ON PRIMITIVE ELEMENTS OF GALOIS EXTENSIONS OF DIVISION RINGS*

TAKASI NAGAHARA

It is a result of F. Kasch [3]¹⁾ that if a division ring K is Galois and finite over a division subring L and the center of $V_K(L)$, the centralizer of L in K, is separable over the center of K then $K = L(d, udu^{-1})$ with some d, u in K. In this note, under the same assumptions as above, we shall prove the following:

Principal Theorem. Let D be an intermediate division subring of K/L and \Im be the group of all L-inner automorphisms of K/L. If, for each element x of D, $\{x\}\Im\backslash D$ is a finite set, then $D=L(d,udu^{-1})$ with some d, u in D where $\{x\}\Im$ means the set of all images of x by \Im and $\{x\}\Im\backslash D$ the complement of $\{x\}\Im$ in D.

Clearly this theorem contains the result of F. Kasch as a special case. Further, our proof is completed without aid of Lagrange's interpolation formula used in the proof of F. Kasch.

§ 1. Preliminaries. Throughout this note, L will be a division ring, K be a division ring which is Galois and finite over L, and C be the center of K. If L is a finite ring then so is K, and hence, by the well-known Theorem of Wedderburn, our Principal Theorem is always true without special assumptions. Therefore, we shall assume in the sequel that L is an infinite division ring. For any division subring T of K, we denote by $\mathfrak{G}(K/T)$ the total group of K/T, that is, $\mathfrak{G}(K/T)$ is the group of all automorphisms of K which leave T element-wise invariant. Let now $V_K(L)$ be the centralizer of L in K. Then $V_K(V_K(L)) = H$ is normal over L, the total group $\mathfrak{G}(H/L)$ of H/L is outer and the total group $\mathfrak{G}(K/H)$ of K/H is \mathfrak{F} , the group of all inner automorphisms of K/L. For any subset S of K, we consider the subring L(S) of K, the minimal subring of K containing S and K. Clearly, K is a division subring of K.

^{*)} The author wishes to express his best thanks to Prof. M. Moriya for his kind encouragement and advice.

¹⁾ Numbers in brackets refer to the references cited at the end of this note.

Lemma 1. Let S be an infinite subset of L and let a, b be elements of K. If, for $\mathfrak{D} = \bigcup_{x \in S} \mathfrak{G}(K/L(a+xb))$, $\{a\}\mathfrak{D}$ and $\{b\}\mathfrak{D}$ are finite, then there exists an element s in S such that L(a, b) = L(a+sb).

Proof. We denote by $\{a_1 = a, a_2, \ldots, a_r\}$ and $\{b_1 = b, b_2, \ldots, b_t\}$ all different elements of $\{a\}^{\{b\}}$ and $\{b\}^{\{b\}}$ respectively. Since S is infinite there exists an element $s \in S$ such that $a + sb \neq a_t + sb_j$ for all pairs $(i, j) \neq (1, 1)$. For each automorphism $\sigma \in \mathfrak{G}(K/L(a+sb))$, we have $a^{\sigma} + sb^{\sigma} = (a+sb)^{\sigma} = a+sb$, which means that $a^{\sigma} = a$ and $b^{\sigma} = b$. Since, by Galois theory (see [2], [3] or [5]), L(a+sb) is the fixed subring of $\mathfrak{G}(K/L(a+sb))$ in K, both a and b must be contained in L(a+sb), whence L(a, b) = L(a+sb).

By induction, one will readily prove the next:

Corollary 1. If $\{a_1, a_2, \ldots, a_n\}$ is a finite subset of K such that $\{a_i\}^{\mathfrak{G}^{(K/L)}}$ $(i=1, 2, \ldots, n)$ are finite, then there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ of L such that $L(a_1, a_2, \ldots, a_n) = L$ $(\sum_{i=1}^n x_i a_i)$.

The next result of N. Nobusawa ([6]) follows readily from the above corollary.

Corollary 2. If $\mathfrak{G}(K/L)$ is locally finite¹⁾ then any intermediate subring D possesses a single primitive element over L: D = L(d) for some d in D.

Since the total group $\mathfrak{G}(H/L)$ of $H = V_{\kappa}(V_{\kappa}(L))$ is outer, $\mathfrak{G}(H/L)$ is locally finite². Hence we obtain by Corollary 2 the next:

Corollary 3. Any intermediate division subring T of H possesses a single primitive element over L.

