ON GALOIS THEORY OF DIVISION RINGS
Taxast NAGAHARA and Hisao TOMINAGA

Although several generalizations of Galois theory for fields have been
undertaken for division rings and other rings under some finiteness as-
sumptions ([2], [3], [10]), ¥ there are few papers concerning non-commu-
tative Galois theory for infinite cases. Recently N. Nobusawa has
succeeded in extending Krull's Galois theory to division rings ([11], [12]).
In his consideration, the principal assumption is the local finiteness of the
total group, which is equivalent to that the total group is almost outer
and the division ring considered is locally finite over its fixed subring
([9], [12]). For the outer case, the present authors hear that N. Jacobson
has prepared his theory in his forthcoming book. But, as is easily seen,
Nobusawa’s theory is not yet satisfactory, because it does not completely
contain the case of finite degree. One of the purposes of this paper is to
generalize the theory in such a way that the generalization contains the
theory of Nobusawa as well as that of the case of finite degree. Our
generalization, which will be stated in §3, stands on the view point that,
in either of above cases, the centralizer of the fixed subring is finite over
the center, (or what is the same, the total group is locally compact.) And
we can say roughly that our generalization is reduced to the outer case.
Another of the purposes is to present some structural consequences with
respect to local finite-dimensionality, which will be seen in §2. §4 con-
tains some examples of Galois extensioris.

Now we wish to begin our course with §1, which contains fundamen-
tal definitions, preliminary results and notations used frequently in this

paper.

1. Preliminaries.

Notations in this section will be used throughout the paper.

Let K be a division ring, L be a division subring of K. K is locally
finite over L when, for each finite subset S of K, L(S) (the least division
subring of K containing L and S) is finite over L (as a left L-module).
Further, if K is locally finite over any intermediate division subring,
then it is said to be totally locally finite over L. Let & be a group of
automorphisms of K. We denote by &(L) the set of all L-automorphisms

1) Numbers in brackets refer to the references cited at the end of this paper.
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in 8. If ® contains only a finite number of inner automorphisms [no
inner automorphisms except the identity mapping], it will be said to be
almost outer louter]. Now we denote by J(®, K)V the fixed subring of
® in K, and we say that K is Galois over J(®, K). In general, if
there exists a group © of automorphisms of K such that L = J(®, K),
then K is Galois over L (or K/L is Galois), and the totality &(K/L)
of all L-automorphisms of K is called the total group of K/L. Further
a subgroup © of G(K/L) is called a total subgroup if 9 is the total
group of K/J(9, K).

In case a group & of automorphisms of K contains all J(f, K)-inner
automorphisms, & is called a regular group (of K/J(®, K)). If the
dimension [K: J(8, K)] is finite, where the dimension will mean the
left dimension, then the regular group R is the total group of
K/ J(®, K) ([11]).

When K is Galois over L, a division subring N containing L is said
to be normal with respect to G(K/L) (if there exists no confusion, we
say also that N is normal over L) if each ¢ in &(K/L) leaves N set-
wise invariant: N°= N. In case K/L is Galois, the total group &=
&(K/L) is said to be locally finite-dimensional (abbreviated, I.f.d.)
_locally finite] if L(S®)? is finite over L [the set S€ is finite] for each
finite subset S of K. As is noted in [9] and [12], ® is L. f.d. and K
is totally locally finite over L when ® is locally finite. If © is
1. f.d. then we can introduce a Hausdorff topology in it by making use of
the same method as in Nobusawa’s theory, and then & becomes a topo-
logical group®. In particular, if ® is locally finite, it is compact ([11]).

We insert here the principal results of Nobusawa which will be re-
quired in the sequel ([11], [12]):

Let K be Galois over L and & =&(K/L) be locally Sfinite. Then
there hold the following :

(i) J&SK), K)=K' for any intermecdiate subring K'.
(ii) If o is an L-isomorphism of any intermediate subring K' into
K, then o can be extended to an automorphism in ©.

At last we shall gather herc several notations used frequently in the
sequel, where K be a division ring, L a subring of K, M, N and S be
subsets of K, and " be a set of mappings of K :

1) This nolation will be used for any set of automorphisms ® too.

2) S® denotes the set consisting of all images of S by ®.

3) Here a fundamental system of neighbourhoods of the identity is defined as
the totality of ®(A), where N are subrings which are finite and normal over ‘L.
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L(M) : the division subring generated by L and M.
M\N : the complement of N in M.

M : the totality of inner automorphisms determined by non-zero
(regular) elements of M. S
k : the inner automorphism of K determined by a non-zero

(regular) element 2 of K.

"Ve(M): thé centralizer of M in K: V(M) ={k= K kx=xk for
all x = Mj}. -

M : the restriction of 9t on S.

as : the restriction of ¢ on S, where + is a mapping of K.

2. Local finiteness and local finite-dimensionality.

Throughout this section we assume that K is a division ring which
is Galois over a division subring L. And we denote the total group of
K/L by @, which should be considered as a topological group in the sense
of §1 whenever it is . f. d.

Theorem 1. Let @ be the total group of K/L which is l.f.d.
(i) The following conditions are equivalent to each other:

(1) ® is compact.

(2) @ is locally finite.

(3) O is almost outer.
(ii) The following conditions are equivalent to each other :

(1) @ is discrete.

(2) K is finite over L.

Proof. (i) It has been already proved in [9] and [12] that (2) is
equivalent to (3). And by Nobusawa [11], (2) implies (1). Now we shall
prove that (1) implies (2). We set here S= L({a}€), e = K, which is
normal and finite over L by our assumption, then by definition, &(S)
is an open invariant subgroup of ®, and so the quotient group &/&(S)
is finite. Hence s is finite, that is, the set {@}¢ is finite.

