[ of @ determines a charac-
ter wa of A(®) which is given by

(1.17) ol K) = g.X(G)/ 2.,

where G, is an element in K, and 2, is the degree of Zi. As is well
known, we have .
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—~

(1.18) Z4K,)) =w, (KN,

where I is the unit matrix of degree z.,.. Similarly let w.; be the charac-
ter of A(®,) determined by the character X,, of Z,;. Then

(1.19) Z(K,") = wud K],

where I is the unit matrix of degree z,, =X.(1). It follows from (1.16),
(1.18), and (1.19) that

(1.20) :;xI(Kv) = Z (’)I:i(Kcr’),

where K,' ranges over all classes of &, which belong to K,. If K, does
not contain elements of &,, then '

(1.21) 7;:{(( Ky) = O.

2. Let p bea prime and let p* be the highest power of p divid-
ing g, so that

(2.1) g =p'g, (g, p) = 1.

Let 0 be the ring of integers of K and let b be a fixed prime ideal
divisor of p in 0. We denote by 0* the ring of p-integers of K and
by K* the residue class field of 0* (mod ). We consider the representa-
tions of & in K*. We denote by 7'*(®) the group ring of ® over K*
and by 4*(®) its center.

Throughout §2 we shall assume that the order h of O is prime
to p. Then we can set e,* =e, (mod p). Since the e.* are the primitive
idempotent of A*(9) such that D>le* =1, I'*(9) is a direct sum of m
simple two-sided ideals /'*(D)e.* which themselves are matric algebras
over K*:

(2.2) (D) =r*Oe* + 1*(D)e* +... + I'(De.>

Let H—V.*(H) be the irreducible representation of £ defined by
a simple left-ideal contained in /'*(®)e.*. The matrix V.*(H).is ob-
tained by replacing every coefficient in V. (H) with coefficients in 0¥
by its residue class.

Evidently Ge,*G™' =e¢,* if and only if G belongs to the subgroup
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&, of @ defined in $§1. Hence if we set E.* = E, (mod ), we have
(2.3) (@) = *@E*+ @ E*+... + I''® E>*.

By the similar way as in §1, we have

(2.4) M (®e™ = r*9e* xAX,

where A* is an algebra over K* isomorphic to the generalized group
ring 1"™*(@B,/9D, c*(s, 2)7") if we set ¢*(s, ) =c(s, <) (mod P). Hence we
have

Lemma 2. Let o — Ul(a) be the indecomposable constituents of
the regular representation of W*. All indecomposable constituents
of the regular representation of I'*(S,) defined by the indecompos-
able left-ideals contained in '*(Q)e* are given by

(2.5) G > V.*n(G) X Ula) (G HS,).
We set
(2-6) arp(G) = VK*(”l(G)) X Up(o')-

Let & — F,(s) be the irreducible projective representation of 2[.* which
appears as first constituent in U,. Then (2.4) implies that

2.7) G — Fo(G) =V.*(m(G) X Fils) (G E HS,)

is the modular irreducible representation of ®&, corresponding to U, in
the above sence.

If 9* is a direct sum of », indecomposable two-sided ideals XY,
then 7"*(8,)e.* is also a direct sum of », indecomposable two-sided ideals
I'*(HeX > Y.. Let B\ be the blocks of ¥ determined by 2. To
every block B\ there corresponds uniquely a block B, of &, deter-
mined by /*(De*x ¥, The v, blocks B, of §, determined by
1*(®)e.* will be called the blocks of O. determined by {.. We have
by (1.12) and (2.4)

Lemma 3. Two irreducible representations Z. and Z.; of &
determined by . belong to the same block if and only if two projec-
tive representations W, and W, of O./9 corresponding to Z. and
Z., belong to the same block of U.*.
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Lemma 4. Let B' be the block of UX* and let B be the block of
®, determined by B'. The decomposition mairix of B is the same as
that of B'.

Proof. Replacing every coefficient in the projective representation
W, of 2, with coefficients in o* by its residue class, we obtain a
modular representation Wi* of A.*. Let d,{” be the multiplicity of F,
as irreducible constituent of W;*:

(2.8) W o >1d,"F,.
P
According to (1.14) and (2.7)

(2.9) Zut* = VK* X W’L* <« Z dip‘K"Fs(p .

