ON PRIMITIVE ELEMENTS
OF GALOIS EXTENSIONS OF DIVISION RINGS*

Taxasi NAGAHARA

It is a result of F. Kasch [3]" that if a division ring K is Galois and
finite over a division subring L and the center of V(L), the centralizer
of L in K, is separable over the center of K then K= L(d, #du™') with
some d, # in K. In this note, under the same assumptions as above,
we shall prove the following :

Principal Theorem. Let D be an intermediate division subring
of K/L and X be the group of all L-inner automorphisms of K/L.
If, for each element x of D, {x}3\D is a finite set, then D = L(d,
udu’) with some d, u in D where {x}3 means the set of all images
of x by X 'and {x}3\D the complement of {x}3 in D.

Clearly this theorem contains the result of F. Kasch as a special
case. Further, our proof is completed without aid of Lagrange's inter-
polation formula used in the proof of F. Kasch.

§ 1. Preliminaries. Throughout this note, L will be a division
ring, K be a division ring which is Galois and finite over L, and C be
the center of K. If L is a finite ring then so is K, and hence, by the
well-known Theorem of Wedderburn, our Principal Theorem is always
true without special assumptions. Therefore, we shall assume in the
sequel that L is an infinite division ring. For any division subring T of
K, we denote by &(K/T) the fotal group of K/T, thatis, &(K/T) is
the group of all automorphisms of K which leave T element-wise in-
variant. Let now V(L) be the centralizer of L in K. Then Vi(Vi(L))
= H is normal over L, the total group @(H/L) of H/L is outer and
the total group S(K/H) of K/ H is 3}, the group of all inner automor-
phisms of K/L. For any subset S of K, we consider the subring L(S)
of K, the minimal subring of K containing S and L. Clearly, L(S) is
a division subring of K.

*) The author wishes to express his best thanks to Prof. M. Moriya for his kind
encouragement and advice.
1) Numbers in brackets refer to the references cited at the end of this note.
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Lemma 1. Let S be an infinite subset of L and let a, b be
elements of K. If, for ©=kejs@5(K/L(a+xb)), [a}® and {b}® are

finite, then there exists an element s in S such that L(a, b)=
L(a + sb).

Proof. We denote by {a,=a,a.,...,a.} and {b;=5,b, ..., b} all
different elements of {@2}® and {b}® respectively. Since S is infinite
there exists an element s €S such that a + sb =~ a; + sb; for all pairs
(], %=1, 1). For each automorphism o€ &(K/L(a -+ sb)), -we have
a” + sb” = (a -+ sb)” = a + sb, which means that ¢° =a and b =b. Since,
by Galois theory (see [2], [3] or [5]), L(a + sb) is the fixed subring of
&(K/L(a+ sb)) in K, both ¢ and b must be contained in L(a + sb),
whence L(a, b) = L(a + sb).

By induction, one will readily prove the next :

Corollary 1. If {ai, a,,...,a.} is a finite subset of K such that
{@}8='" (1 =1, 2,...,n) are finite, then there exists a finite subsel

{%:, %o,...,%.} of L such that L(a, a.,..., a,,)=L(§xtai).

The next result of N. Nobusawa ([6]) follows readily from the above
corollary.

Corollary 2. If ®&(K/L) is locally finite" then any inlermediate
subring D possesses a single primitive element over L:D = L(d) for
some d in D. v .

Since the total group G(H/L) of H = Vx(Vx(L)) is outer, &(H/L)
is locally finite®. Hence we obtain by Corollary 2 the next:

Corollary 3. Any intermediate division subring T of H possesses
a single primitive element over L.

Lemma 2. Let R be a proper division subring of K containing
C and {c, Cs...,c.} be a subset of C consisting of n different
elements. If a is an élement in R such that ab = ba for some b in
K\R then {(b+clab+c)™"; i=1, 2,...;n} is a subset of K con-
sisting of n different elements and there exists at most one element
¢ in C such that (b + c)a(b +c¢)™ is contained in R.

