HARMONIC ANALYSIS ON LOCALLY COMPACT
GROUPS.

MINORU TOMITA

Introduction.

Let & be a separable locally compact group. A continuous function

p on @ such that EU] E”, plai'ay) =0 for arbitrary a,, e a, in &
and for arbitrary complex numbers &,, ***-- £, is called positive definite.

p is called normalized if it takes value 1 at the unit e of @. p is called
elementary if we can not devide p to a sum of two positive definte func-
tions ¢ and 7 except for the case that ¢ ==ap and 7 == (1 — a)p.

The set & of all normalized continuous elementary positive definite
functions on ® is called the dual space of &. In € we introduce the
Pontr jagin's topology as follows. A complete system of neighbourhoods
ofa #u= € is determined by all those sets W (% ; W,e)=( € €:|u(a)
—wv(a)! < ¢ for every @ in W), where W are compact sub-sets of &, and
e are positive numbers.

If 7 is a bounded complex regular measure? onv@f‘, a function # on
€ defined. by

2a) = j@ @) d =)

is called the Fouricr transform of =.

% is a bounded continuous function on ®, and, if = is non-negative,
= is positive definite (Theorem 7). Every continuous positive definite
function on ® is a Fourier transform of a suitable non-negative regular
Borel measure on & (Theorem 3). If = is a regular measure on & and
if X is a Borel set in &, we denote by =, the relative measure on X:
ax(A)=a(XNA). Itis convenient to define a diagonal measure on €
in connection with a certain property of the Fourier transform =x — 7.

A pair of positive definite functions p and ¢ are called mutually
orthogonal. if there is no non-zero positive definite function 7 such that
p —r and g — 7 are positive definite. A regular non-negative measure
= on @ is called diagonal if for every Borel set X in & % and &@;x

1) In every completely regular topological space we define a regular measure
as in Definition 2. 1. )
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are mutually orthogonal.

A sort of reciprocal transform of the above Fourier transform = — %
is considered. Let L(®) denote the Banach space of all functions on &
summable by a fixed left invariant Haar measure on ®&. The Fourier
transform of a function f in L(®) is a function f on € such that

fl) = j Wa)f (@) da.

f is a bounded continuous function on € (Theorem 6). Let 4 denote
the continuous function on & such that J(a)” ’J f(ba)db == J f(b) db for
every f& L(®). If f,g are two functions in L(®), we put f*@a)==

d(a@)? f (@) and(f ° g) (@) == Jf(b)g(b“a)db Then the Fourier transform
f— f satisfies
» - TN
X)) =) and (f*fH)2)=0.

The following Plancherel’s theorem is asserted.

Theorem 1. In order that a bounded non-negative regular mea-
sure = on € be diagonal, it is necessary and sufficient that, for every

Sfunction ¢ on € measurable and square summable by =, there exist a
sequence §f,} in L(®) such that

lim | | £u(2) = ¢(1) |* dz(2) =0

and simultaneously

lim [ (A7) (0 d =(2) = [l dxt,

n—>co

We call this sequence {f,} in L(®) an approximative image of the
Fourier transform of the function ¢. The following Parseval’s theorem
is asserted.

Theorem 2. Let = be a diagonal measure on €. If {f,} and
{g.} are approximative images of two square summable measurable
functions ¢ and  on & respectively, then

. > el
}gg [ (gn*ofu) (1) — @A) yr(2) | dr(a) = 0.
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Other important properties of diagonal measures are related to the
theory of the unitary representations for groups.

Given a continuous positive definite function p on &, the correspon-
ding cyclic unitary representation is determined as follows": There
exists a Hilbert stace L*(p), a strongly continuous homomorphism a— P,
of ® on a suitable unitary groups &(p) of operators on L’(p) and an
element P in L°(p) with p(a) = (F.p, p), for which the closed llnear span
of the set (Pb: @ €®) coincides with L°(p).

The commutor G(p) of B(p) is the set of all bounded linear opera-
tors in L*p) which commute to all operators in G&(p). If ¢ is another
continuous function on & such that, for a suitable constant y, yp — ¢
and yp + ¢ are positive definite, there exists a uniquely determined
operator K in &(p)’ such that g(a) = (F.KD, p).