(ii) Let ® be discrete, then there exists a division subring N which
is normal and finite over L and for which &(N) consists of only the
identity mapping. If K 22 N, then there exists x such that x & K\N.
Let N' be the least normal subring containing N and %, then [N': L] <
oo, We obtain therefore O(N'/L)=®,., and there exists a one-to-one
dual correspondence between regular subgroups of 84 and subrings of
N’ containing L([2], [5], [11]). From the assumption that &(N) con-
sists of only the identity, it follows that N'= N. This contradiction
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shows that X — N. The converse part is almost trivial.

Remark 1. For (i) in Theorem 1, we have obtained in [9] the
following refinement : -

(i1). If C, the center of K, is infinite then & is outer.
(ii) If © is non-outer then V(L) is finite.

Let © be a regular group of K/L and H an intermediate division
subring. Now we denote by M, (H) the H,-K,-module of all L-linear
transformations of the left L-module H into K, where K, means the
totality of right multiplications by elements of K, The following lemma
will be easily proved (cf. [12]).

Lemma l. If [H:L]=#n < o then [M(H): K,] =n, accordingly
@yKr=i§l a K.V with some s in . In particular, for each L-

(ing-) isomorphism o in (DK,)n, there holds that o = (a'")y with some
j and some L-inner automorphism :.

By our assumption that 9 is a regular group of K/L, it follows that
the set of all HK,-endomorphisms of K coincides with L,;, the totality of
left multiplications by elements of L. As K is irreducible with respect
to DK,, by Jacobson’s theorem ([4]), $K, is dense in M (K) with re-
spect to the so-called finite topology, thatis, DK, = M (K). If [H: L]
< oo, then My (H) (the totality of L-linear transformations of H into K)
is (MK y = (DK i = (DK,)». Hence, by Lemma 1, any L-isomorphism
o of H into K can be extended to an element of . We state here this
fact as a theorem, which will appear in the forthcoming book of Jacobson.

Theorem 2 (Jacobson). Let © be a regular group of K/L, H
be an intermediate division subring with [H: L1 oo, If o is an
L-isomorphism of H into K then o is in Du.

The next is a generalization of Cartan’s theorem.

Lemma 2.2 Let R, S be division subrings of a division ring D.
If each inner automorphism determined by an element of S leaves
R set-wise invariant, then either R DS or R C Vi(S).

The proof is a slight modification of that of Theorem in [1], however,

1) Further, we shall obtain Mx(H)=9aK, by the proof of Theorem 2.

2) In particular, taking D itself for S in the lemma, we obtain Cartan’s theorem
([1], [2]):1f a division subring R of a division ring D is transformed into itself by
each non-zero element of D then R is D itself or contained in the center of D.
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for caution’s sake, we state here it.

Proof. Let #*, s* be in R and S respectively. Then there holds
r*s* =s*», and #*(s* + 1) = (s* + 1), with some 7, 7. in R. Subtract-
ing the first from the second, we obtain #*—#,=s*@#.—#). If s* is not
in R, this implies 7, =#. and hence 7* =7., whence 7*s* = s*»*, This
shows that if s* = S\SN\ R then s* = V,(R).

Now we shall assume that R DS (or S22 RN S) and then show
that R < Vi(S). If RZ V,(S), there exists an element # in R such that
7s == s7 for some s& S. And so, the above remark shows that s SNR.
Since S 2 SN R, there exists an element s’ in S\SN\ R, whence s+ s’
is also in S\S/N\R. Therefore there holds that #(s’+s) = (s’ +-s)7 and
7s' =s'7, and so we arrive to a contradiction that #s =s7.

We insert here several properties of H = Vi(Vi(L)) which will be
used very often in the sequel: A brief computation shows that Vi (H)=
V(L) and Vi(H)=V,(L). And, in case K is Galois over L, H is
normal over L, whence H is Galois over L. Needless to say, &(K/L)
leaves V x(L) setwise invariant.

Again let ® be the total group of K/L, I be the group of all L-inner
automorphisms of K, and K be locally finite over L. Now we consider
the following conditions :

(1) For each ac= K, the subspace spanned by {al® over L is finite
over L.

(I'Y For each a= K, the subspace spanned by {a}S over L is finite
over L.

(I [Va(L): VAL)] < oo,

(II  [L(Ve(L)) : L] L oo,

Clearly (III) is nothing but to say that @ is outer. And (I) is equiva-
lent to the local finite-dimensionality of &, for K is locally finite over L.

Lemma 3. (II) — (IIY) — (I') © (I), (III) — ().
Proof. (I')—(I). As L(a) is finite over L, by Lemma 1, there

exists a finite set {-%': i=1,..., %} in @ such that, for each - €@,
e = THm e with some z, where ¢ denotes an element in J. Hence
Li{al}®) c L(Z L((Ja} The local finiteness of K over L and the

condition (I’) 1rnply that L(E L({a}" ")3)) is finite over L and so, (I) is

satisfied. _
(III) — (I). This is a special case of (I') — (D).
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(I) = (I). This is trivial.

(I > (II). Let {uy,...,un,} be a Vi(L)-basis of Vi(L). Then, we
obtain that L(Vyx(L)) C L(z,, ..., #,). The fact that K is locally finite
over L implies that L(V(L)) is finite over L.

(I —>(I). This is clear from L({a}3) C L(Vk(L), @) and [L(Vx(L),
a): L] < oo,

Lemma 4. If [K: L] < oo then (ID) is satisfied.

Proof. Clearly @'VK"-’ is a regular group of V(L)/V,(L). Noting
that Vi(K) C Vi _(Ve(L)), one can easily see that [Vi(L): Vi(L)] is
finite by [2, Théoréme 1].

