GALOIS THEORY OF SIMPLE RINGS
Hisao TOMINAGA

For Galois theory of division rings of infinite degree, recently N.
Nobusawa succeeded in constructing his Galois theory under the assump-
tion that the total group is locally ‘finite ([4], [5])V. Afterwards, con-
sidering the case where the total group is locally compact (or some moref
general case), T. Nagahara and the present author have generalized the
theory in such a way that our theory contains the locally finite case as
well as the case of finite degree, further in our investigation, several
topological characterizations of the previously treated stages have been
presented ([2]). '

The main effort of this paper is directed towards extending our pre-
vious theory in [2] to simple rings. For a simple ring R which is Galois
over a simple subring S, we assume the following conditions, which, in
case R is a division ring, take together, are equivalent to that the total
group is locally finite-dimensional and locally compact :

(¥) For each finite subset F of R, there exists a simple subring N
normal, finite over S and containing S(F), and

(%) [Va(S): Va(R)] <°°

Then, under these assumptions, we can prove that there exists a one-to-
one dual correspondence between closed regular subgroups of the total
group and intermediate regular subrings, in the usual sense of Galois
theory (Theorem 15), further that the so-called extension theorem is still
valid (Theorem 16). Our investigation will be restricted at first to the
case where the total group is locally finite. The theory in this case is
clearly an extension of Nobusawa's and at the same time, it plays a
preparatory role for our final aim.

§ 1 contains some fundamental definitions and preliminary results,
§2 deals Galois theory for the locally finite case, and it contains also
several general results which will be useful in the subsequent sections
{Theorems 6, 7). §3 is devoted to present some structural consequences
which will be considered as generalizations of previous results cited in
[2], in particular, Theorem 14 may be considered as a topological charac-
terization of our present stage. At last in §4, our principal results will
be stated.

1) Numbers in brackets refer to the references cited at the end of this paper.
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We declear here that notations used in this paper are the same as in
[21v.

1. Preliminaries

A ring R is called a simple ring if it is a two-sided simple ring with
the'identity element- satisfying minimum condition for one-sided ideals,
and we say that S is a simple subring of R when S is simple and
possesses the same 1dent1ty element with that of R.

Definition 1. A simple ring R is said to be locally simple over a
simple subring S, if, for each finite subset F of R, there exists a simple
subring containing S(F) (the least subring containing S and F) which
is finite over S as a left S-module (accordingly which possesses a finite
independent S-basis).

Clearly, the notion of local simplicity coincides with that of local
finiteness® when R is a division ring. The next fact will be used
frequently without notice in our study.

Lemma 1. If a simple ring R is locally simple over a simple
subring S, then so is each intermediate simple subring.

Proof. Let R'= Z.D'eu be an intermediate simple subring, where
4, J=1

D' is a division ring and e,,’s are matric units. For any finite subset F' of
R', there exists a simple subring R* finite over S and containing S({e:;}, F’).

Then, as is well-known, R* = i} E* e;; with the simple ring E* =
Ly

Vialle3). Clearly, R*N\R' = 2, (E*MD"e,; is a simple subring finite

over S¥,

.' Definition 2. For simple rings R, S, we say that R is Galois over
S (or R/S is Galozs) if Vx(S) is simple and S is the fixed subring of an

1) See the end of |2, §1].

2) A division ring K is said to be locally finite over a division subring L if, for
each finite subset F of K, L(F) is finite over L.

3) In fact, we can prove that E~D is a division ring as follows: If d is a
non-zero element in D~ E, there holds that dd! = d'd =1, dmtle =d™ with some
d'eD, e€ E and some positive integer m by minimum condition for E, whence we see
that dd' = 1 = de. 1t follows therefore that d’ = e, which shows that D\ E is a divi-
sion ring. This fact will be used often without notice in the sequel.
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automorphism group © of R: J(, R)=S. In the case, the totality
&(R/S) of S-automorphisms of R is termed the total group of R/S, and
a subgroup $ of G(R/S) is named a tolal subgroup if © is the totality
of J(9, R)-automorphisms. And, if additionally Vx(V%(S)) is simple,
we say that R is s-Galois over S (or R/S is s-Galois).

Definition 3. In case a simple ring R is Galois over a simple sub-
ring S, an intermediate simple subring N is said to be normal with
respect to &(R/S) (if there exists no confusion, we say also that N is
normal over S) if N°=N for all » in G(R/S). And N is said to be
s-normal if N is normal over S and Vi(Vi(N)) is simple.

Definition 4. Let R be a simple ring which contains a simple sub-
ring S. An automorphism group © of R is called a weakly regular
group of R/S, if J(9, R)=S and D contains all the S-inner automor-
phisms of R.

Definition 5. Let R be a simple ring. A simple subring R’ is
called a regular subring if Vi(R') is simple. And a group 9 of auto-
morphisms in R is said to be regular if J(9, R) is a regular subring and
$ is a weakly regular group of R/J(D, R)V.

In case R is Galois over a simple subring S, a weakly regular group
of R/S is necessarily a regular group.

We set here the following lemma.

Lemma 2. Let S be a simple subring of a simple ring R. If
M is a finitely generated unitary left S-module, then MM, (M) is finite
over R, 2 -where My(M) is the tolality of S-homomorphisms of M
into R, which may be considered as a right R,-module.