Let = be a bounded non-negative regular measure on €, let p
denote its Fourier transform p==% and let Miz) denote the Banach
space of all bounded functions on € summable by =. For every ¢ € M(z)
there exists a uniquely determined operator F, in &(p)’ such that #.(a)

———*(P.,F,,p,p)=J/1(a)¢().)dz(/l), where =, is the relative measure:

7(A) =JA¢(x)dn(A). This mapping ¢ —F, is called the Fourier trans-

Jorm relative to the measure r, and we denote by (=) the range (F, :
¢ € M(x)) of this relative Fourier transform.

Theorem 3. If = is a diagonal measure on €, then

(1). The range {(=) of the relative Fourier transform is a ma-
ximal abelian sub-algebra of O(p).

(2). The relative Fourier transform ¢ — F, is an algebraic iso-
morphism between M(z) and F(z). It is one-to-one, linear, and
salisfies the Parseval’s equality F,, = F, F, for every ¢, y-€ M(r).

Theorem 4. Given a positive definite function p on O and a
maximal abelian self-adjoint sub-algebra K of &(pY, there exists a
uniquely determined diagonal measure = on € whose Fourier trans-
Jorm = coincides with p, and for which the range F(z) of the relative
Fourier transform coincides with K.

Therefore, = © (%, %)) is a one-to-one correspondence between the
system of all diagonal measures on & and the system of all couples p K

1) Gelfand [2]
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of positive definite functions p on @ and maximal abelian self-adjoint
sub-algebras & of G(p)’.

In Chapter 8 we shall establish the general Plancherel’s theorem on
separable unimodular groups.

Chapter 1. The Pontrjagin’s topology and the Raikov's Theo-
rem.

L(®) is the Banach space of all functions on & summable by the
fixed left invariant measure. The norm | f|, of an element f in L(®)

is | fl, = f | f(a)| da. The dual Banach space of L(®) is the space

M(®) of all bounded functions on @ summable in each compact sub-set
of & The norm |¢ . of ¢ in M(®) is |¢|. =ess. max. |¢(2)|. The
bilinear form (f, ¢) between L(®) and M(®) is

(f, ) = [ Fla)p(@)da.

A function p in M(®) such that gg pla”’b)f(@)f (b) dadb =0 for

every f€ L(®) is called positive definite. 1If p is continuous, this de-
finition is equivalent to the definition given in the introduction. By the
Gelfand’s theorem? every positive definite function in M{(®) coincides
to a continuous positive definite function almost everywhere.

If p is a positive definite function, the representative operator P
on L*p) for an element f in L(®) is defined by a strong integral P, =

Jf (@) P,da. Then
(1.1). The norm | P;| of the operator P, does not exceed |f|,.
(1.2). (P, p) = j f@pa) da=(f,p).

(1.3). P,P.=P, for every a€®, where f. denoles the transla-
tion f.b) = f(a~'b) of the function f.

The space N of all normalized continuous positive definite functions
on @ is contained in the dual space M(®) of L(®), the weak topology
in which is defined in the well-known way. On the other hand we intro-
duce in N the Pontrjagin’s topology as follows. A complete system of
Pontrjagin’s neighbourhoods of a p € is the totality of those sets U(p:
W,e) =(geN: |pla) — ga)| < ¢ forevery a= W), where W are com-

1) Gelfand [2]
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pact sub-sets of &, and e are positive numbers. D. A. Raikov? proved
the following important theorem.

Theorem 5. In the space N, the weak ilopology and the Pontr-
jagin's topology coincide with each other. The function ¢(p, a) = pla)
(defined for pEN, ac®) is two-sided continuous in the product space
N xS,

Proof?. Let p be an element in N. For each f € L(®) we define
a function p’(@) on @ by p’(a) = (P.P/p, Pb).  p, is a continuous posi-
tive definite function such that

(1.4). For every fixed element f in L(®) and for every positive
number ¢, lhere exists a neighbourhood U of the unit e of & with

Ip'a) — p'le)]| < ¢ for every pE N,
In fact, if pE R,

[ p'(a@) — ple) | =|((P;, — pob, PD)|
slfu—Fhilfhilipte

Notice that || b {|*==(p, p) =pl(e) =1, and that the function g(a)
=|fu—f ==Jlf(a“‘b) — f(b)| db is continuous and vanishes at e.