Proof. 1If ¢, c, are different elements in C then (b + ¢))a(b + ¢;)™
= (b +c.)ab +c.)”'. For, if not, (b+balb+c) "' = (b +cald+ )™

1) See [4, §1].
2) See [4, Theorem 1].
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=a' imply that (¢; — ¢.)a = a'(c, — ¢,), whence ¢ =a'. But (b5 ¢)ab+
¢1)”' = a leads to a contradiction ba =ab. Now we suppose that (b + ¢,)
ab+c)'=aq R and b+clalb+c)'=a.=R. Then ba—ab=
ac) — ¢ia, ba — a.b = a-c; — c.a, whence .(@,— a,))b = (a,¢c, — ¢,a) — (@ —
c.2). Since a;* a.,, we obtain the contradiction that b =(a.— a;)!
{(alcl — @) — (@:€2 — cga)} ER.

§ 2. Primitive elements of Galois extensions. At first we shall
state the following generalization of H. Cartan’s theorem?".

Lemma 3. Let R, S be division subrings of a division ring K.
If all inner automorphisms induced by non-zero elements of S leave
R set-wise invariant, then RDS or RC V(S).

Lemma 4. Let &(K/L) be not locally finite and D be an inter-
mediate subring of K|L such that D3=D. If the center Z of
V(L) is separable over C then D= L(d, udu™) with some d, u in
D.

Proof. By Galois theory, there holds that [K:L]=[&(K/L): ]
[Vi(L): C]. Clearly, each automorphism in & is induced by some non-
zero element of Vi(L). Since ®(K/L) is not locally finite  must be
an infinite group, whence C is infinite by the relation [V (L): C] <
[K:L]. Further, K is non-commutative because I is not the identity
group. ,

By Lemma 3, either D C Vi( V(L)) = H or DD Vi (L). In the first
case, D has a single primitive element over L by Corollary 2 because H
is Galois, finite over L, and &(H/L) is locally finite. Hence we
may, and shall, assume D Z H so that DD V(L) (=V,(L)) and D is
non-commutative, Now we set V( V(L)) = Vi(V,(L) = Hy, Vo(D)=C,,
and denote by W a separable, maximal subfield of Vi(L) over Z.
Noting that VK(D) C VK(L)ﬂVK( V.K(L)) - VVK’IZ)(VK(L)) = Z, we have
Cc GCZ. As Z is separable over C, so is W over C, whence W =
C(b) = Ci(b) with some b in W. Clearly L C H,C H, and so, by Corol-
lary 3, Hy=L(a) for some a< H, As is easily verified, V(V,(H,))
= H,, which means that D is Galois over H, and &(D/ H,) is inner.
We set here M= L(a, b)=Hyb). As H,C M CD and WcC V,(M)C

1) See [4, Lemma 2].
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Vo(LYINV( W) CVALYN V(W) =Vy_ 0 (W) = W, D is Galois, finite

over M and &(D/M) = W by Galois theory, where W denote the group
of inner automorphisms determined by all non-zero elements in W.

We shall prove next that M= L(a, b) = L(a + Ib) wifh some ! in L.
To show this, in virtue of Lemma 1, it suffices to show that {e}® and
{b}® are finite, where © j—&/)(gi(K/L(a +xb)) (CO(K/L)). Since ac H,

{@}B & /D = {3}BUH/D g finite. If y isin Vi(L(a + xb)) then y € V(L)
and y(a+ xb) = (a + xb)y, whence yb =>by, and so y belongs to the
centralizer of W in V«(L), thatis, y& W. On the other hand, one can
easily see that W C Vi (L{a + xb)), that is, Vi(L(a -+ xb))= W. For
each ¢ € 8(K/L(a + xb)), and for any y € Vi(L(a + xb)) = W, we have
y(a®+ x2b°) = y(a+xb) = y(a-+xb) =(a+xb)y = (a” + xb")y. Since
@€ H = H and y € Vi(L{a + xb)) = W C Vi(L), it follows that yb° =
b’y from the above equations, thatis, "€ V.(W). As « leaves V(L)
setwise invariant, 8" € W7 C V(L) which shows b€ Vo, (WINVk(L)=
Ve, (W)= W. Hence, {b}2C W. Obviously, &*(K/L), the restric-
tion of &(K/L) on Vi(L), has V(L) as the fixed subring and [ Vi(L):
VL)) ool