Lemma 5. If V(L) 2 C, the center of K, then (1) implies (II).

Proof. Let @ be in Vi (L)\C, then there exists an element b€ K
such that ab = ba. Now we denote by N a subring normal, fidite over

L and containing L(a, b). Since N'x" =N and NZ Vi(Vx(L)), by
Lemma 2, N D Vi(L). Therefore V(L) = Vy(L),and so [Vx(L): Vi(L))
=[Vu(L): V{L)] < o by Lemma 4.

Combining Lemma 3 with Lemma 5, we shall readily obtain the.
following :

Theorem 3. Let K be locally finite and Galois over L and O
be its total group. The condition (1) is satisfied if and only if one.
of the conditions (11) and (111) is satisfied, or what is the same, if
one of the conditions (1) and (111) is done".

The proof of the implication (2) — (3) in Theorem 1, (i) is also an
easy consequence of our theorem. We state here this fact as a corollary.

Corollary. If ® is locally finite and V(L) 2 C, then Vi(L) is
Sfinite,

1) We assume here that, under the assumption of Theorem 3, both (IIY) and (III)
are satisfied. If the condition (II) is not satisfied, there exists an infinite C~L-basis
{c1, €2,....} of C, where C denotes the center of K. As [L(C):L]< ¢, there exists
a (finite) maximal subset of {c], ¢y, ....} whose members are linearly independent
over L, say, {c¢1, ¢2,...,¢.}. There holds therefore, for some I,..., I, in L, Casi

" k3 2%
= 3 ¢ili. Noting that ¢/'s are all in C, we obtain 2, cilll;= 3, cilil for each I € L, which
1 3 1

implies that Iy's are in V(L) = C~.L, being contradictory to the linear independence
of ¢i,...,tu+1 over CNL. This fact together with Theorem 3 shows the equivalence
of (II) and (II').
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Proof. We consider the same N as in the proof of Lemma 5, then
as @ is in Va(L)\ V¥(N), by making use of the same method as-in the
proof of Lemma 1 of [9], one can easily see that Vx(N) is finite. By
Galois theory of finite degree, there holds that [Vx(L): Vi(N)] < oo,
hence Vy(L)= Vi(L) is finite too.

In the rest of this section, we shall restrict our attention to the case
where K is Galois over L and &(K/L) is 1. f. d.

Lemma 6. Let O(K/L) be l. f.d. and non-outer. If an inter-
mediate subring N containing Vi (L) is normal and finite over L
then there hold the following :

(i) VT)=R', where R'= Vy(N), T =V (R).
(ii) [Vi(L): V(D] < oo.
(iii) [T: Hl=[Vx(L): R"] < oo, where H=V,(Vi(L)).

Proof. (i) From N D Vi(L), there holds that Vx(N)= NN V(N)
=Vi(N). Hence Vi(Vi(R") = Vil Vi Vi N))) = Vi( N) = R".

(ii) Since N is normal and finite over L, and &(K/L), is a finite
outer group of R'/R'MN L, [2, Théoréme 1] shows [R : "N\ L] < oo.
And the fact that N is Galois and finite over L(R’) implies [Vx(L(R")):
R’} < . Further,

Vi) =TNVAT) D LNR, and
VHL)= TNVx(L)=V(L(R)) = Va(L{R) M V(L) CV(L(R)).

Hence we have
o > [ViLRN): R «[R': RN L] =[Vs(LR)): RN L| >[Vx(L):
V(D).

(iii) From (ii), we have [T : Vi V(L)) = [V L) : Vo(T)] < oo (see
for example [2, Théoréme 1, a]). Since N D V(L) it follows that T" =
V(R DVy(R')= N D Vg(L), whence V(L)= Vi(L). Hence, Vo V(L))
= Vi(Vx(L)) C H, and so [T: H] < oo, On the other hand, V:(H)=
TNV(H)=Vy(L)= V(L) and Vy(T) and VH(T)=TNV(Ve(R)) =
TNR =R'. We have therefore [Vi(L): R =[Vi{H) : Ve{DI=[T:
Hi].

Corollary. Let &(K/L) be L. f.d. and non-outer, S be a finile
subset of K. Then there exisls a subring T with the following
properties: '

(1) T contains H(S) and is normal over L.

(2) [T: H])< oo, where H= Vi (Vi (L))
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(3) [Vi(L): VT)) < ooV,

Proof. Let N be a subring containing L(S, V(L)) which is normal
and finite over L (see Theorem 3). Then T = V,(Vx(N)) is a desired
one by Lemma 6.

Theorem 4. If K is Galois over L and &(K/L) is 1. f.d., then
so is &(K/H), where H= Vi(Vx(L)).

Proof. In case &(K/L) is non-outer, our assertion is clear from the
above corollary. On the other hand, in case @(K/L) is outer, K = H,
for which there is nothing to prove.

Theorem 5. If S(K/L) is I.f.d., then VeL)=G(K/H), where

m is the topological closure of ?/’L/(IT) in &K/L) and H=
Vi Vi(L)).

Proof. Let 6 be in &(K/L) and N be an arbitrary subring which
is normal and finite over L. Clearly H(N) is normal and finte over H
(Theorem 4). Since V. (Vx(H))= H, there exists an element x in Vx(H)
= V(L) such that £, = ouwv), and of course, that ¥y =ay. We obtain
therefore our assertion. —

In particular, if H= L, &(K/L) coincides with V,(L) and further-
more, for an arbitrary intermediate proper subring N normal and finite
over L, we obtain either N D V(L) or N C Vi(Vx(L))=L by Lemma
2. But the latter case is impossible from our assumption, and so we have
V(L) = Vy(L), which shows that &N/L) is inner.