This proves the lemma.

Lemma 4 implies that the Cartan matrix of B is the same as that of
B'. Furthermore we see by (1.15) and Lemma 3 that B and B' have
the same defect’. The representation F., of ® induced by F,, of ®, is
irreducible and every irreducible representation of & determined by &,
is obtained in this form [5]. According to (2.9)

(2.10) Zst o S d9F,

where Z,d* denotes a modular representation of & obtained by replacing
every coefficient in Z. of ® with coefficients in 0* by its residue class.
We see by (1,5) and (2.3) that two irreducible representations of & be-
longing to the same block must be conjugate with respect to . Now
(2.10) implies that two irreducible representations Z. and Zu of & be-
long to the same block if and only if Z,; and Z,; of ®, belong to the same
block. Consequently there exists a (1—1) correspondence between the
blocks B of ®, determined by ¢, and the blocks B of & determined
by I"*(@)E.*. Moreover we have by (2.10)

Lemma 5. Let B be a block of ®. determined by ¢, of © and
let B be tlzfz block of & corresponding to B. The decomposition
matrix of B is the same as that of B.

Lemma 5 implies that the Cartan matrix of B is the same as that of
B. Hence we have

1) See [1]. Cf. also [3], |4], and [12].



88 Masaru OSIMA

Lemma 6. Lef U, be the indecomposable constituent of the re-
gular representation of O, defined by an indecomposable left-ideal
contained in 1'*(8)e*. The representation ﬁk,, of & induced by U,
is the indecomposable constituent of the regular representation of ©
defined by an indecomposable lefi-ideal contained in I'*(®)E*,

Since every representation of ® induced by Z,, in B of ®, consti-
tutes a block B of &, B and B have the same defect. Now we prove

Lemma 7. Let B be a block of O, determined by ¢. of 9 and
let B be the block of & corresponding to B. The defect group? of
B is the same as that of B.

Proof. Let ®© be the defect group of B and let p* be its order.
Then the order of a defect group D of B is also p* since two blocks
have the same defect. There exists [4;12] a p-regular class K, of &
such that 13 a defezft group of K, and that for the %, belonging to
the character X,, in B

(2.11) wq(K,) 70 (mod p).

1t follows from (1.20) that there exists a p-regular class K.’ of &, which
belongs to K, and satisfies

(2.12) (Uxt(Kol,,) =0 (mod P).

Let 2.’ be a defect group of K,. Evidently 9D,/ g ®. On the other
hand, (2.12) implies D C D,/ [12]. Hence D & D and consequently
D=9, since they have the same order.

3. In this and the following sections we use the same notation as in
[11]. As was defined in [11], the generalized symmetric group S(7, m)
consists of all permutations of the m#n symbols commutative with

(1| 21. . m]) (1; 2-_'. .o 7’)’1-_:). .o (11; 27,. . m,.).

We set @, = (1, 2....m). Then n cycles @, generate an invariant
commutative subgroup Q of order m" and S(s,m) is the product of
£ and the subgroup S,* isomorphic to the symmetric group S,:

Stn, m) = S,*Q,

1) See [2|. Cf. also [3], [4], and {12].
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where S, * M\ Q. =1. Hence we have
(3.1) S(n, m)/ < = S,.

Let ¢“’ be the character of type (1,7, ...,#..,) of O and let
& be the subgroup of S(n, m) corresponding to ¢'"¢. Then

(3-2) @(m‘) = S(,,‘)*S, S(-ui)* m 8 = 1,
where S,,* is the subgroup of S.* isomorphic to the direct product of
S..:

3

Senp* = S,y XS5, X... XS,

b} " m—1?
whence

(3.3) &' =~ S(12q, m) X Sz, m) K. .. XSy, M),

Every (ordinary) irreducible representation of ®'*¢’ determined by &
of £ isgiven by

(3.4) G = U*Q — D(U*) X {'"(Q),

where U* — D(U*), (U*& S,,,*) is an irreducible representation of
Sup* = &’/QP. We denote by [«] the irreducible representation of S,
associated with a diagram |a] of # nodes. Then every irreducible
representation U* — D(U*) of S(‘,{,* is obtained by the Kronecker pro-
duct representation

(3.5) [alﬂ] X [al] X X [a'm—l])

where [a;] is an irreducible representation of S, o,

Lemma 8. Two representations |ay] X [ay] #...  |a. ] and | 3]
A <o Bui ] of S * belong to the same block if and only if
las) and (3] have the same p-core for i =0,1,..., m— 1L

Proof. These representations of S;,,* belong to the same block if
and only if [a;] and [B;] of S7'1 belong to the same block [3] and the
condition for this is that [a;] and [{3;] have the samc p-core [3; 8;. 13;

1) This shows that the algebra . in (L. 12) is isomorphic to the group ring of
Simp* over K in our case.
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14].