Since Vi (L)C ZC W, b satisfies some equation f(x)=0 in Vi(L).
Therefore, for any « €9, we have f(b°) =0, this means that {b}R(CW)
is a finite subset of K. Hence, there exists some ! & L such that M =
L(d) for d=a +1b.

If Lc G, then d§ G, for M = L(d) CC, implies W = V1,(M) D V()
= D but this gives a contradiction because D is non-commutative. On
the other hand, if L Z C, and d = G, then, for any I'e L\C, l'd is also
a primitive element of M/L. Therefore, without loss of generality, we
may assume that M = L(d) for some d § C,. _

Since W is finite and separable over C,, there exists only a finite
number of subfields { Wi, Ws, ..., W.} of W which properly contains
C.. Then, as W = V,(M), all proper division subrings of D containing
M are exhausted by {M,=V,(W): i=1,2,...,n}. Let {t, t,..., 1}
be chosen such as {y&W \C, Then there exists a subset {fi; =0, 1,

..,n} of D such that dfid™ # fo, and Lfiti " #=fii=1, 2,...,n)
by Hilfsatz 1 of [3], there exists an element f& D so that dfd™ % f
and 4t # fi=1, 2,...,n). Itisclear that fED\M, dEM C M,
and M;D C,. Since C is infinite, by using Lemma 2 repeatedly, we can
select an element c< C, such that d'=(f+e)d(f+¢c)'gM, G =1, 2,

1) See [4, Lemma 4].
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...,1) Suppose that L(d, d') &S D. Then W=V, (M)D V,(Md)) =
VoL(d, d")) 2 C,, and so V,(L(d, d")) must coincide with some W;
(1<i<wmu). However, this shows that M;,= V(W) DL, d)=>d',
being contrary to the property of d'. Therefore, L(d, d')=D, q.e.d.

§ 3. Proof of Principal Theorem. Combining Corollary, 2 with
Lemma 4, we can now prove our principal theorem. In case &(K/L) is
locally finite, by Corollary 2, D = L(d) with some element d =D, and
all the restrictions in our theorem is superfluous. On the other hand, in
case &(K/L) is not locally finite, C is infinite. Suppose that DS % D,
then there exists an element g&D such that, for some v & Vi(L),
vgv'&@D. Since C is infinite, accordingly CM\ D is infinite, by mak-
ing use of the same method as in the proof of Lemma 2, we see that the
set {(v+ x)glw+x)""; x= CND}\D is infinite, which means that
{g}3\D 1is infinite. Therefore, there must hold DS=D and hence,
D= L(d, d') by Lemma 4, where d' = udu™" for some z < D.

As an easy consequence of the principal theorem, we obtain the
following :

Corollary 4. Let K/L be Galois, O(K/L) be locally finite-
dimensional and locally compact’ and the center of V(L) be sepa-
rable over C. If D is an inlermediate subring of K finite over L
such that, for each x €D, the set {x}3\D is finite, then D=L(d,
udu™") with some d, u in D.

Proof. 1In case @(K/L) is locally finite, our assertion follows from
Corollary 2. On the other hand, if &(K/L) is not locally finite, then,
by assumption, [V(L): Vi(L)] <[4, Theorem 6]. Since G(K/L) is
locally finite-dimensional, there exists a subring K' of K which is
normal, finite over L and contains D(V.(L)). Clearly the center of K'
contains C and V(L) = V. (L), and so our assertion is a direct conse-
quence of the principal theorem.
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