Proof. Since S is simple, there holds that, for some integers m, #,
the direct sum N of # copies of M possesses an independent S-basis of
m elements. Thus, to be easily verified, M (N) possesses an indepen-
dent R,-basis of » elements. As N is completely reducible (and so each
clement of M (M) can be extended naturally to that of I, (N)), M (M)
may be considered as a submodule of Ttz(N). Hence, noting that M(N)

1) In case R is a division ring, an automorphism group 9 of R is regular if and
only if § is weakly regular.

2) R, denotes the totality of right multiplications by elements of R, and x, de-
notes the right multiplication in R by x € R. That Mg(M) is finite over R, means
that it is finitely generated over R, as an R,-module.
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is completely reducible, R (M) is finite over R,.
By means of this lemma and the method in [4], we can prove the
following :

Theorem 1. Lel R be a simple ring which is Galois and finite
over a simple subring S. If & is a weakly regular group of R/S,
then & coincides with &(R/S) and there holds that |[R:S)1=[®:%].
[Ve(S): Z]1, where X is the totality of inner automor phisms contained
in® and Z is the center of R.

Proof. By Lemma 2, M,(R) is finite over R,, whence so is the
submodule ®R,, which is further an R,-R,-module. As is well-known,
oR, is R.-R,-isomorphic to R, if and only if o™ isin J, where a4, <
are in ®. Since sR, is an irreducible R,-R,-module and &R, is finite
over R, [®:3] is finite. To prove that [ V&(S): Z] is finite, it suffices
to show that [D:Z] is finite, where D is a division ring containing Z
which belongs to V(S). The proof of this fact can be given as in that of
{4, Theorem 3] (with a slight modification) and it may be left to readers.
The rest of the proof is clear from [3, Theorem 1]. ) ,

Next two theorems are Theorems 5 and 6 of [3], which we shall
quote often in the sequel.

Theorem 2. If a simple ring R is Galois and finite over a
simple subring S, then there exists a one-to-one dual correspondence
between regular subgroups of the total group and intermediate re-
gular subrings, in the usual sense of Galois theory.

Theorem 3. If a simple ring R is Galois and finite over a
simple subring S, then for any intermediate regular subring R', éach
S-isomor phism p of R' into R can be extended to an automorphism in
the total group of R|S, where Vz(R") is assumed to be simple.

Definition 6. In case R is a simple ring which is Galois over a
simple subring S, & =®&(R/S) is said to be locally finite if, for each
element 7€ R, {7}@® is finite. And ® is said to be almost outer [outer]
if it contains only a finite number of inner automorphisms [no inner auto-
morphisms except the identity]. )

In the rest of this section we assume that R is a simple ring which
is Galois over a simple subring S, Z denotes the center of R and that ®
means the total group of R/S.

Theorem 4. Lel R be locally simple and Galois over S. If the
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total group ® is almost outer, then & is locally finite.
Proof. Let R =‘%‘_,1De”, where D is a division ring and e,’s are

matric units. And we take a simple subring 7T finite over S and con-
taining S({e;;}, 7), where 7 is an arbitrary element in R. By Lemma
2, Mx(T) is finite over R,, accordingly so is &;R,, where &, signifies
the restriction of & on 7. (Similarly, for s €@, o, signifies the restric-
tion of ¢ on 7.) Hence, there exists the least integer £ such that

k
(1) @TRr = § (7;?) R,-.

Now we shall prove that the sums in (1) are direct sums. We sup-

pose, in contrary, that ?}a‘,"x“;zﬂ with 2" 0. Here we may set
=1
k
20 = d{jeu)"(” with d\. =0, where dis in D. As is easily seen,
i Jj=1

there holds the following :

!’ [35) _ (1) (1)
(ew\)rro‘“) (i}jjldueu)‘: (d,\;]; €uq o= 0‘;-” (eZq e

From this fact, a brief computation shows that o}’ is contained in

k
>)6%'R,, being contrary to the minimality of 2 We obtain therefore

12
Fa

(2) @TRT = ‘E'SU;'” r
=]

k
Next, let g, be an arbitrary element in ®;, and o, = iZaéf’ u") by
=1

k
(2). As, for each SES, 5,76 = 045, S,ra'’’ =¢'? s,, We obtain 12; ' (u''ls,

—s5,#%) =0, whence we know that #"’s are in Vi(S). Let Vi(S)=
1]

S} D'é'yy, where D' is a division ring containing Z and é'v;'s are
Vv, y=1

matric units. Now we distinguish two cases: (I) Z is finite. Since &
is almost outer and Z is finite, D' is finite, accordingly so is Vi(S).
The finiteness of &; is a direct consequence of this fact. (II) Z is infi-
nite. In this case, V(S) has to coincide with Z. For, if D' 2 Z, then
for any elemient d=D'\Z, the set {1+dc; c=Z} determines an

infinite number of S-inner automorphisms of R. This contradiction

4
shows D'=Z, Hence Vi(S) =V2J'J'NIZ e'vy. Further if I > 1, the set of
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regular elements {1+ ce',; cEZ} determines an infinite number of
S-inner automorphisms of R (which send e'» into different images).
This contradiction shows that VR(S) Z. Hence each ¢, = ®; is repre-

sented in the form uniquely o7 = Ea“’ «") with «®s in Z. Now let ¢

be an arbitrary element.in 7, then

(3) trTJ = trT éa“) u(ia)' = é & (t”(l)) (i)
i=1

i=1

(4) ar(t?), = 2 o ) (2 "), u"
k &
= o {35 (), u R} u.
i=1 j=1

As .0 =a,(1°),, we obtain from (3) and (4) the next ».