As was shown in- §1, the representation of S(n, m) induced by the
representation (3.4) of &%’ is irreducible and every irreducible repre-
sentation of S(#, m) determined by &'®’ is obtained in this form. Hence
the irreducible representations of S(z, m) determined by {“’ are in
(1 — 1) correspondence with star diagrams

(3.6) la].* =[as] s [ar]s. .. ¢ lam-]

of n nodes such that the i-th component [a;] is a diagram of #; nodes.
We denote by [a]* the irreducible representation of S(x, m) associated
with [«].*. We say that the star diagrams (3. 6) are of type (1, n,, ..
H-1). If [a].*® is of type (s, 7, . .., #a—1), then the representation [«]*
is also called the representation of type (1o, 71, ..., #.u_1). We see that
two representations [«]* and [J3]* are conjugate with respect to L if
and only if they are of same type.

We shall assume in the remainder of this section that the order of
L is prime to p,that is, (m, p)=1. Then we can apply our general
results in §§1 and 2 to S(#, m) and its invariant subgroup X of order
m".

Let |a4'™] be the p-core of [ay]. Then the star diagram

la(l“‘)] ¢ [a]m)] Cees® [a'm--](m]

is called the p-core of [a),*.

Lemma 9. Two representations «)* and |3]1* of same type of
S(n, m) with (m, p) =1 belong to the same block if and only if their
star diagrams [«),.* and [B3).* have the same p-core.

Proof. According to Lemma 3, two representations [«]* and [3]*
" of same type belong to the same block if and only if the representations
lag) X [a3] X o .. X [am-1] and [Zo] X [B] X ... X [3n-1] of S(,,{,* corres-
ponding to [«]* and [3]* belong to the same block. Then, by Lemma 8
we see that the lemma is true.

Theorem 1. Two representations [a]* and [B)* of S(n,m) with
(m, p) =1, associated with [«]..* and [3].* belong to the same block if
and only if [ai] and 3] have the same p-core and the same weight
Jor i=0,1,...,m—1,

Proof. If [«]* and [3]* belong to the same block, then they are
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conjugate with respect to L, whence [«].* and [3].* must be of same
type. Then Lemma 9 implies that [a;] and [3:] have the same p-core
and hence they have the same weight. The converse is also true by
Lemma 9.

Let [«]..* be a star diagram of type (s, #,..., #,.-,) and let [a;] be
the diagram of weight ;. Weset b=2>]b. The block B of S(z,m)
which contains [«]* is characterized by the p-core of [a].* and by a set
of m non-negative integers (b, by, .., bn-1). We say that B is a block
of weight b =3>b.

Let I(b)V be the number of ordinary irreducible representations in a
block of weight & of S.. According to Theorem 1, we have

Theorem 2. The number of ordinary irreducible representations
in a block of weight b=>\b, of Sln,m) with (m, p)=1 is indepen-
dent of the p-core and is given by

m—1
(3.7) l(bn, b], “ ey b.,,.-]) = 1]1 l(bi).
=0
The defect group <, of a block of weight b of S, was determined
by Brauer [3]. 2, is a p-Sylow-subgroup of a subgroup S(b, p) of S..
This, combined with Lemma 7, yields

Theorem 3. The defect group T of a block of weight b=
Vb, of S(n,m) with (m, p) =1 is the direct product of defect groups
D, in S, :

(3.8) SD“’() = @hl) X ®bl X... X @bm_

1

We now consider the modular representations of S(m,m). Every
modular irreducible representation of &“# determined by &'¢ is ob-
tained by