Lemma 2. Let R be a proper division subring of K containing C and $\{c_1, c_2, \ldots, c_n\}$ be a subset of C consisting of n different elements. If a is an element in R such that $ab \neq ba$ for some b in $K\setminus R$ then $\{(b+c_i)a(b+c_i)^{-1}; i=1, 2, \ldots, n\}$ is a subset of K consisting of n different elements and there exists at most one element c in C such that $(b+c)a(b+c)^{-1}$ is contained in R.

Proof. If c_1 , c_2 are different elements in C then $(b+c_1)a(b+c_1)^{-1} \neq (b+c_2)a(b+c_2)^{-1}$. For, if not, $(b+b_1)a(b+c_1)^{-1} = (b+c_2)a(b+c_2)^{-1}$

¹⁾ See [4, §1].

²⁾ See [4, Theorem 1].

= a' imply that $(c_1 - c_2)a = a'(c_1 - c_2)$, whence a = a'. But $(b + c_1)a(b + c_1)^{-1} = a$ leads to a contradiction ba = ab. Now we suppose that $(b + c_1)a(b + c_1)^{-1} = a_1 \in R$ and $(b + c_2)a(b + c_2)^{-1} = a_2 \in R$. Then $ba - a_1b = a_1c_1 - c_1a$, $ba - a_2b = a_2c_2 - c_2a$, whence $(a_2 - a_1)b = (a_1c_1 - c_1a) - (a_2c_2 - c_2a)$. Since $a_1 \neq a_2$, we obtain the contradiction that $b = (a_2 - a_1)^{-1}$ $\{(a_1c_1 - c_1a) - (a_2c_2 - c_2a)\} \in R$.

- § 2. Primitive elements of Galois extensions. At first we shall state the following generalization of H. Cartan's theorem¹⁾.
- Lemma 3. Let R, S be division subrings of a division ring K. If all inner automorphisms induced by non-zero elements of S leave R set-wise invariant, then $R \supset S$ or $R \subset V_K(S)$.
- Lemma 4. Let $\mathfrak{G}(K/L)$ be not locally finite and D be an intermediate subring of K/L such that $D^{\mathfrak{F}} = D$. If the center Z of $V_{\kappa}(L)$ is separable over C then $D = L(d, udu^{-1})$ with some d, u in D.
- **Proof.** By Galois theory, there holds that $[K:L] = [\mathfrak{G}(K/L):\mathfrak{F}]$ $[V_{\kappa}(L):C]$. Clearly, each automorphism in \mathfrak{F} is induced by some nonzero element of $V_{\kappa}(L)$. Since $\mathfrak{G}(K/L)$ is not locally finite \mathfrak{F} must be an infinite group, whence C is infinite by the relation $[V_{\kappa}(L):C] \leq [K:L]$. Further, K is non-commutative because \mathfrak{F} is not the identity group.

By Lemma 3, either $D \subset V_{\kappa}(V_{\kappa}(L)) = H$ or $D \supset V_{\kappa}(L)$. In the first case, D has a single primitive element over L by Corollary 2 because H is Galois, finite over L, and $\mathfrak{G}(H/L)$ is locally finite. Hence we may, and shall, assume $D \not\subset H$ so that $D \supset V_{\kappa}(L)$ ($= V_D(L)$) and D is non-commutative. Now we set $V_D(V_{\kappa}(L)) = V_D(V_D(L)) = H_0$, $V_D(D) = C_0$, and denote by W a separable, maximal subfield of $V_{\kappa}(L)$ over Z. Noting that $V_{\kappa}(D) \subset V_{\kappa}(L) \cap V_{\kappa}(V_{\kappa}(L)) = V_{V_{\kappa}(L)}(V_{\kappa}(L)) = Z$, we have $C \subset C_0 \subset Z$. As Z is separable over C, so is W over C, whence $W = C(b) = C_0(b)$ with some D in D. Clearly $D \subset D$, and so, by Corollary 3, $D \subset D$, which means that D is Galois over $D \subset D$ and $D \subset D$ is inner. We set here $D \subset D$ and $D \subset D$ and $D \subset D$ and $D \subset D$.

¹⁾ See [4, Lemma 2].