13

k
E H {(tu ) — Xl(t,lﬁ)r ull utl = 0,
f J=

3
and so (t"m — 35_,_: 7 4Py 4 =0 (i = 1,..., k). Here, without loss of

generality, we may assume that #'" = 0. Therefore, we get

m ) ’
7 — " " — Z, t" u”’ = 0.
J:)

As t is arbitrary in 7, the above equation is equivalent to the next:

k
(5) a1 — uM), — _,Z,"(Tj) u) = 0.
Hence, # =1, #** =.... =u*® =0, thatis, or =07

The following prehmmary lemmas are given in [1].

Lemma 3. Let & be locally finite and Vi(S) be algebraic over
Z. If Z is infinite then Vi(S)= '

Lemma 4. If & is locally finite and, for each finite subset F
of R, there exisis a simple subring Galois, finite over S and con-
taining S(F), then Vi(S) 2 Z implies that Vi(S) is algebraic over Z.

By making use of these lemmas, we can prove a partial converse of
Theorem 4, which has been stated without proof in our previous paper
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Theorem 5. Let R be a simple ring which is Galois over a
simple subring S. If ©=8(R/S) is locally finite and, for each
Sfinite subset F of R, there exists a simple subring Galois, finite over
S and containing S(F), then & is almost outer. Further in the case,
either ®© is outer or Vi(S) is finite.

Proof.  If Z is infinite, by Lemmas 3, 4, we shall readily obtain
that Vx(S)=Z. Hence it suffices to show that, in case Z is finite and
properly contained in V&(S), a division ring belonging to Vx(S) is finite.

Let Vx(S) 2:2 D e,;, where D is a division ring containing Z and e's
WJ=1 .

are matric units. By Lemma 4, D is algebraic over Z, and so it is
commutative”, accordingly it is locally finite over Z. Now we select an
element d =D\Z, and let # be an element in R such that dr 5= 7d.
Further, let {dir d;'; dieD, i=1,..., k} be the set of all images of 7
by inner automorphisms determined by non-zero elements of D, which is
finite by the local finiteness of &(R/S), and let D' =V,(r). Then, for
each x in D, there holds that di'x € D' with some 7, from what we see
that x belongs to D'(d,,...,d.) =Z(D', d,...,d;). Since D is locally
finite over Z, it suffices to show that D' is finite. To this end, we
suppose, in contrary, that D’ is infinite. We set here S'=D'(d, 7).
Then d is in Vi (D'(d)), but not in C', the center of S'. If (1+dd’)s
(1+dd)"'=(1+dd")s'(1+dd")" forall s=S'(d', d'eD'), then (1--
dd")__’(l +dd" =c' e C'ND'd) (D D'). Hence (¢'—1)+dd" ¢'—d') =
0. As D'(d) is a field finite over D', C'M\D/(d) is a field not containing
d, accordingly d, 1 are linearly independent over C'"\D'(d). We get
therefore ¢' =1, d"’c¢’ =d’, thatis, d' =d’. This fact shows that the set
§1+dd*; d* =D’} determines an infinite number of D’(d)-[S-] inner
automorphisms of S’ [of R]. Hence r possesses an infinite number of
images under these automorphisms, being contrary to our assumption.
The next lemma is almost obvious :

Lemma 5. Let R be Galois and finite over S. If © is locally
Sfinite, then it is finite.

Our last lemma in this section is the following, which will be
required in the next section.

1) N. Jacobson: Structure theory for algebraic algebras of bounded degree, Ann.
Math.,, 46 (1945), Theorem 11.
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Lemma 6. If R is Galois and finite over S, then [ Vx(S): V«(S)]
oo,

Proof. By Theorem 1, there holds that [ Vi(S): Va(R)] {o. As
Vz(R) C Vy, 5(Ve(S)), our assertion will be a direct consequence of

[ Vi (Va(S)) 1 Vs(S)]1 < oo, which can be proved as follows. To be

easily verified, the finite group ®&%, the restriction of & on the field
Vrs (Ve(S), is the total group of Vi s (V(S))/ Vi(S), accordingly our

required finite dimensionality can be obtained.

2. Galois theory (I. Locally finite case)

In the present and subsequent sections, we assume again R is a
simple ring which is Galois over a simple subring S, and we set &=
B(R/S).

In our previous paper [2], we have constructed our Galois theory of
division rings under the assumptions that the total group is locally
finite-dimensional” and that the centralizer of the fixed subring in the
division ring considered is finite over the center. Translating the condi-
tion that the total group is locally finite-dimensional in the present case,
we consider here the following condition :

(%) For each finite subset F of R, there exists a simple subring N
normal, finite over S and containing S(F).

As was noted previously in the introduction, our conclusive aim is to
extend the theory in (2] to simple rings however, in this section, we
shall restrict our attention to the case where the total group is locally
finite. The results of this section are, of course, generalizations of
Nobusawa’s in [4] and (5], furthermore which are considered as prelimi-
naries of the final theory.

Our first result is a consequence of the condition (*) which corres-
ponds partially to [2, Theorem 3].