The next theorem is of interest. As one will see in the next section,
in our generalization of Nobusawa’s theory, the condition considered in
the theorem plays an important rdle.

Theorem 6.2 Let K be Galois and &(K/L) bel. f.d. & = &K/ L)
is locally compact if and only if the following condition is satisfied :

(B) [ V(L) : Ve(K)] < oo.

Proof. Sufficiency. Clearly [Vi(L): Vi (K)] < oo is equivalent to

1) The property 3) is important in our consideration in §3. Combining Theorem
11 with this corollary, one will easily see that each L-automorphism of H can.be
extended to an L-isomorphism of any finite extension ring of H.

2) The authors are indebted to Professor M. Moriya who has given us continuous
encouragement and valuable advices. He also pointed out this fact.
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[K: H] < by [2, Théoréme 1] and [11, Theorem 5], further in case
either of these is satisfied, there holds [ V(L) : V(K)] = [K: H], where
H=V(VL)). Hence there exists a finite H-basis S= {d,,....,d.} of
K. Since ®&K/L) is 1.f.d. we can find a division subring N normal,
finite over L and containing L(S). Then we obtain Vi(K) C Vi (N) C
Ve(L(S)) = V(L) N\ Vil(S) = Vi(HYN Vil(S) = Vi (H(S)) = Vi(K), which
shows Vi(K)=Vi(N), i.e. &(K/N) is outer. By Theorem 1, &(K/N) is
compact and it is a desired compact neighbourhood of the identity".
Necessity. By assumption, there exists a division subring N of K
which is normal and finite over L such that &(K/N) is compact. If
&(K/N) is non-outer, then Vg(N) is a finite field by Remark 1, (ii) in
§2, and so [Vx(N): Vi(K)] < o0, Clearly &(K/N) is 1. f.d. Therefore,
as in the proof of sufficiency, we can find a division subring N* which
is normal and finite over N such that &@(K/N*) is outer. Since N* is
finite over L, there exists a division subring N, containing N¥* which
is normal and finite over L. Clearly, &(X/N,) is outer (and of course
closed in &(K/L)). Hence, without loss of generality, we may assume
from the beginning that G(K/N) is outer. Now let T be a finite set of
elements forming an (independent) L-basis of N. Then H(T)= H(L(T))
= H(N), and so H(T) is normal and finite over H by Corollary to Lemma
6. If K 2 H(T), there exists a subring R properly containing H(T) and
normal, finite over H. Since VAV (H)) = H, &(R/H(N)) is induced by

Vi (H(N)), which means that there exists an H(N)-inner automorphism
different from the identity. But this contradicts the assumption that
&(K/N) is outer. Hence K = H(T), which is finite over H. This com-
pletes our proof.

If M is an arbitrary division subring of H = V,(V,(L)) containing
L, then V(M) =MNVy(M)DMNVy(H) = MNVu(L) =Vu(L)D V,(L),
that is, the center of M contains the center of L.

Now we shall prove the following :

Theorem 7. Let K be Galois over L, &K/L) be L. f.d., and
|L: VL) be finite. Then |[H: L)< o if and only if [Vy(H):
VAL)] < oo, where H= Vi (Vi(L)); moreover, in this case, H=L(V,(H)).

Proof. Necessity. H is Galois over L and &(H/L) is outer.

1) In case G(K/L) is 1.f.d., there holds J(&(K/L/), K)=L' for any intermediate
subring L’ finite over L (see the proof of Theorem 1, (ii)). And we see that the

topology of G(K/L') itself is equivalent with the relative topology of it as a subspace
of &(K/L).
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Hence &(H/ L) is a finite group by our assumption. Clearly S(H/ L)y
= ®* is an automorphism group of Vg(H) and the fixed subring of &*
in Vy(H) is Va(HHNL =V (LYN\L=V,L). This shows that [V,(H):
V(L)) =order of &* < oo,

Sufficiency. We consider L(Vy(H)). Then L(Vy(H)) is a division
subring of A and finite over L by our assumption. If L(Vy(H)) == H,
there exists an element % in H\L(Vu(H). We set S={r, Vi(H)}.
Then N= L(S%8“/%) is a subring of H which is finite over L and
normal with respect to &(H/L). Clearly Vi(H) C V4(N) and Vi(N)C
Vw(L)C V(L) =Vy(H), whence Vyx(H)=Vy(N). Since [N: L]s[L:
VAL =[N: Vu(H)] » [Va(H): Vi{L)], we obtain [N : Vu(H)] { co.
Thus N is finite over its center Vx(H)". As is well known, &(N/ Vy(H))
is inner, accordingly so is S(N/L(Vy(H)). Since N 22 L(Vx(H)), there
exists an L-inner automorphism different from the identity, being con-
trary to the fact that &(H/L) is outer. Hence we have L(Vu(H))= H.

Under the same assumption as in Theorem 7, we assume further that
&(K/L) is non-outer. Then, from Theorem 3, it follows that [Vi(L) :
VAL)] < oo, Since Vu(H) CVAL) and V(L) C V,(H), we obtain
[ValH): Vi(L)] < =o. Hence, as an easy consequence of Theorem 7, we
obtain the next corollary.

Corollary. Let K be Galois over L, &K/L) be 1. f.d. and non-
outer. If [L:ViL)| < o then [H: L) oo.

Remark 2. Combining Theorem 5 with the previous corollary, one
will readily see that, in case G(K/L) is 1.f.d. and [L: Vi(L)] < oo,

G(K/L) is outer or [&(K/L) :V;(f)] { . Hence we may say roughly
that, in this case, &(K/L) is either outer or essentially inner.