Then we can choose such a small neighbourhood U of e.

(1.5). Let p be an element in N, then for every positive number
e we can choose an f € L(®) and a weak neighbourhood V(p) of p
such that |@(a) — qla)| { ¢ for every ac® and g B(p).

Proof. We can choose a neighbourhood V of the unit e of ® so
small that [p(a) — p(e)| < €°/16 for all aE V. Let f be a positive func-
tion on @ which vanishes out-side of V, and which satisfies | f|, =

J Sf(a) da==1. And consider a weak neighbourhood of p:%(p) =(¢ €
N (f,p — @)| < €°/16), then f and B(p) satisfy the condition in (1.5).
In fact,

|7,0) = 1= [ /(@) 1pla) - plo) | da < ¢/16.
If g=B(p),

1) D. A. Raikov [9].
2) This proof dues to Yoshizawa [10]
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[ —1|Z[fip—@|+1(f,p) — 1] < /8.

Notice that |q =<1, [ @ qlZ[fall=1 and (f, @ = Re(Qyq, q),
then

Qa—aqll*=1Qqal*=lal*— 2Re(Qgq, q)
<21 — (f,q) < /4,

and

| (@) — qla) | <7 (Q.Q4, Q4,9 — (Q.9,d)]
< [(RAQ, — Dy, Q) | + | (Q.q, (& — 1)) |
=21Qa—-qal <.

This concludes (1. 5).

(1.6). Let p be an element in N and ¢ be a positive number,
then we can choose a neighbourhood U of e and a weak neighbour-
hood B(p) of p such that qla) — qb)| { ¢« for every b™'a€U and
every q < L(p).

In fact, by (1.4) and (1.5) we can choose a neighbourhood U of e
and a weak neighbourhood B(p) of p such that

|g(a) — gle)| £ */2 for every a €U and every g€ B(p),

then by the M. Krein’s inequality,

|g(a) — qb) | < (2g(e)(gle) — Fegq(b™ a)) e,

(1.7). Every Pontrjagin’s neighbourhood Wip: W,e¢) of a pei’ﬁ
contains a weak neighbourhood BW(p) of p.

Proof. Choose a neighbourhood U of e and a weak neighbourhood
B(p) of p such that |gla) — q(d)| { /8 for every b'ac U and every
a=B(p). We now cover the compact space W by finite number of

aU,...a,U, and choose a positive function g on & with |g |, :[g(a)
da =1, which vanishes out-side of U. Put (p)=B(p)NU(p) and
Wp)=(geN: [(ge,p — @] < /4 for 1=<i<n). Then BWp) is a
desired weak neighbourhood of p in the space . In fact, if b is a
point in W, then b is contained in one of @,U. Say b€ a/U, then
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1@ — gla)’ <[ 20| (p(x) — plad) | dx
+ Jgul(x) | (g(x) — gla))| dx

+ Jga,(x) | (p(x) — q(x)) | dx
=cf4 + /4 + /4 =3c/4,
and

'pb) — g | Z pd) — pla) | + | plas) — qla)] +
|ga) — qb)| < /8 + 3¢/4 + ¢/8 =c.

Thus W(p) is contained in U(p: W, <).

(1.8). Every weak neighbourhood W(p, f, <) = (q€N: |(f,p —q)|
<) (where fEL(®) and «: > 0) of a p=N contains a suitable
Pontrjagin's neighbourhood of p.

Proof. Choose a bounded measurable function g on & with
lg — fl: € ¢/3, which vanishes out-side of a suitable compact set W,

and let y be a constant such thatg.g(a)lda <. Then U(p: W, e/3p)
is a desired Pontrjagin’s neighbourhood of p.
In fact, for every g€ U(p: W, ¢/3;) we have
p-dI=lg-fip—a'+ (gp -l
< 2¢/3 + jw|<p(a) — g gl da <e.
(1.7) and (1. 8) concludes the Raikov’s Theorem.
Hereafter, we assume that the Fourier transform of an f & L(®) is

not only defined on € as in the introduction, but is defined on N as
such a function that

f<x>=JT(E)f(a) da e,

f is weakly continuous on N, and by the Raikov’s theorem we have

Theorem 6. The Fourier lransform of a function f in L(®) is
conitnuous on N and on € by the Pontrjagin’s topology.