Theorem 6. If R/S is Galois and the condition () is salisfied,
then either & =G8(R/S) is outer or [ Vu(S): Vi(S)] oo,

Proof. To prove our assertion, by Lemma 6, it suffices to show
that, in case & is non-outer, Vx(S) is contained in some simple subring

1) In case K is a division ring which is Galois over a divisionsubring L, the total
group & of X/L is said to be locally finite-dimensional if, for each finite subset F

of K, L(Fg) is finite over L ({2]).
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which is normal and finite over S. To this end we shall distinguish two
cases: (I) Vo(S) is not a division ring. In this case, Vz(S) =Z‘,D ey

i, j=1

where D is a division ring,reu's are matric unitsand » > 1. Let N be
a simple subring normal, finite over S and containing S({ey}). Then,

as is well-known, we can write N = \ Eeu, where E = Vy({ey,l) is

simple. ~ For any element d € D, we have (1 +dey) "en (1 +dej) =en—
de,; + de. —d’e. N by assumptlon And so we get de;; = —enlen —
dey + des» — d’ers)e;; & N.  Similarly, there holds that dey; is contained in
N for each i. Hence d is in N, whence Vx(S) C N. (D) Vi(S) is a
division ring. As V =Vy(S) 2Vx(R), there exists an element vEV
such that v7 =~ 7v for some 7 in R. Now we take a simple subring N
normal, finite over S and containing S(#, »). Then there holds that
V=(VNAN)U V,(N). For, if v,€ V and 1 are linearly (left) inde-
pendent over N then (1 — vo)n = n*(1 — »,) (# € N) implies that z—n»n**y,
=n* — ¥y, where vaz = 7**v,, and so we obtain # =»n* =#»n**, that is,
v, isin V,(IN). On the other hand, if », and 1 are linearly dependent
over N:nw, — n.=0 with non-zero 2,€ N, then, noting that N is
simple and normal over S, we can easily obtain that », isin VN\N. If
V 2V NN, there exists an element '€ VIV NN, which is in Vi(N)
by the above remark. Since, at the same time, 2’ +v isin V\V NN,
v’ +v is alsoin V3(N). From these facts, we have (' +v)r =7 +v)
and v’ =7/, from which we get a contradiction v =#v. Hence V has
to coincide with VN, thatis, V is contained in N.

As an easy consequence, it follows the following :

Corollary. Under the conditions of Theorem 6, for each finite
subset F of R, there exists a regular subring N* normal, Galois and
finite over S and containing S(F). In particular, there exists such
an N* that Vi(N*) is a division ving.

Proof. The last part is clear from the proof of Theorem 6.

As is done in [4], the condition (*) enables us to introduce a Haus-
dorff topology in &, where a fundamental system of neighbourhoods of
the identity is defined as the totality of &(N), where N runs over all
simple subrings normal and finite over S. Then & becomes a topological
group. In the sequel, whenever & is considered as a topological group,
the topology should be that noted here.

The next theorem will play an important role in our Galois correspon-
dence.
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Theorem 7. Let R be a simple ring which is Galois over a
simple subring S. If the condition () is salisfied and [ Vi(S): Vr(R)]
{ oo, then any closed regular subgroup of & =G&(R/S) is a regular
lotal subgroup, and conversely.

Proof. Let © be a closed regular subgroup. We set here T =

EDeU = J(9, R), where D is a division ring and ei's are matric

umts Then, as T is a regular subring, we can set Vx(T) = Z D* e*ni,

where D* is a division ring and e*,:'s are matric units. By the conchtlon
[Ve(S): Va(R)] < oo, there exists a simple subring S’ of T finite over,
S, such that Va(T)= Vr(S’). Now, for any given simple subring N
normal, finite over S, we take a simple subring N, normal, finite over
S and contammg S(S’, N, leit, le*n}). Then, we can write N, =

%::_‘E ey = Z. E* ¢*y, where E= Vg ({ey}), E* = Vy, ({e*u}) are sim-

ple. We see therefore that 2} (DN E)e;;=TNN, (DS) is simple.
Further, TDTNN, DS 1mp11es that Vu(T)C V(TN N)) C Va(S),

that is, Vi{(N.NT) = 2 D* ¢*,.. Thus we obtain that Vs (NoN\T)

=1

=NNVNNT = 2} (D* N\ E*)e*.y is simple. By these facts, we

k=1
have proved that N, is Galois and finite over N,/ 7. While, Vy (N,
NT)CVNiN T) = Vi(T) shows that Oy is a weakly regular group

of Ny/ N, T, whence, by Theorem 1, Ov, = SN/ NeN D). If ¢ &

&(T), then obviously ov, € &(No/ NoN T). Hence there exists some
v €9 such that ay, = cx, which proves that « is in © (the topological
closure of ) =9, thatis, &(T)=9. The converse is almost trivial.

Now we shall introduce the following additional condition:

(¥x) & is locally finite.

In virtue of Theorems 4, 5 and Corollary to Theorem 6, one will
readily see that, under the condition (%), (x*) is equivalent with to say
that either @ is outer or V,(S) is finite. And on account of Lemma 5 and
Corollary to Theorem 6, under the conditions (*) and (**), we may con-
sider the topological group & as an inverse limit of finite groups, which
shows the following :

Lemma 7. If the conditions (*) and (x*) are satisfied, then ©
is compact.
Now we shall prove the following theorem, which corresponds to [2,
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Theorem 1].

Theorem 8. (i) Under the condition (x), the following condi-
tions are equivalent to each other:

(1) @ is compact.

(2) O is locally finite.

(3) B is almost outer, or what is the same, either O is outer or
Ve(S) is finite.

(i1 Under the condition (x), the following conditions are equi-
valent to each other :

(1) O® is discrete.
(2) [R:S] is finite.

Proof. (i) (2) © (3) and (2) — (1) are already shown. We shall
prove here (1) — (2). Let # be an arbitrary element in B, and N be a
simple subring normal, finite over S and containing S(r). By definition,
®&(N) is an open invariant subgroup of ®, and so the quotient group
&/S(N) is finite. Hence &y is finite, whence {r}® is finite.