(3.9) G = U*Q — FU* x{" (@),

where U* — F(U*), (U* € S,,,*) is a modular irreducible representation
of S.,* As was shown by Robinson and Taulbee [16], there exists a

(1—1) correspondence between the modular irreducible representations of
S. and the p-regular diagrams of # nodes. Let [a] be a p-regular dia-

1) See [6], [8], and [15]
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gram. We shall denote by {a} the modular irreducible representation
associated with [a]. Then every modular irreducible representation
U* — F(U*) of S,,* is given by the Kronecker product representation

{a’o} X {a’,} Xooo X {a'q,,.—n},

where {ai} is a modular irreducible representation of S,,. As was shown
in §2, the representation of S(n, m) induced by the representation (3. 9)
is irreducible and every modular irreducible representation of S(s, m)
determined by &'“¢’ is obtained in this form.

Let 1*(b)Y be the number of modular irreducible representations in
a block of weight » of S,. We then have

Theorem 4. The number of modula:" irrveducible representations
in a block of weight b= >1b, of S(n,m) with (m,p)=1 is indepen-
dent of the p-core and is given by

(3.10) ¥(bo, by, . . . . bu) =H; 1%(b)).
=

A star diagram [«]..* is called p-regular if every component is p-
regular. Then, as was shown above, there exists a (1—1) correspon-
dence between the modular irreducible representations of S(», m) and
the p-regular star diagrams of » nedes. We denote by {«}* the modular
irreducible representation of S(7, m) associated with a p-regular star
diagram [a].* Evidently {a}* and {3}* of S(», m) with (m, p)=1
belong to the same block if and only if [a«].* and [3],* have the same
p-core and the same weight for i=0,1,...,m—1.

Theorem 5. Let B be a block of S(n, m) with (m, p) =1, which
contains an irreducible representation |[a|* and let B, be the block
of S., which contains [a)|. The decomposition matrix of B is given
by the Kronecker product of the matrices D;:

(3.11) DZDﬂXD]x--- ><-Dm»])

where D, denotes the decomposition matrix of B,.

4. We consider in this section the representations of S(», m) in the

1) See [6], [9], [10], and [15].
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case where m is divisible by p. We first mention the following speecial
results.

Lemma 10. S(n, 9%, 0 < e possesses only one block (for p). The
defect group is a p-Sylow-subgroup of S(u, p°).

Proof. Since the invariant subgroup £ of order p* coincides
with its centralizer C(LY) in S(m, p°), we see by Lemma 2 [14] that the
lemma is true. ‘

Lemma 11. Let {a} be the modular ivreducible representations of
S. associated with p-regular diagrams [a] of n nodes. Then all
modular irreducible representations of Sn,p') are given by {a}.

Proof. In general if a group & contains an invariant subgroup
whose order is a power of p, then all elements of $ are represented by
the unit matrix I in each modular irreducible representation of ®.
This, combined with (3.1), proves the lemma.

We denote by a'(#) the number of modular irreducible representa-
tions of S.. S(#, p°) has also a@'(#) modular irreducible representations.

Now we consider the general case. Let p° (0 < e) be the highest
power of p dividing ¢ so that

(4.1) m = P, (¢, p) = 1.
We set
Q*=H, @Q'=Pp (i=12...,n.

Then the H; generate an invariant subgroup © of order #*. On the
other hand, the P, generate an invariant subgroup ¥ of order P
Moreover L) is the direct product of *® and 9:

(4.2) T =WBxH,
Hence

(4.3) Sta, pt) ¥ = S(m, 1),
(4.4) S(n, p°1)/H = S(n, p°).

We see by (4.3) that all modular irreducible representations of S(1, )
are given by those of S(#, ).

1) See the proof of Lemma 11.
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We shall apply our general results in §§1 and 2 to S(s, p°t) and its
invariant subgroup ¥ of order #". Denote by ¢ a primitive #-th root
of unity. Then

(4,5) H-ott  0Za <), i=1,2...,n

forms an irreducible representation of 9. We denote by £w, the cha-
racter of the representation (4.5). £, is called the character of type
(ko K1y« oo, Biey), if the number of 4; such that o, = s is 2. Evidently
two charactetrs £, and ., are associated in S(n, p°t) if and only if
they are of same type. Let &, be the subgroup of S(, pt) corres-
ponding to £,, of . Then we have

(4.6) @(a,) = S(k,)*s}, Su-‘)* NS =1,

where S,* is the subgroup of S.* and is isomorphic to the direct
product of S;,:

Su:t)* = Sx“ X SI:] X ... X S*’z—x .