We shall conclude this section by giving a theorem which is con-
cerned with some special case of locally finite total groups.

If &(K/L) is locally finite, then &(K/L) is 1.f.d. ([9, p. 657]).
Suppose that [L :Z] < o, where Z=V,(L). Now if V(L) 2 V«(K),
V(L) is a finite field, accordingly so is H by Theorem 7. And evi-
dently K is a finite field too. But this is a contradiction. Therefore, if
&(K/L) is locally finite and [L : Z] { =, &(K/L) is outer.

Lemma 7. Let K be Galois and finite over L, L be finite over
Z=ViL). If $K/L) is locally finite, then K= LX;C, where C=

1) The finiteness of | N: Vx(N)| is only a consequence of | N: L) < <> and [L:
Vi(L)] < «w (|6, Theorem L]).
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Vz(K).

Proof. Since S(K/L) is outer, H coincides with K. We obtain
therefore K= L(C) by Theorem 7, whence K = L% ,C.

Theorem 8. Let K be Galois over L, L be finite over Z =V (L),

and S(K/L) be locally finite. Then,

(i) K=LX,C.

(ii) If KD K' DL then K'=LX, C, where C is the center of K'.
And by this relation, there exists a one-to-one correspondence between
division subrings of K containing L and subfields of C containing
Z. '

Proof. (i) By assumption, @(K/L) is 1. f.d. and outer. Hence
V(L) = C, and so V,(K’) C C for any intermediate division subring K.
Let @ be an arbitrary element of K, and we denote by N the least nor-
mal (over L) subring containing L(a). Then N/L is finite and Galois,
and by Lemma 7, N= LX, C’, where C' is the center of N. Hence we
have K=LX,C.

(ii) Let {d\...,d.} be a Z.basis of L, and a=d,+ - +d.c.,
¢; € C, be an arbitrary element of K. Then N is Galois and finite over
L(a), where N is the least normal (over L) subring containing {c,,...,
c.}. If 6€S(N/L(a)), then a° =dic"+++ d.c.2=a. Hence ¢ =c;
({=1,...,n), whence c¢;E L(a). Therefore L@)=LX, Zc,...,c,),
and so, for any division subring K’ with K D K’ D L, we obtain that
K'=LX;(C', where C isthe center of K. Conversely, if CDC'DZ,
then L(C')= L X, C’, and its center is C'.

3. A generalization of Nobusawa’s theory.

The purpose of this section is to generalize Nobusawa’s theory in
such a way that the generalization contains also the case of finite degree.
As is shown in Theorem 1, the cases correspond to the compact case and
discrete case respectively. Hence, it seems that our next step is to
investigate the case where the total group is locally compact. In fact, in
this case, we shall see that there exists a one-to-one dual correspondence
between closed regular subgroups and intermediate subrings in the usual
sense of Galois theory (Theorem 12). But we shall deal, at first, with a
more (really) general case, and at last come back to the locally compact
case.

Throughout this section, let K be Galois over L, & be the total
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group of K/L, H signify V(Vx(L)) and C be the center of K.
Our first lemma is the next, which has been already used in the
preceding section.

Lemma 8. H is normal, whence Galois over L, and S(H/L) is
outerV.

Now we consider the following condition :
(B [Vi(L) : C]  oo.

Clearly, if @ is L. f.d. and locally compact, then the condition (B)
is satisfied by Theorem 6. In case the condition (#) is satisfied, there
holds that [K : H] =[V«(L): C]. Hence in below, whenever the condi-
tion (3) is satisfied, {d; ...,d.} will mean a (fixed) H-basis of K, L,
mean L(d;,...,d.), and H, denote Ly N\ H.

Our first consideration will be undertaken under the following condi-
tions which should be satisfied in case @ is 1. f.d. and locally compact
(Theorem 6) :

(o) H is locally finite over L,
(‘3) [VK(L) : Cl < 2.

() L. is finite over L.

(») K is Galois over L.

Lemma 9. Under the conditions (a)-(3), there hold the following :
(i) K is locally finite over L.
(i1) There exists a owne-to-one correspondence between subrings H,
of H with [H,: H)) { o and subrings L. of K with [L.: L)< oo

in the relations Ho= LN\ H and L.= 12, pH.d. In particular, if
=l
L, is normal and finite over L, then H. is finile over H, and nor-

mal with respect to S(H/H,), and conversely.
(iii) O(H/L) = G4,

Proof. (i) Clearly there holds that V(L)) = Vi(LYNV(d,...,d.)
=V HYN Veld,,...,d) = V(K)=C, hence 8" =8(K/L,) is outer.
Now we shall prove that H, = J(&%, H) and that !d,,...,d,} forms an

1) For any H contained in H and finite over L, it is normal with respect to
®(K/L) if (and only if) it is so with respect to & H/L). Hence, in case H is locally
finite over L, there exists the least subring containing A and normal, finite over
L. This fact will be used later.
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H,-basis of L. Evidently Hi=L N\ H = J(&(L,), Ky "\ H= J(&%, H).
The second assertion is proved as follows. If >} Fkd; isin L, where
i

h,e= H, then >r: hd, = E‘] hd; for each s =8, Hence W=h (i=1,
..,#), and so A, is in H;, which shows that L, = ti‘,@H.dz.
=]

Let {a; = % huyd,; j=1,...,m} be an arbitrary finite subset of K,

where 2y€ H, then [H({hys}): L1 o (i=1,...,m; j=1,...;m) by
assumption. Now we set H.= Hi({i;'s}) and &® =@"(H,). Then
J(@P, H)=H,, for @Y is a (regular) outer group of H/H,, from which

we obtain J(8®, K)= ;}@szb Hence > @H:d; is a division subring

which is finite over L, accordingly L(a; ..., a,.) is finite over L as a
division subring of ;@Hgd{. This shows that K is locally finite over
L.