(ii) Let © be discrete, and we shall show that [R:S] is finite.
There exists a simple subring N; normal, finite over S for which &(N,)
consists of only the identity mapping. Here, by Corollary to Theorem 6,
we may assume that Vi(lV,) is a division ring, and so that Vi(N;) =
Ve(R). If R 2 N, then there exists an element # in R\N,. Let N, be
a simple subring containing N,(r) which is normal, Galois and finite
over S. Since By, = 8(N./S) by Theorem 1, and Vi, (N)) = N. N Va(N))
= Vy,(N.), Theorem 2 implies a contradiction that &(N,) is not the
identity subgroup. The converse part is almost clear.

Remark 1. To prove the implication (2) — (3) in Theorem 8, we
have used a rather general result Theorem 5, but, in case the condition ()
is satisfied, the method in the proof of Theorem 6 enables us to prove it
more simply as follows: We assume that ©& is non-outer and distinguish
two cases. (I) Vi(S) is not a division ving. Making use of the same
notations as in the proof (I) of Theorem 6, we shall prove that D is finite,
If D is infinite, the set of regular elements {1+ de,.; d € D} determines
an infinite number of S-inner automorphisms of R which send e. into
different images, being contrary to the local finiteness of @. The finite-
ness of D shows evidently that of Va(S). II) Vr(S) is a division ring.
Making use of the same notations as in the proof (II) of Theorem 6, we
shall prove that Vy(N) is finite. Since v is in Va(S)\Vx(N), in case
Vw(N) is infinite, the set {1+cv; ¢ =V+(N)} determines an infinite
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number of S-inner automorphisms of N [of R]. Noting that N is finite
»

over S: N=>1Sn (n,e N), we have that some of #»,’s, say », pos-
i=1

sesses an infinite number of images under these automorphisms, which
is a contradiction. Hence Vx(N) is finite, and our assertion is a direct
consequence of the fact [ V(S): Vi(N)] =[Vx(S): V(N)) oo,

The next fact will be used frequently also in the sequel.

Lemma 8. Under the condition (x), there holds that J(Q(R'), R)
=R’ for any intermediate regular subring R’ finite over S, and so
the condition (*) is satisfied with respect to R/R'.

Proof. Following to Theorem 6, we distinguish two cases. (I) ® is
outer. For an arbitrary element » € R\R’ (if there exists), there exists
a simple subring N normal, finite over S and containing R'(»). To be
casily seen, there holds that Va(R') =Vxs(N)=Vx(S). Noting that
By = G(N/S), Theorem 3 secures the existence of an automorphism
e EG(R’) such that »* =57, (II) & is non-outer. In this case, for any
r € R\R’, there exists a simple subring N normal, finite over S and
containing S(r, Vi(S)). Clearly we obtain that Gy =&(N/S) and
Vy(R') =V:(R'). Hence, again by Theorem 3, our assertion is clear.

Lemma 9. Under the conditions (x) and (x+), for any inier-
mediate regular subring R', there holds that J(S(R'), R)=R'.

Proof. As the condition () implies the local simplicity of R over
S, by Lemma 1, we can set R’ =\UJ R,, where R, is a simple subring

finite over S such that Vi(R,) is simple. In fact, we may, and shall,
assume that Vi(R,) = Vz(R’) by the consequence [Vx(S): Va(R)] L o
from the conditions (x) and (**)V. Let # be an arbitrary element in
R\R’, then M, = {s =B(R,); 7° s~7} is a non-empty closed subset of &
by Lemma 8. If N M, = ¢ (the empty set) then, by the compactness of

®, there exists a finite number of M, 's such that Q M,, = #. Since

R’ contains a simple subring R* finite over S and containing R, s, and
clearly Vi(R*) = Vx(R'), Lemma 8 gives a contradiction. Hence J(Q(R'),
R)=FR'

Combining Theorem 7 and Lemma 9, we obtain the following theo-
rem, which is a generalization of the principal result of [4].

1) Considering separately the cases where ® is outer or non-outer, we know that
there exists a simple subring R, of R’ finite over S such that Vg(Ry) = Ve(R). It
suffices to consider only such Ra's containing Ra.
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Theorem 9. Let R be a simple ving which is Galois over a simple
subring S. If the conditions (x) and (xx) are satisfied, then there
exists a one-to-one dual correspondence between closed regular sub-
groups of O(R/S) and intermediate regular subrings, in the usual
sense of Galois theory.

The last task of this section is to prove the so-called extension theo-
rem under the conditions (*) and (**). To this end, we set the following:

Lemma 10. Under the condition (), cach S-isomorphism p of a
regular subring R’ finile over S into R can be extended to an aulo-
morphism in O, where we assume that Vi(R™) is simple.

Proof. 1f & is outer, there exists a simple subring N normal, finite
over S and containing S(R’, R’"), for which there hold obviously Vx(N)
= VxR = Vy(R" = Vx(S). Hence Theorem 3 shows the existence of
extensions of p. While, in case & is non-outer, Theorem 6 secures the
existence of a simple subring N* normal, finite over S and containing
S(R', R”, Vx(S)). Then, we see readily that N*/S is Galois, Vi(R') =
Vax(R') and Vi(R") = Vy«(R"®). Noting the fact ®y.=&(N*/S), the
rest of the proof is a consequence of Theorem 3.

Theorem 10. Let R be a simple ring which is Galois over a
simple subring S. If the conditions () and (xx) are satisfied, then
any S-isomohphism p of R’ into R can be extended to an automor-
phism in & =O(R/S), wherc we assume that R' and R" are inter-
mediate regular subrings.