We set I = S(,.i,*‘JS. Then

4.7 T = Sk, p*) X Sk, pIX. .. XSk, ),
and
(4.8) Bop/H = TH,

It is easily seen that every ordinary (modular) irreducible represen-
tation of &, determined by &.,, is obtained by

(4.9) G =V*H— M(V¥) XEq,(H) (Ve Iw, He ),

where V* — M{(V*) is an ordinary (modular) irreducible representation
of I*, Furthermore every irreducible representation of S(#, p°t) de-
termined by £, is given by the representation induced by the repre-
sentation (4.9) of ®&,. According to Lemma 10, I possesses only
one block (for p). Hence it follows from Lemma 3 that all ordinary irre-
ducible representations of @(“0 determined by &., constitute a block
of @‘.m. Since this block is uniquely determined by £, it will be

denoted by By, Let I;,‘, be the block of S(#, p°t) determined by
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B,. E(.,t, consists of all irreducible representations of S(#, p't) deter-
mined by &, Thus we have proved

Therorem 6. Two ordinary irreducible representations of S(n, p*t)
with 0 e, (, p) =1 belong to the same block if and only if they are
conjugate with respect to 9.

Corollary. The number of blocks of S(n, p°t) with 0 e, (t,p)=
1 is equal to the number of classes of conjugate elements of S(n, p't)
conlained in 9.

The block By, of S(u, p’t) determined by &, of type (B, &y, ...,
k...) will be called the block of type (ki ki, ..., ki_y). Let us denote by
a(n, m) the number of ordinary irreducible representations of S(s2, m).
Since the number of ordinary irreducible representations of T'* is equal
to IT a(k:, p°), we have :

Theorem 7. The number of ordinary irveducible representations
in a block of type (kyky ..., Ry) of S(n, p’t) with 0 e, (4,90 =1
is equal lo

t—1
(4.10) rwmh“.ukpﬂ=31a%uﬁh

Since the number of modular irreducible representations of %t is
equal to I1a'(k), we obtain

Theorem 8. The numbey of modular irreducible represeniations
in a block of type (Byn ki, ..., k) of Sin, pt) with 0 e, (I, p)=1 is
equal to

(4.11) P Bor vy By =TT a'(B).

i=u

We obtain by Lemmas 7, 10 and (4.8)

Theorem 9. The defect group of a block of lype (ky k., ..., E_,)
of Stn, pt) with 0 e, (¢, p) =1 is the direct product of B*' in
S(ki, pe) . .

(4.12) @(k,l) = Pk BRI XL X Pt

where B is a p-Sylow-subgroup of S(ki, p°).
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Let &'*? be the character of type (7, 72, ..., #.-,) of & as before.
We set

25-1
(4.13) k= E] Raret (t=0,1,...,¢—1).
@=(
We see easily that ¢ is the character of £ determined by £y Of
type (B By, ..., k) of ©. Hence two characters {“ and ¢ of type
(10, M1y oo o, Bm—y) and (a2, 2/,...,#n',.—,) are conjugate with respect to
9 if and only if

-1

re—1
(4.14) Eo N1 = Z}] 1 aere (i=0,1,...,¢t— 1)

Let [«]* be the irreducible representation of S(z, p°t) associated
with a star diagram [a],.* of type (g, 72, ..., #...1). Since [a]* is the
representation determined by &¢ of type (7, %, ..., #m.y) of £, it is
determined by £, of type (ko i, ..., k%)) of 9. where k, is defined

by (4.13).

Theorem 10. Two representations |a|* and |31* of S(n, p't)
with 0 e, (1, p) =1, associated with |al.* and [3].* of type (n,,
Ry eun, My y) and (0,0, ..., 10 .) respectively belong to the same
block if and only if the equalities (4.14) hold.

Proof. Let [a]* and [fA]* be determined by ¢ and ¢*®’ re-
spectively. Then they belong to the same block if and only if ¢ and
£'®0 are conjugate with respect to 9. This proves the theorem.
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