Chapter 2. Fourier transforms of measures on .

Let ;. be a regular measure on a compact space £. If X is a mea-
surable sub-set of ¥, the relative measure pr on X determined by
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px(A) == (XN A) is a Borel measure on X such that

(2.1). For every measurable sub-set Y of X we can choose a
compact sub-set F such that p (Y — F) ..

Conversely, let X be a topological space which is contained in a
comact space £. And let 4x be a Borel measure on X which satisfies
(2.1). Then the measure p on {2, defined by u(A)=pzx(ANX) for
every Borel set X, is a regular measure on £, and X is clearly measur-
able with respect to s

Notice that every completely regular topological space is contained
in a suitable compact space, then we define a regular measure on a com-
pletely regular space as follows.

Definition 2.1. A bounded non-negative Borel measure i on a
completely regular topological space 2 is called regular if for every
Borel set X and for every positive ¢, there exisls ‘a compact sub-set
Y of X such that n(X — Y) {e.

A complex measure p on X such that p ==y — po +i (pz — g1,
where p: are non-negative regular measures on £, is called a regular
measure.

Lemma 2.1. Let u be a regular measure on a compact space 2,
and X be a measurable sub-set, then the relative measure jix is regular
on X. Conversely, if n is a regular measure of a topological space
X which is contained in a compact space 2, then n is extended to a
regular measure on 2 which vanishes out-side of X.

Let = be a bounded complex regular measure on the space 9 of all
normalized positive definite functions. Then the Fourier transform = of
= is a function on & such that

@) — f A@dz(D).

Theorem 7. The Fourier transform of every bounded complex
regular measure on N is a bounded continuous function on &. The
Fourier transform of a non-negative measure is positive definite.

Proof. Let = be a bounded non-negative regular measure on R. If
¢ is a positive number, we can choose a compact sub-set 9% of It such
that =(J — N,) < e. Now the product space N, X & is compact, the
function pla) (p= N, a=®) on which is two-sided continuous; and given
each 2= ®, we can choose a suitable open neighbourhood V of @ such
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that |2(a) — 2(b)| L ¢ for every b=V and every A& R, Then for
every bV,

3@ — 20 [ 11@ — 10 | da + [, [d@ =20 d=(n)
‘ < @) + 2).

Therefore = is continuous at a € ®.

7 is positive definite. In fact, let @, ...a, be arbitrary elements
in @, and let &,....E, be arbitrary complex numbers, It is sufficient
to show that

gfifﬁ(af‘a 5 =0.
This follows immediately from the fact that

‘EJEfEJ’(ai“a,) >0

for every 1€ M. This concludes the Theorem.

We shall need some preparations to prove that every positive defi-
nite function on & is a Fourier transform of a measure on . But a
more weaker result will be easily shown.

Let B denote the space of all positive definite functions p on ®
whose norms p(e) do not exceed 1. Then ‘P is a bounded regularly con-
vex sub-space of M(®), and contains R and &.

We denote by & the closure of & by the Pontrjagin’s topology, then

Theorem 8. Every positive definite function on ® is a Fourier
transform of a suitable non-negative bounded regular measure on .
This Theorem follows from the next Lemma.

Lemma 2.2. Let p be a normalized positive definite function,
and = be a non-negative regular measure on B such that p is a weak

integral p =ISBMHU)’ i.e.(f,p) =J’$(f, Nd=(1) for every fe& L(®),
then = vanishes out-side of N, and p is the Fourier transform of .

Proof. If f is an element in L(®), the function (f, 2), where 2
varies over ¥}, is a continuous function on . Therefore

e) = (f, 4)
¢ lsﬁlp§1|f !
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is a lower semi-continuous function on 9B, (where i varies over P).
Now

1= ) = L(f, A dz(1) |
ple |fS|,u§IJ"(f) (1) ]

gfma(e) d=(2) L1.