Proof. Let R’=Lm)R¢, where R, is a simple subring of R’ finite

over S. Here, without loss of generality, we may assume that Vi(R.) =
V(R and Vi(R?)= Vz(R"”). By Lemma 10, the totality ¥, of exten-
sions of px, to automerphisms in ® is a non-empty closed subset of
&(R/S). To prove our theorem, it suffices to show that N\, F# ¢. If
not, the compactness of &(R/S) implies that there exists a gnite number
of M,’s such that N\ Ny, = ¢. Since there exists a simple subring R*
of R’ finite over S and containing R.'s, noting that Vi(R*)=Vz(R'),
Ve(R¥*) = Vx(R’"), Lemma 10 shows that there exists an automorphism &
in &(R/S) such that azs+ = prx. This contradiction completes our proof.

3. Some structural consequences
The purpose of this section is to characterize topologically the con-
dition under which our Galois theory will be considered. In case R isa
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division ring, Theorem 6 of [2] announced that, under the assumption
that & is locally finite-dimensional, the condition [ Vz(S): Va(R)] o
is equivalent to the local compactness of ®. 1Itis a fact that there holds
still Theorem 6 of [2] for simple rings under some natural assumption
(Theorem 14). Additionally, the present section contains some structural
consequences which may be considered as generalizations of several facts
cited in [2].

In §1, we have introduced the notions of s-Galois and s-normal.
Clearly these notions are ncedless in either case where R is a division
ring or where R is simple and [ Vi(S): Vi(R)] < co. -

We shall introduce here the following condition which coincides evi-
dently with the condition (*) in either of above cases :

(*1) For each finite subset F of R, therc exists a simple subring
N s-normal, finite over S and containing S(F).

Lemma 11. Let R/S be Galois, N be a simple subring s-
normal, finite over S and containing Vi(S). Then, for R’ =Vx(N),
T =Vx(R"), there hold the following:

(1) Va{T)=FR, and T =V(Vp(N)).
(2) Vi(S) = Vr(S), H=V(V(S)) and [Vi(S): Vo(T)]=[T: H| oo,
where H=V13(V12(S)).

Proof. (1) From N D Vx(S), it follows that V#(N)= NN V.(N)
= Ve(N). Hence we have Vi(Vi(R"))= Vu{Va(Vr(N))) = Va(N) and
that Vz(R') = Va(Vx(N)) is simple.

(2) As N D Vx(S), N/S is Galois and finite over S, which implies
that [ Va(S) : R'] o, Further, R' = TNV (T)= V(T), and clearly V(S)
=Vu(S) = Vx(S). We have therefore co > [Vi(S): R =[V(S): V().
And so we have [T Vo(Vr(SN]=[V(S): V(T)) {oo. Noting that
Vr(S) = Vi(S), we see that Vi(V(S)) = Vi(Vi(S) C H(= Vu(V(S)) C
Ve(Ve(N)=T. On the other hand, HCV(V.(H)) =V (Vu(S)) =
Ve (V:(S)). Hence Vi, (Vr(S))=H, which proves (2) 'and that H is
simple.

Covrollary. Under the condition (x,), if & is non-outer then, for
each finite subset F of R, lhere exists a simple subring T with the
Jollowing properties:

(1) T contains H(F) and is s-normal, Galois over S, where H =

Va(Ve(S). '
(2) [T:H]=[V(S): Vo(T)] < o0.
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Proof. By Theorem 6, [ Vi(S): Vi(S)] < oo. Accordingly, there
exists a simple subring N s-normal, finite over S and containing S(F,
Va(S)) by the condition (*,). Then T = Vx(V.(N)) is a desired one by
Lemma 11.

The following theorem corresponds to [2, Theorem 4],

Theorem 11. Let R/S be Galois. If the condition (x,) is satis-
fied then R|S is s-Galois and (+,) is done with respect to R/ H,
where H = Vi(Vg(S)). ‘

Proof. In case & is non-outer, our assertion is clear from the above
corollary. While, if ® is outer, there is nothing to prove.

By making use of this fact, we can prove the next which corresponds
to [2, Theorem 5].

Theorem 12. If R/S is Galois and the condition (*\) is satis-
fied then § = &R/ H), where I is the totality of inner automor-
phisms in & and H = Vx(Vx(S)).

Proof. Let & be in @&(R/H) and N be a simple subring normal,
finite over S. By Theorem 11, there exists a simple subring N’ normal,
Galois and finite over H. Since Vi{Vi:(H)) = H, there exists a regular
element x in Vi(H) =Vi(S) such that X» = s, and of course, that
Xy = oy. Hence we have proved our assertion.

For the special case where [S: V5(S)] is finite, we obtain the follow-
ing theorem corresponding to [2, Corollary to Theorem 7].

Theorem 13. Let R/S be Galois and &(R/S) be non-outer. If
the condition (x) is satisfied and [S: VS)) is finite, then H=V,
(Ve(S)) is finite over S.

Proof. There exists a simple subring M finite over S and contain-
ing S(V&(S)) such that V(M) is a division ring. (Cf. Corollary to Theo-
rem 6,) For any 7 in R\M (if there exists), there is a simple subring N
normal, finite over S and containing S(r, M). Then there holds that
Vu(N) CVu(S)C M. Since N is finite over S and [S: V(S)]C oo, it
follows that [N : Vy(N)] < oo by Lemma of [6]V. Clearly Vy(M) isa
division ring, and so N is Galois and finite over M by Lemma 8. Com-
bining this fact with [N: V4(N)] < o0 and Vx(N)C M & N, we know
(that &(N/M) is inner, and so) that there exists an element v € V(M)
(C Vx(S)) such that v = v7, which shows that 7 is not in H. We have

) 1) In the proof of Lemma in [6], [R': Z]=g2 is an error and it should be read
as [R/': Z'] = ng, where n is the capacity of R
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proved therefore that H C M.