(ii) If HDOH.D H, and [H.: H;) { oo, then L.= 3} Hed, is a divi-
sion ring (see the last part of the proof (i)). Conversely, let L. be a
division subring with [L.: L;] < o and we set &® = ®&(L,). Then, as
& is outer, by making use of the same method as at the beginning- of
the proof of (i), we can readily show that H.= HN\L,= J(&?®,, H), L,=
>wH.d, and that H. is finite over H..

i

Now if H, is finite over H; and normal with respect to &(H/H,)
then, for any ¢ =&, 4, belongs to &(H/H;). We know therefore that
L.=>@H.d, is normal with respect to &7, Conversely, if L. is normal

i

and finite over L, then H.= L./MN\ H is left set-wise invariant by &,
Since &(H/H,) is outer, &} is a regular group of H/H,. accordingly H.
is (finite over H. and) normal with respect to S(H/H,).

(iii) Let & and = &(H/H,) be topologized as in §1. We con-
sider the (univalent) mapping ¢:0 — oy of & into . If H' is an
arbitrary division subring of H which is normal and finite over H,, then
@“’(Z‘}@H'dt) is an (open) neighbourhood of the identity in &' (see the

last part of (ii)). And ¢«(®"'(>@H'd)) = & (H') C D(H’), which shows

the continuity of ¢. Since the topological groups & and $ are com-
pact, ¢ is a closed mapping, accordingly &}’ is closed in . On the
other hand, as &}’ is a regular group of H/H, &Y is dense in 9.
Combining these facts, we obtain that &%’ coincides with 9.

Now let L' = %_}@H’d{ and & =®(L'), where Hrc H'c H and H'
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is finite and normal over L. If the finite group &(H’/L) is induced by
{6V, ...,d™}C@®, for each s = &(H/L), there holds that ox- = o with
some i, that is, o' # is in H(H’). Since GYP =9, we have H(H") C
&', which shows that &(H/L) is induced by {s® &, ..., 5™}, and so
S(H/L)=&x". '

Corollary. If HDL' DL then J(&L"), K)=-L.
Proof. Since O(H/L)=G8; is outer, HN J(GL), K)= J(Gx(L),

H)=L’ by §1, (i). On the other hand H = V,(V,(H)) implies that
J&(L), K)c H. Hence we obtain our assertion.

Lemma 10. Under the conditions (a)-(3), there exists a subgroup
G of @ such that J(®®, K)=L and such that, for each finite
subset S of K, [L(S®®): L] oo. ‘

Proof. Let {e,...,e;} bea C-basis of Vi(L). Then, by Lemma
9 (ii), Ley, ..., e,,)=;)}@Hid, with some H. finite over H,. Now let

N, be a division subring of H containing H. and normal, finite over L,
and we set &% = @($®dei)' If the finite group G(N./L) is induced by
& ..., 6" ©@®, then &(H/L) is induced by {s” &2, ..., "GP} (see
the last part of the proof of Lemma 9 (iii)). We set here d'}m = ; hipd,
(t=1,....t; j=1,...,7n). Let N be a division subring of H containing
N. and all the A, s which is normal and finite over L, and we set M=
:E@N d,. Then G®={:&®;: M = M} contains {+"@*,,..,s"8®}
S S
as well as V(L) (D{e’ s} ). Hence J(O©, K)c J({sW89, ..., s},
K)N J(Vo(D), K) =L, whence J(B®, K)=L. Let S=la=3hyd,;
. J
i=1,..., p} be an arbitrary finite subset of K, and we set E= {4;;
i=1,....,p:j=1,...,n; c=&"], which is finite. Then L(S8”)C
M(E) and M(E) is finite ovsr L, which completes the proof.

Lemma 11. Let & be a group of automorphisms of a division
ring K, and D= J(& K\ If, for each finite subset S of K,
[D(SS™): D) oo, then JS(L)), K)~ L' for any division subring L’
such that |L': D] < oo, where & =&(K/D).

Proof. Llet {fy,...,fs} be a D-basis of L', and b be in K\L'
We set L” = DUS,, ..., fu, 518"), which is finite over D. As L8 c L”,

1) The proof of the last part is also given by making use of Theorem 2,
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J@®&2 L"y=D. And, by Theorem 2, &(L"/D) is induced by &* = {sc
&K/D); L =L"}. As L” is finite and Galois over D, so is L” over
L. And &(L”/L') is induced by some subgroup of &*. Hence there
cxists an automorphism ¢ in &* such that #"s4b and x"=x for all
x& L. Therefore J(&L), K)=L".

Combining Lemmas 9, 10 and 11, we obtain the following principal
theorem.

Theorem 9. Let K be Galois over L. If the conditions («)-(3)
are satisfied, then J(&(K'), K)=K' for each intermediate subring
K', and K is locally finite over K'. (Hence K is totally locally finite
over L.)

Proof. At first, in virtue of Lemmas 10, 11, J(&(L), K)= L’ for
each L’ finite over L. If V(L)= V,(K’), then there holds that L C
C K'c H. Thus, in this case, our assertion is clear from Corollary to
Lemma 9. Hence, we may, and shall, assume that V,(L)2 V,(K’). In
this case, again by Corollary to Lemma 9, it suffices to show that there
exists some K" such that KK DK”"DL and [K”: L] < e and such that
V(K" = V(K. (Then we can take K” and V(Vi(K")) instead of L
and H respectively, by the remark at thc beginning.) Under our as-
sumption, there exists an element 5, = K’ such that a;b; 5 b,@, for some
a, €E Vi(L)\Vi(K'), and so V(L) 2 Vi(L(b)) D VilK’). Since [Vi(L):
V(KN <[VelL): C] oo, repeating a finite number of above pro-
cedures, we have a finite subset {b,,..., b} of K such that V,(L(b,,...,
b)) = V(K.