Then 2(e) =1 is satisfied almost everywhere. =z is a regular measure
on R, and by Theorem 8, the Fourier transform 7 is continuous and
positive definite on &. Choose a sub-set N, of M with =(MN — N, =0,
which is a countable sum of compact sub-sets of !. Then x(a) is conti-
nuous in the product space N, X &, and measurable by the product mea-
sure d= X da. Applying the Fubini’s theorem, we have

o) = yf@p@) da= [ dx) [ @)f(@) da

=J@f(a) da fm“x(a) d=(2) == f f(@)z(a) da
= (f, 7).

This means the coincidence between two continuous functions p and 7.
We now prove Theorem 8. The set &, of all extremal points of P
consists of the function 0 and the set & By the Krein-Milman’s theo-
rem, the regularly convex hull of the set €, is T,.
We use the next LemmaV,

Lemma 2.3. Let B be a Banach space, and let X be a bounded
weakly closed sub-set of the dual space of B. Then every element x
in the regularly comvex hull Co(X) of X is a weak integral x =

jadp(z), where p is a non-negative regular measure on X with total

mass 1.
The weak closure @&, of €, is weakly compact, and Co(&,) = %3, then
every element p in P is a weak integral

= |z ld=(1), where = is a non-negative regular

measure on &, with total mass 1. Especially, if p is normalized, by
Lemma 2.2, = vanishes out-side of %, and p is the Fourier transform of

1) Tomita. Math., Jour. Okayama Univ. Vol.3 No.2 (1954)
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7. The common part of R and &, is the closure & of € by the Pontrja-
gin's topology, then Theorem 8 is concluded.

Chapter 3. Decomposition theorems of operator
algebras.

The Main Theorem in the Introduction corresponds to the respective
decomposition theorems of states on operator algebras, which is develop-
ped by Neumann, Mautner, Godement and Segal. We shall reconstruct
some indispensablc parts of thcir results together with some additional
results in the following Chapter 3...6.

We consider a fixed Hilbert space $ and a separable uniformly closed
self-adjoint algebra U of bounded linear operators on © which contains
the identity I, A linear functional s on 2l such that s(A*A) =0 for
every AU is called a state. s is necessarily bounded, and its norm
is s(I). s is called mormalized if s(I)==1. The canonical represen-
tation of U with respect to a state s is determined as follows.

There exists a Hilbert space L*s), a uniformly continuous homo-
morphism A — A, of A on a uniformly closed self-adjoint algebra 2(s)
on L%s) and an element j in L*(s) with s(A4) = (A4,, 1), such that the
set (A : A=) is uniformly dense in L%s). The mapping A — A, is
called the canonical representation of ¥ in L(s). ,

Let s be a state. If f is a linear functional on U such that, for a
suitable constant y, ys + ¢ and ys — ¢ are states on A, then there exists
a uniquely determined bounded linear operator K in the commutor 2(s)’
of A(s) such that t(A) = (AK], ).

A state s is called elementary if we can not devide s to a sum of
two states ¢ and # except for the case that f == as and % == (1 — a)s. A
state s is elementary if and only if the representative algebra 2(s) is
irreducible, i.e. A(s)' is the one-dimensional algebra which contains the
identity I; on L*(s).

We denote by & or by S(A) the set of all normalized states on ¥,
and by E(2) the set of all normalized elementary states on .

If ¢ 1s a regular measure on &, the linear functional & on U defined
by

HA) = jz(A) do(2)

is called the Fourier transform of . Then
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Lemma 3.1. The Fourier transform of a bounded complex mea-
sure on & is bounded and linear on N. The transform of a bounded
non-negative measure is a state on U,

A pair of states s and ¢ are called mutually orthogonal if there is
no non-zero state 7 on U such that s —» and ¢ — 7 are states. A
bounded non-negative regular measure s on E() is called diagonal if
for every Borel set X in E), two states s¢x and & sy)-x, are mu-
tually orthogonal, where s denotes the relative measure on X.

Let o be a fixed bounded non-negative regular measure on &, and s

denote its Fourier transform s =fz do(2). If &, is the Fourier trans-
form of the relative measure s, (¢ € M(s)), then there exists a uniquely
determined operator Fo in A(s)’ such that (A,F,s, s) == 4,(A) =I/1(A)

¢(2) do(2). The mapping ¢ — F, is called the Fourier transform rela-
tive to the measure . We denote by F(s) the range of this mapping
¢ —» F,, We assert the following theorems which correspond to the
respective theorems in the Introduction.