Remark 2. Combining Theorem 12 with Theorem 13, we shall
readily see that, in case R/S is Galois and the condition (*,) is satisfied,
if [S: V«(S)] is finite, then either ® is outer or [®: §] is finite. Hence,
we may say roughly that, in the case, either & is outer or essentially
inner. In particular,if ® is locally finite, then either & is outer or R is
finite.

Now we are going to prove the principal result of this section.

Theorem 14. Let R/S be Galois. Under the condition (), the
following conditions are equivalent to each other:
(1) @ is locally compact.
(2) [VaS) : Va(R)]| < oo.

Proof. (2)— (1). (2) implies that [ V(S): Vz(R)] =[R : H], where
H =Va(V(S)), hence there exists a finite linearly independent H-basis
{ry, ..., 7.} of R. By the condition (*,), there exists a simple subring N
normal, finite over S and containing S(r,,...,7.). Then, to be easily
verified, Vi(N) =Vx(R). Noting that the condition (*,) is satisfied with
respect to R/ N and that the topology of &(R/N) (= &{N)) is equivalent
to the relative topology as a snbspace of &, by Theorem 8, we see that
&(N) is a required neighbourhood of the identity.

(1) = (2). As & is locally compact, there exists a simple subring N
normal, Galois and finite over S such that &(N) is compact. Here,
withont loss of generality, we may assume that &(N) =&(R/N) is outer.
(See the first part of this proof.) By Theorem 11, there exists a simple
subring R, normal, finite over H and containing H(N) such that Vi(R,)
is a division ring. If R 2 R,, again by Theorem 11, there exists a simple
subring R. normal, Galois and finite over H such that R, 2 R;. Then,
evidently Vx,(R)) is a division ring. Since Vi(Vi(H))=H, 8(R./ H) is
given by the restriction on R. of the totality of inner automorphisms de-
termined by regular elements in Vi(H). Hence, by Theorem 2, G(R))
contains an inner automorphism different from the identity mapping,
being contrary to our assumption that G(N) is outer. Hence R has to
coincide with R, whence R is Galois and finite over H. We obtain
therefore [V,(S): Vi(R)]| { oo.

3. Galois theory (II. General case)
It is the purpose of this section to present a generalization of our
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Galois theory for division rings constructed in [2]. Throughout the study
of this section, we assume the condition (*) and the next:

(%) [V&(S) : Va(R)] < oo.

Under the condition (*,), there exists a finite independent H-basis
{#15,..., 7z} of R, which will be fixed in the sequel. And H will mean
Va(V(S)) throughout this section. Our principal theorems are Theorem
15 and Theorem 16, the former announces the existence of Galois corres-
pondence, and the latter is concerned with extensions of isomorphisms,

To prove Theorem 15, we shall require a chain of lemmas, the first
of which is the next:

Lemma 12. Under the conditions (x) and (%;), the condition (%)
is satisfied with respect to H/S. And O(H/S) is outer.

4

Proof. We set here H = >} D ey, where D is a division ring and
i.5=1

e,/’s are matric units. By (*), for any finite subset F of H, there exists

a simple subring N, normal, finite over S and containing S({ei;}, {7},
4

F). As is familiar, N, :,.X'Sf' e, where S, =Vy ({e,;l) is simple.

»J=1
1
Clearly, H,= NoN\H =135___‘,](D M Syley; is a simple subring of H normal,

finite over S and containing S(F). Further, H, is normal with respect
to @(H/S). For, if not, there exists an automorphism o= &(H/S) such
that H{ Z H,. Then, there exists a simple subring H* of H normal,
finite over S and containing H, as well as HS. Hence, by Theorem 3,
there is an automorphism € &( H*/S) = G4« such that om, = tn, But
this is a contradiction.

The next lemma will play such an essential réle in our present theory
as [2, Lemma 9] did.

Lemma 13. Under the conditions (x) and (*,), there holds that
G(H/S) = Gy, :
Proof. Let H =”2_}]D e;; as in Lemma 12, and let N, be an arbi-

trary simple subring normal, finite over S and containing S({e;;}, {7:}).
To be easily verified, Vi(N;) = Vi(R), and hence & = &R/N,) is
compact by Lemmas 8, 12 and Theorem 8. And, as is readily seen from
the proof of Lemma 12, H, = HN\N, = J(®}’, H) is a simple subring
finite over S and normal with respect to &(H/S). Further, we obtain
that ' =@8(H/ H;) is compact by Lemma 12. For any simple subring
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H. of H finite over S and normal with respect to ', there exists a
simple subring N. normal, finite over S and containing N,(H.). Then
evidently therc holds that G(N.), € $(H.), which shows that the
mapping ¢ o — oy of & into D" is continuous. Recalling that &
and " are compact Hausdorff spaces, we obtain that ®F’ is closed in
£, On the other hand, H*,= HNN. is a simple subring finite over
S and containing H. which is normal with respect to 9%, and GVyx =
G(H*./ H)). Thus, for any p& 9, there exists an automorphlsrh c@‘“
such that px# = -x7, which shows that GF is dense in . Combining
this fact with that GY’ is closed in ', we arrive to the equality $ =
&%, Clearly, the outer group &(H,/S) = ®, is finite by Lemma 5.
Now we shall assume that &(H,/S) is induced by {s,...,s"} C@G.
Then, for any o= &(H/S), there holds that o, = oa, ,w1th some #, and
50 (6'")a' 6 = € OV =@}, Hence there exists an automorphism ’ € @
such that - ,;, and evidently ¢ = (¢*z")». We have proved therefore
that @(H/S)

The next is on]y an easy consequence of the above lemma, but the
proof of Lemma 14 can be reduced to it.