Next, we are going to prove the second part. The preceding argu-
ment enables us to find a subring K” finite over L such that K" c K'C
Vel Ve(K'")). Since all the conditions in the theorem are satisfied with
respect to K/ K", we may take K" and Vi (Vi(K")) instead of L and H
respectively. Hence, it suffices to prove our assertion in the case where
K’ is contained in H. Let {h) ..., h} be an L-basis of H;, and we set
H =K', ...,h). Then, asis casily scen", SoH'd: = JSMHY), K),

which shows that > @H’d: is a division subring containing K’ as well
1

as L, where &9 =@(K/L,. Noting that @(H/L) is outer, we know

that H is locally finite over K’ (see §1), accordingly [}_{‘,@H'd‘: K=

n|H : K’} > . Since &K/L,) is outer also, K is locally finite over
SluH'd;, and hence so is over K'.
i

The next is an casy consequence of Theorem 9.
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Theorem 10. Under the conditions (a)-(3), there exisis a one-to-
one dual correspondence between total subgroups © of & =G&(K/L)
and intermediate subrings K' in the usual sense of Galois theory.

Remark 3. If K is Galois over L and &(K/L) is 1. f.d. and the
condition (3) is satisfied, (or what is the same, it is 1. f. d. and locally
compact,) then clearly all the assumptions in Theorem 9 are fulfilled. It
is our conjecture that, in this case, the condition (3) may be needless to
obtain the one-to-one dual correspondence.

In the rest of this section except the last part, we assume the condi- .
tions (a)-(3). Let N be a division subring with HONDL. If p is an
L-isomorphism of N into K, then N°C H. For, if not, N contains a
division subring F finite over L such that F"(ZH. Then, by Theorem
2, pr can be extended to an automorphism in &, But this is contrary
to the normality of H. And the fact that &(H/L) is outer shows that p
can be extended to an automorphism in &(H/L) =08, (see §1, (ii)), and
so to an automorphism in ®&,

Now we are arrived at the position to prove the following theorem
which corresponds to Theorem 3 in [12].

Theorem 11. Under the conditions (a)-(0), each L-isomorphism
p of an arbitrary intermediate subring K' into K can be extended
to an automorphism in O,

Proof. 1f V(L) = V,{K’) then there holds that L C K' C H. Hence,
in this case, our assertion is clear from the above remark. Hence, we
may, and shall, assume that V(L) 2 V«(K’). In this case, by making
use of the same method as in the proof of Theorem 9, we obtain that
K'Cc K'C Vi Ve(K")) for some K" finite over L. By Theorem 2, Py~
can be extended to some ¢ in ®. Since po~' is a K”-isomorphism of K’
into K, we can extend it to some = in &(K") (of course, in @), Clearly
¢ is a required one.

At last we shall come back to the case where © is 1. f.d. and locally
compact. To prove the Galois correspondence previously mentioned, it
suffices to show the following :

Lemma 12. If &(K/L) is L. f.d. and locally compact then any
closed regular subgroup of &(K/L) is a total subgroup, and con-
versely.

1) Note that G(H/ H) = 83"
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Proof. By the latter part of Theorem 9, K is totally locally finite
over L. Hence our assertion can be proved in the same manner as in
the proof of Theorem 7 in [11].

Combining Lemma 12 with Theorem 10, we obtain the following
theorem.

Theorem 12. Let K be Galoisover L. If &(K/L)isl.f.d. and
locally compact then there exists a one-to-one dual correspondence
between closed regular subgroups of S(K/L) and intermediate sub-
rings in the usual sense of Galois theory. In particular, if S(K/L)
is outer then we have the one-to-one corrvespondence belween closed
subgroups of &(K/L) and intermediate subrings.

For an arbitrary subgroup © of @ =G0(K/L), the composite of O

T T~ —
and Vi(J(9, K)) is denoted by . On the other hand, for any inter-
mediate subring M, & will signify the totality of automorphisms ¢ in
® such that M*= M. Our last theorem is the next, which corresponds
to Theorem 5 in (12].

Theorem 13. Let K be Galois over L, ®=&K/L) be l. f.d. and
locally compact, and K' be an inlermediale subving. K' is Galois

over L if and only if 8% is dense in ©.

Proof. At first, we assume that K’ is Galois over L, then by
Theorem 11, &(K’/L) coincides with (8*'),., and Theorem 9 secures the

equality J(®®, K)= L. Hence G~ is dense in © by Lemma 12. Con-
versely we assume that /6;’;’——:@5. Again by Theorem 9, we have

J(® ", K= J(B*, K)= J{®B*, K)=L, which shows that K’ is Ga-
lois over L.

4. Examples.

(a) An infinite Galois extension whose total group is outer.

In pp. 23—24 of (7], G. Kéthe proved that there exists a (countably)
infinite number of normal extensions over the rational number field Z of
which the degrees are prime to each other, and so, that there exists a
(countably) infinite number of division algebras over Z: {K,, K.,...},
where K, contains a maximal subfield AM; which is normal over Z and
([Ki:Z),[K,:Z])=1for i j. Then, asis well-known, A=K, XK,
X g+ X zK; is a division ring. If ¢ < j, by the canonical isomorphism,
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A, can be considered as a division subalgebra of A, and K= GA‘Z,
i=]

which will be denoted as K;XK,X:+XK,X:-, may be considered.
Throughout this section, whenever we consider H = H, X H,X -»with
K, D H,DZ, H would have the same content as in the above. (Note here
that H is a division subring of K.)