Theorem 9. In order that a bounded non-negative regular mea-
sure ¢ on EQ) be diagonal, it is necessary and sufficient that, for
each function f on E®) measurable and square summable by a,
there exists a sequence | A,} in N such that

1imjr A(AD — f(3) 2 da(d) =0
and simultaneously
lim j A(AFA) do(2) — j LF )2 daa).

The sequence { A, in Theorem 9 is called the approximative image
of the Fourier transform of f.

Theorem 10. Let o be a diagonal measure on E(N), and let f
and g be two measurable and square summable functions on E(X).
If {A,} and {B,} are approximative images of Fourier transforms
of f and g respectively, then

lim []4(B,* A2 — F(020D) | dal2) =0.
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Theorem 11. Let o be a diagonal measure on E®), then

(1). The range §la) of the relalive Fourier transform is a
maximal abelian self-adjoint sub-algebra of A(sy.

(2). The relative Fourier transform ¢ — F, is an algebraic iso-
morphism between M(s) and Fla). It is one-lo-one, linear and satis-
fies the Parseval’s equality F,, = F,F,.

Theorem 12. Let s be a siate and R be a wmaximal abelian
self-ad joint sub-algebra of 2(s), then there exists a uniquely deler-
mined diagonal measure o in E() whose Fourier transform is s, and
Sfor which the range F(s) of the deformed Fourier transform is R.

Therefore, s < (5, (s)) is a one-to-noe correspondence between all
diagonal measures on E(2) and all couples (s, 8 of states s on U and
maximal abelian self-adjoint sub-algebras & of 2(s)’.

Chapter 4. The Plansherel’s theorem.

Every regular measure on E() is extended to a regular measure on
© which vanishes out-side of E(), Then every diagonal mieasure on
E®) is regarded as a regular measure on & which satisfies the next two
conditions ; '

(4.1). ' For every Borel set X in ©, sx and se-x are mutually
orthogonal.

(4.2). & vanishes out-side of E).

We first investigate those measures on & which satisfies the condi-
tion (4. 1).

Theorem 13. Let o be @ bounded non-negative regular measure
on ©. If s satisfies one of the following three conditions, then the
other conditions are necessarily satisfied.

(4.1). For every Borel set X in ©, o and oce_x are mulually
orthogonal.

(4.3). The Fourier transform ¢ — F, relative to s is an alge-
braic isomorphism.

(4.4). Let L’(s) denote the Hilbert space of all functions on ©
measurable and square summable by &, then Jfor each f< L(s), we
can choose a sequence {A,} in N such that

limJI w(An) — flu)'* dolu) =0
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and simultaneously
tim [ (A A datu) = [ | 7o) ! datao.

Proof. We first notice that the orthogonality relation between states
on U corresponds to an orthogonality relation between the related cano-
nical representation spaces. That is,

Lemma 4.1. In order that two stales s and t be orthogonal, it
is necessary and sufficient that, putting u=s -1, the operator K
in Wu) determined by s(A) = (A.Ku, 1) be a projection operator.

In fact, let s and ¢ be mutually orthogonal. The operator K in
(), determined by s(A) ==(A,Ku,u), is a definite Hermitian, and
I — K is also definite. The state v(A) == (4,K(I — K)u, u) should be 0,
because s — v and ¢ — v are states. Therefore K(I — K) =0, and K
is a projection.

Conversely let s and ¢ be two states on 2 such that the operator K
in A(x) determined by s(A) = (A, Ku, 1) is a projection. If 7 is a state
on U such that s — 7 and ¢ — # are also states, then the corresponding
operator £ such that 7(A4) == (4.Ru, 1), is a definite Hermitian such that
K — Rand I — K — R are also definite. This means R =0 and » ==0.
Hence s and ¢ are mutually orthogonal.

