NOTE ON A PAPER BY J. S. FRAME AND G. DE B. ROBINSON

MASARU OSIMA

- 1. Introduction. J. S. Frame and G. de B. Robinson have proved [1] the following
- 1.1 Let p be a prime. The number of p-regular diagrams with n nodes is equal to the number of p-regular classes of the symmetric group S_n and hence to the number of modular irreducible representations of S_n .

A diagram is called *p-regular* if no *p* of its rows are of equal length, otherwise *p-singular*.

Recently this result was refined by G. de B. Robinson [5] as follows:

1.2 The number of p-regular diagrams in a given block is equal to the number of modular irreducible representations in that block.

The author has also obtained 1.2 independently by a simple method. We shall also give an alternative proof of 1.1 by our method.

2. Remarks on diagrams. Let $[\alpha] = [\alpha_1, \alpha_2, \dots, \alpha_n]$ be a diagram with n nodes that contains α_i nodes in its i-th row. We denote the number of nodes in the j-th column of $[\alpha]$ by α'_j . We have evidently

$$\sum_{j=1}^{k} \alpha'_{j} = n, \qquad \alpha'_{1} \ge \alpha'_{2} \ge \ldots \ge \alpha'_{k} > 0 \qquad (k = \alpha_{1}).$$

We set

$$\rho_j = \alpha'_j - \alpha'_{j+1}$$
 $(j = 1, 2, \ldots, k-1),$
 $\rho_k = \alpha'_k$

Then $[\alpha]$ is completely determined by a set of non-negative integers $\{\rho_j\}$ since

$$\alpha'_j = \sum_{i=j}^k \rho_i$$
 $(j=1,2,\ldots,k).$

It follows from our definition that $[\alpha]$ is *p*-regular if and only if every ρ_j is less than *p*. We see also that $[\alpha]$ is *p*-regular if and only

if $[\alpha]$ does not contain a p-hook of leg length p-1.

If $[\alpha]$ is p-singular, then there exists at least one ρ_j greater than p. We set

2.1
$$\rho_{j} = \rho_{j}^{(1)} + \rho_{j}^{(2)} p \qquad 0 \leq \rho_{j}^{(1)} < p.$$

Then $[\alpha]$ is completely determined by $\{\rho_j^{(1)}\}$ and $\{\rho_j^{(2)}\}$. Let $[\alpha^{(1)}]$ and $[\alpha^{(2)}]$ be the diagrams determined by $\{\rho_j^{(1)}\}$ and $\{\rho_j^{(2)}\}$ in the above sence respectively. Since $\rho_j^{(1)} < p$, $[\alpha^{(1)}]$ is p-regular and $[\alpha^{(2)}]$ is not vacuous for a p-singular diagram $[\alpha]$. If $[\alpha^{(2)}]$ has a nodes, then $[\alpha^{(1)}]$ has m=n-ap nodes. Moreover we see easily that $[\alpha^{(1)}]$ is obtained by removing a p-hooks of leg length p-1 successively from $[\alpha]$. Since the p-regular diagram $[\alpha^{(1)}]$ is determined uniquely by $[\alpha]$, we shall call $[\alpha^{(1)}]$ the p-regular diagram corresponding to $[\alpha]$. We have the

Lemma 1. $[\alpha]$ and $[\alpha^{(1)}]$ have the same p-core.

Example. If $[\alpha] = [6, 4, 3^3, 1^4]$ for p = 3, then $[\alpha^{(1)}] = [6, 4, 1]$ and $[\alpha^{(2)}] = [3, 1]$. $[\alpha]$ and $[\alpha^{(1)}]$ have the same p-core $[\alpha_0] = [3, 1^2]$.

Let $[\beta]$ be a given *p*-regular diagram with m nodes and let $[\gamma]$ be an arbitrary diagram with a nodes. Then $[\beta]$ and $[\gamma]$ determine uniquely a diagram $[\alpha]$ with n = m + ap nodes such that

2. 2
$$[\beta] = [\alpha^{(1)}], [\gamma] = [\alpha^{(2)}].$$

Hence if we denote by k(n) the number of diagrams with n nodes, i.e. the number of classes of S_n , then for a given p-regular diagram $[\beta]$ with m nodes there exist exactly k(a) diagrams $[\alpha]$ with n nodes such that $[\alpha^{(1)}] = [\beta]$. Therefore we obtain the

Lemma 2. Let h(n) be the number of p-regular diagrams with n nodes. Then

2.3
$$h(n) = k(n) - \sum_{a=1}^{t} h(n-ap)k(a),$$

where n = tp + r, $0 \le r < p$.

3. Proof of 1.1. Let us denote by k'(n) the number of *p*-regular classes of S_n . We then have [2, Lemma 3]

3. 1
$$k'(n) = k(n) - \sum_{a=1}^{t} k'(n-ap)k(a)$$
.

Certainly the theorem is true for n=1. We shall assume that 1.1 is true for m < n. We then have

$$h(n-ab) = k'(n-ab)$$
 $(a=1, 2, ..., t).$

It follows immediately from 2.3 and 3.1 that h(n) = k'(n). This proves 1.1.

4. **Proof of 1.2.** Let B be a block of weight b having a given p-core $[a_0]$. The number l(b) of ordinary irreducible representations in B and the number l'(b) of modular irreducible representations in B are independent of the p-core and we have [2;3;4]

4. 1
$$l'(b) = l(b) - \sum_{a=1}^{h} l'(b-a)k(a).$$

If we denote by g(w) the number of p-regular diagrams in a block of weight w having a given p-core $[\alpha_0]$, then we see by Lemma 1 that

4.2
$$g(b) = l(b) - \sum_{\alpha=1}^{b} g(b-a)k(a)$$
.

Certainly 1.2 is true for b=1. We shall assume that 1.2 is true for w < b. Then 4.1 and 4.2 yield g(b) = l'(b). Since l'(b) is independent of the p-core, g(b) is also independent of the p-core. This completes the proof of 1.2.

REFERENCES

- [1] J. S. FRAME and G. DE B. ROBINSON, On a theorem of Osima and Nagao, Can. J. Math. 6 (1954), 125-127.
- [2] M. OSIMA, On some character relations of symmetric groups, Math. J. Okayama Univ. 1 (1952), 63-68.
- [3] ———, Some remarks on the characters of the symmetric group, Can. J. Math. 5 (1953), 336-343.
- [4] G. DE B. ROBINSON, On a conjecture by J. H. Chung, Can. J. Math. 4 (1952), 373—380.
- [5] ———, On the modular representations of the symmetric group, Part V, Can. J. Math. 7 (1955), 391-400.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received September 3, 1956)