Now we consider the division ring K= K;X M,X M;X---. Then
Vi(Ki)) = MyX My X o = C=Vy (Ko). It is easily shown that C/Z is
Galois. Let ® be the Galois group of C/Z, and {d,=1, d,,...,d,} be
a Z-basisof K;. Then we can extend each automorphism in & to some
K,-automorphism of K, by the following definition ;

a— >ld«cs, where a=>dic;= K, ¢,/'s=C, a=6.
i=1 i=]

And conversely, each K;-automorphism of K, is obtained in this way.
Clearly J(®,, K;)= K,, where ®, is the set of all K,-automorphisms of
K, Hence K,/K, is Galois and &(K,/K,)=®,. And &, is locally
finite., For, let a= ‘2} dici,, ¢’s in C, be an arbitrary element of K,

then a° = ;’ dic® for each s E®,. Since {¢;}® ={¢}® (G =1,...,n)is

finite, {@}® is finite too. Obviously the center of K, is infinite hence
®, is outer.

(b) A Galois extension whose total group is not outer but almost
outer.

Let F be the algebraic closure of GF(p), p is a non-zero prime
number, then F is ideally cyclic (ideal zyklisch) in Krull’'s sense, that
is there exists an automorphism ¢ of F such that its restriction to any
finite subfield is a generating element of the Galois group? ([8]).

Now we set I =1[t, ], where [{, ] is the principal ideal domain
consisting of all forms ; t'a;, ay€ F, with the usual addition and the
multiplication defined by af =1a°. And let K be the quotient division
ring of I, then the center of K is GF(p). For, if 0= x"'y=yx"" is an
element of the center of K, then for any y € F, yrx =xry and yix =

xty. Weset x =, tlay, am=0, y=2311 8, where we may assume that
B.=1. Then the above two equations come to the following :
1) ?_j} ti+ja.‘7j 2’.11 3 = L} t“"'ﬂ'r)"'i [ﬂ‘,

i,

1) In fact, 6:a - a? (@ € F) is such an automorphism.
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. SES g i+
(2) {Z} ti-i'J‘H al{ [‘?j — iEJ ti'l j”a’;ﬂ'}'

Comparing the coefficients of the heighest degree, we obtain a;z."';"'” =

amr"m and af,f:'“ = a,. In particular, from the first, we get a2 = aw so
that, from the latter, a7 = am, whence a., € GF(p), hence, again from
the first, am(y” — 7" )=0for all y in F. If m 5= n then there exists an
element ; such that ;" % ;°", whence a-, = 0. This contradiction
implies that m =#n. We now proceed by induction and assume that a; =

anfi for m >4 > gq. Comparisons of the coefficients of *? in (1) ‘and
that of "*"*! in (2) imply the following :

. k k h n
(1" . 2V an 7 F= 2 any® A7,
L+ h=m4-q k= 4q
k+1 h+1
(29 > af A= > an ﬂf- .
Ri-kma+q h4-k=m+q

And our induction hypotheses will show that .87 + aJ 7% = an 1°
+ ™ and w.fo + a5 = awd  + a, Further, from the first, we

el

have (amf, — @)’ = a.f,; — @ and from the second, (@ — ag)”
= a,fs —a,. Hence a.f3,—a, is in GF(p). Combining this fact with
(2'), there holds that (@@ —au) (%' — ") = 0. Since y*" £ " for
some y € F, we obtain a..j3, = a,, which completes our induction. Hence
X = asy.

For any GF(p"y C F, if we set L= V (GF(p"), then K/L is finite
and Galois, and its total group is locally finite. (The order of the group
of all L-inner automorphisms of K is (p"—1)/(p—1).)

(e) An infinite Galois extension whose total group is not locally
Sfinite but 1. f.d.

We consider the division ring K=K X K. X...... in Example (a).
Andlet H=H X H,X...., where K,DH,DZ. Then Vi (H)=Vi(H)
X Ve(H) X ..o, and Vi(V.(H)=H;xXH,X..... , whence K/H is

Galois. Let @ be an arbitrary element of K and ¢ be any automorphism
in &(K/H), then {a, a°} is contained in some A, = K, X ;K. X.... XK.
And ¢ induces an B,-isomorphism ¢* of B,(a@) into A,, where B, =
Hy X zH>X... %X zH, Since A, is finite over Z, there exists an inner

-~ S——— — ~
automorphism b in VAP(B,,) (C Vx(H)) such that a*=bﬂp(a,. Hence

a” = a® with some b in Vi(H).
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In particular, we consider the division subring M=M X M, X....,
where M,’s are maximal subfields of K,'s mentioned in (a). Then M=
V(M) (R Z) is a maximal subfield of K, and so &(K/M) is not locally

finite (see Remark 1). And M(a) = M( [a}¥) = M({a}®“*) implies that
&K/ M) is 1. 1. d.

(d) An infinite Galois extension for which the conditions (a)-
(0) in §3 are satisfied but whose total group is not l. f.d. '

We consider again the division ring K, = K, X ;C in Example (a),
where C=MoX Mu X ..... . Asis noted in Example (a), C is Galois
over the rational number field Z. Now we shall verify that K, and Z
can be taken as K and L in Theorem 9 respectively. At first, VKU(KO)

=C and [Vg,(2):Cl=[K;:Z]< o, which is the condition (3). As

we can take any Z-basis of K, for {d;,...,d,} in Theorem 9, and as
K./ K, is Galois by Example (a), the rest of the verification is clear.

If aeK,\C then Z({a}¥%/®) > Z( {a}®) = K, by Cartan’s theorem
([1] or {2]), which shows that &(K,/Z) is not 1. f. d.
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