 $V_D(L) \cap V_D(W) \subset V_K(L) \cap V_D(W) = V_{V_{K'L}}(W) = W$, D is Galois, finite over M and $\mathfrak{G}(D/M) = \widetilde{W}$ by Galois theory, where \widetilde{W} denote the group of inner automorphisms determined by all non-zero elements in W.

We shall prove next that M=L(a,b)=L(a+lb) wifh some l in L. To show this, in virtue of Lemma 1, it suffices to show that $\{a\}^{\S}$ and $\{b\}^{\S}$ are finite, where $\mathfrak{S}=\bigcup \mathfrak{S}(K/L(a+xb))$ ($\subset \mathfrak{S}(K/L)$). Since $a\in H$, $\{a\}^{\mathfrak{S}(K/L)}=\{a\}^{\mathfrak{S}(K/L)}$ is finite. If y is in $V_K(L(a+xb))$ then $y\in V_K(L)$ and y(a+xb)=(a+xb)y, whence yb=by, and so y belongs to the centralizer of W in $V_K(L)$, that is, $y\in W$. On the other hand, one can easily see that $W\subset V_K(L(a+xb))$, that is, $V_K(L(a+xb))=W$. For each $a\in \mathfrak{S}(K/L(a+xb))$, and for any $a\in V_K(L(a+xb))=W$, we have $a\in \mathfrak{S}(K/L(a+xb))=a$, we have $a\in \mathfrak{S}(K/L(a+xb))=a$, $a\in \mathfrak{S}(K/L(a+xb))=a$. Since $a\in \mathfrak{S}(K/L(a+xb))=a$, $a\in \mathfrak{S}(K/L(a+xb))=a$, it follows that $a\in \mathfrak{S}(K/L)$ from the above equations, that is, $a\in \mathfrak{S}(K/L)$, it follows that $a\in \mathfrak{S}(K/L)$ setwise invariant, $a\in \mathfrak{S}(K/L)$ which shows $a\in \mathfrak{S}(K/L)$ setwise invariant, $a\in \mathfrak{S}(K/L)$ which shows $a\in \mathfrak{S}(K/L)$ the restriction of $a\in \mathfrak{S}(K/L)$ on $a\in \mathfrak{S}(K/L)$ as the fixed subring and $a\in \mathfrak{S}(K/L)$ in $a\in \mathfrak{S}(K/L)$ of $a\in \mathfrak{S}(K/L)$ is fixed subring and $a\in \mathfrak{S}(K/L)$ in $a\in \mathfrak{S}(K/L)$ in $a\in \mathfrak{S}(K/L)$ is fixed subring and $a\in \mathfrak{S}(K/L)$ in $a\in \mathfrak{S}(K/L)$ in $a\in \mathfrak{S}(K/L)$ is fixed subring and $a\in \mathfrak{S}(K/L)$ in $a\in \mathfrak{S}(K/L)$ in $a\in \mathfrak{S}(K/L)$ is fixed subring and $a\in \mathfrak{S}(K/L)$ in $a\in \mathfrak{S}(K/L)$ in

Since $V_L(L) \subset Z \subset W$, b satisfies some equation f(x) = 0 in $V_L(L)$. Therefore, for any $\sigma \in \mathfrak{H}$, we have $f(b^{\sigma}) = 0$; this means that $\{b\}\mathfrak{H}(\subset W)$ is a finite subset of K. Hence, there exists some $l \in L$ such that M = L(d) for d = a + lb.

If $L \subset C_0$ then $d \in C_0$, for $M = L(d) \subset C_0$ implies $W = V_D(M) \supset V_D(C_0)$ = D but this gives a contradiction because D is non-commutative. On the other hand, if $L \not\subset C_0$ and $d \in C_0$ then, for any $l' \in L \setminus C_0$, l'd is also a primitive element of M/L. Therefore, without loss of generality, we may assume that M = L(d) for some $d \in C_0$.