Corollary. Under the conditions (x) and (x,), there holds that
JGO(H), R) =H' for any simple subring H' with HDOH' DS.

Proof. As, by Lemma 12, the condition (*) is satisfied with respect
to H/S, Theorem 9 proves that H' = J(8,(H"), H)=HN J(&(H"), R).
On the other hand, H = Vy(V=z(H)) shows that J(S(H’), R)C H, and so
we have H' = J(S(H'), R).

Lemma 14. Under the conditions (x) and (x,), there holds that
JGWR), R) = R' for any intermediate regular subring R’.

Proof. Since [ Vx(S): Vi(R)] < oo and R’ is locally simple over S
by Lemma 1, the same argument as in the last part of the proof of [2,
Lemma 9] enables us to find a simple subring R” of R’ finite over S
such that Ve(R’) = V.(R”),. which shows that R’ CR' CVe(Vx(R").
By Lemma 8, the condition () is satisfied with respect to R/R". We can
apply therefore Corollary to Lemma 13 for R, R', Vx(Va(R")) instead of
S, H', H respectively, and obtain our conclusion.

Combining Lemma 14 with Theorem 7, we obtain our first principal
result :

Theorem 15. Let R be a simple ring which is Galois over a
simple subring S. Under the conditions (x) and (x,), there exists a
one-to-one dual correspondence between closed regular subgroups of
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the total group and intermediate regular subrings, in the usual sense
of Galois theory.

In front of our last theorem, we shall set the following:

Lemma 15. Under the conditions (x) and (x,), if H' is a simple
subring with SC H'C H, for any S-isomorphism p of H' into R,
there holds that H'" C H, where we assume that Vz(H") is simple.

Proof. We have nccessarily Vx(S)=V,(H"). If H”@ZH, by the
condition (*,) and the local simplicity of H' and H" over S, H' contains
a simple subring F finite over S such that F' Z H and V,(F*) is sim-
ple. By Lemma 10, £, =7, with some - =®, but this is contrary to
that H is normal over S.

Now we are going to prove our last theorem.

Theorem 16. Let R be a simple ring which is Galois over a
simple subring S. Under the conditions (x) and (x,), for any regular
subring R', each S-isomorphism p of R' into R can be extended to
an automorphism in & =G&(R/S), where we assume that Vi(R") is
simple.

Proof. By the condition (*,) and the fact that R’ and R'* are locally
simple over S, R' contains a simple subring R' finite over S such that
Ve(R") = Vr(R") and Vx(R")=Vx(R'"). Since the condition (*) is
satisfied with respect to R/R" by Lemma 8, in virtue of Lemma 10, we
see that . =ggy with some ¢ €®. Clearly p ¢7' is an R"-isomorphism
of R’ into R and Va(R"™ ') =(Vx(R") ' issimple. And as R"CR'C
H!"'"=V,(Vxz(R")), by Lemma 15, there holds that Rw 'c HD Hence,
applying Theorem 10 for R", H'" instead of S, R respectively, we obtain
that pes~' =tz with some E&H"/R")=G&R/R")y., accordingly
po~ =1t'p with some '€ &(R/R"). Clearly <'s is a required extension
of p- ’

Remark 3. Under the conditions () and (*,), we can generalize
Theorem 13 of [2] as follows: For an arbitrary intermediate regular
subring T such that Vr(S) is simple, we sct T={pe®; T°=T} and
denote by ¥ the composite of ¥ and the totality of J(Z, R)-inner auto-
morphisms of R. Under these notatiodns, 7/S is Galois if and only if
T is dense in ®. The proof is the same with that of {2, Theorem 13] by
the validity of Theorems 7, 15 and 16, but this fact will be not so of im-
portance in the present stage.

1) Recall here that, by Lemmas 8, 12, the condition (%) is satisfied with respect
to H!/R".
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Added in proof.

Recently the present author has found the following :

(1) If asimple ring R is Galois over a simple subring S and (%)
is satisfied then (x,) is satisfied.

(2) Local simplicity and (*) are equivalent to local finiteness and
local finite-dimensionality similarly defined as in [2] respectively.

From these facts we can restate Theorem 14 as follows :

Theorem 14*. Let R be a simple ring which is Galois over a
simple subring S and S(R|S) be l.f.d. Then S(R/S) is locally
compact if and only if Vi(S) is finite over the center of R.

(3) Let a simple ring R be Galois over a simple subring S. If
&(R/S) is 1. f.d. and locally compact then so is &(R/T) for any inter-
mediate regular subring 7.

(4) More generally, Lemma 14, Theorem 16 and (3) are still true
under the conditions similar to those considered in [2, §3].

Furthermore, by a remark from Mr. F. Kasch (F. Kasch: Eine Be-
merkung iiber innere Automorphismen, to appear in this journal.), Theo-
rem 5 is true without our complicated assumption :

Theorem 5*. Let a simple ring R be Galois over a simple sub-
ring S. If O(R/S) is locally finite then it is almost outer.