Since W is finite and separable over C_0 , there exists only a finite number of subfields $\{W_1, W_2, \ldots, W_n\}$ of W which properly contains C_0 . Then, as $W = V_D(M)$, all proper division subrings of D containing M are exhausted by $\{M_i = V_D(W_i): i = 1, 2, \ldots, n\}$. Let $\{t_1, t_2, \ldots, t_n\}$ be chosen such as $t_i \in W_i \setminus C_0$. Then there exists a subset $\{f_i: i = 0, 1, \ldots, n\}$ of D such that $df_0d^{-1} \neq f_0$, and $t_if_it_i^{-1} \neq f_i$ $(i = 1, 2, \ldots, n)$ by Hilfsatz 1 of [3], there exists an element $f \in D$ so that $dfd^{-1} \neq f$ and $t_ift_i^{-1} \neq f$ $(i = 1, 2, \ldots, n)$. It is clear that $f \in D \setminus M_i$, $d \in M \subset M_i$ and $M_i \supset C_0$. Since C is infinite, by using Lemma 2 repeatedly, we can select an element $c \in C_0$ such that $d' = (f + c)d(f + c)^{-1} \notin M_i$ $(i = 1, 2, \ldots, n)$

¹⁾ See [4, Lemma 4].

..., n) Suppose that $L(d, d') \subseteq D$. Then $W = V_D(M) \supset V_D(M(d')) = V_D(L(d, d')) \supseteq C_0$, and so $V_D(L(d, d'))$ must coincide with some W_i $(1 \le i \le n)$. However, this shows that $M_i = V_D(W_i) \supset L(d, d') \supseteq d'$, being contrary to the property of d'. Therefore, L(d, d') = D, q. e. d.

§ 3. Proof of Principal Theorem. Combining Corollary 2 with Lemma 4, we can now prove our principal theorem. In case $\mathfrak{G}(K/L)$ is locally finite, by Corollary 2, D=L(d) with some element $d\in D$, and all the restrictions in our theorem is superfluous. On the other hand, in case $\mathfrak{G}(K/L)$ is not locally finite, C is infinite. Suppose that $D^{\mathfrak{F}}\neq D$, then there exists an element $g\in D$ such that, for some $v\in V_K(L)$, $vgv^{-1}\notin D$. Since C is infinite, accordingly $C\cap D$ is infinite, by making use of the same method as in the proof of Lemma 2, we see that the set $\{(v+x)g(v+x)^{-1}; x\in C\cap D\}\setminus D$ is infinite, which means that $\{g\}^{\mathfrak{F}}\setminus D$ is infinite. Therefore, there must hold $D^{\mathfrak{F}}=D$ and hence, D=L(d,d') by Lemma 4, where $d'=udu^{-1}$ for some $u\in D$.

As an easy consequence of the principal theorem, we obtain the following:

Corollary 4. Let K/L be Galois, $\mathfrak{G}(K/L)$ be locally finite-dimensional and locally compact¹⁾ and the center of $V_{\kappa}(L)$ be separable over C. If D is an intermediate subring of K finite over L such that, for each $x \in D$, the set $\{x\}^{\mathfrak{F}} \setminus D$ is finite, then $D = L(d, udu^{-1})$ with some d, u in D.

Proof. In case $\mathfrak{G}(K/L)$ is *locally finite*, our assertion follows from Corollary 2. On the other hand, if $\mathfrak{G}(K/L)$ is *not locally finite*, then, by assumption, $[V_{\kappa}(L):V_{L}(L)] < \infty[4]$, Theorem 6]. Since $\mathfrak{G}(K/L)$ is locally finite-dimensional, there exists a subring K' of K which is normal, finite over L and contains $D(V_{\kappa}(L))$. Clearly the center of K' contains C and $V_{\kappa}(L) = V_{\kappa'}(L)$, and so our assertion is a direct consequence of the principal theorem.

REFERENCES

- [1] R. BRAUER: On a theorem of H. Cartan, Bull. Amer. Math. Soc., 55 (1949), 619-620.
- [2] H. CARTAN: Théorie de Galois pour les corps non commutatifs, Ann. Ecole Norm. Sup., 64 (1947), 59-77.

¹⁾ See [4, Theorem 6].

- [3] F. KASCH: Über den Satz vom primitiven Element bei Schiefkörper, J. reine und angew. Math., 180 (1951), 150-159.
- [4] T. NAGAHARA and H. TOMINAGA: On Galois theory of division rings, Math. J. Okayama Univ., 6 (1956) 1—22.
- [5] N. Nobusawa: An extension of Krull's Galois theory to division rings, Osaka Math. J., 7 (1955), 1-6.
- [6] N. Nobusawa: On compact Galois groups of division rings, Osaka Math. J., 8 (1956), 43-50.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received July 24, 1956)