We now show that, if » satisfies (4. 1), then it satisfies (4.3). Let

s be the Fourier transform of ¢: s = I 2da(1). If ¢ is a characteristic

function on a measurable set X in &, X coincides with a Borel set X, almost
everywhere, and the measure ax, coincides with the measure . Since
= satisties (4. 1), &, and #,-, are mutually orthogonal, and by Lemma
4.1 F, is a projection. If ¢ aud + are two characteristic functions on
mutually disjoint measurable sub-sets in &, then K, < F_,, and F,F,
==0. Let ¢ and 4 be two arbitrary characteristic functions on measur-
able sets in &, then F,==F,, + F,,_, and Fy = Fy + Fyu_,. Therefore
F,F,=F,,.

Now F,F, = F;, is satisfied for every pair (f, g) of measurable step
functions f and g. Every bounded measurable function is a uniform
limit of a sequence of step functions. Then F,F, == Fy is satisfied for
every f, g € M(s). The mapping f — F, is one-to-one. In fact, if f in

M(io) does not vanish, then | Ff|l> = (F,*1,1) :J | f()F da 5~=0.
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S — F; is an algebraic isomorphism between Mi(s) and (), hence the
measure ¢ which satisfies (4. 1) satisfies also (4. 3).

We next show that, if + satisfies (4. 3), then # satisfies (4.4)., ‘If &
satisfies (4, 3), then the relative Fourier transform f — F;is an algebraic¢

isomorphism. Let s be the Fourier transform s =——Juda(u) of . If g

is a bounded measurable function on E(2l), and if ¢ is a positive number,.
we can choose an element A of A such that || A — F,j||* { e Using
the relation F,*F,==F,,,2, we have

| Af — Fil? = [ w(A*4) — 20l A) + | g ! data)
- J | At — glan || 2 datw) < e.
Then
[1uta) — gt * datw) = [ (A — g, w1 dat)
<[ 1 Aw - g dow <,
and

[lutax ay7— gt 17 dotw) = [ || A | — | gl || [dote

gf | Ant — gl || * datao).

If f is an element in L*s), we can choose a bounded measuable

function g on & such that Jlf(u) — glu)|” dalu) <%. For such g choose
an element A in A with | AJ — K, |? <%, then
[luta) = s dota) < e,
and
[utax 47— | 760 [ dota) < .

Therefore, every regular measure ¢ on & which satisfies the condition
{4. 3) satisfies also (4. 4).
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Notice that every diagonal measure satisfies (4. 1), then we have

Lemma 4.2. Let « be a diagonal measure on EQ) whose Fourier
transform & is s, and let g be a bounded measurable function on
EQ). If {A.} is a sequence in N such that its canonical representa-
tions A, converge uniformly to Fj, then {A.}l is an approximative
image of the Fourier trnnsform of g.

We finally show that, if + satisfies (4.4), then o statisties (4.1).

Let f be a bounded measurable function and ¢ be a positive number.

If A is an element in 2 such that
j |u(A) — f) | datw) &,
and simultaneously
Ju(A*A) dau) __S_[lf(Zi) 2 da(n) + &7
then
0= j | At — fu | ? dalu)
— [aara) - 29 fuinta) + |76 ) dot)
<1760 dota) + &) — 2 [ 1760 1 dota) + 2 [ If w0 dotw)®
+ [15 00 dotu

)
=

< (e + 2 (J]f(u) 2 da(u) ™).

Therefore we can choose an A € such that
f I Aat— fan|* datw) < &
If g is another bounded measurable function on &, then
| (FA — Fuf, B < | | gt)( At = faon, B datw)|
éjlg(u) I Bat )l I At — fGon || dala)

1

=lgl( f I Buat |l * da(u))"’-f(j I At — faou |l dela)®
<clglll Bfll.



HARMONIC ANALYSIS ON LOCALLY COMPACT GROUPS 149

This implies || F,Af — Ffll <:lgl.. Especially, || Af — Fil <.
Then "F,F,f — F/f| < ¢ (|f]-+|gl-). Now we have F,F,j=F,f and
Fy, = F,F,. If f is a characteristic function on a Borel set X in &,
then F?=F,=F/* - F, is a projection, and two states 5r and
og-x = ¢ — &x are mutually orthogonal. Therefore, if « satisfies (4. 4),
then o satisfies (4. 1).

Hence, if # is a non-negative regular measure which satisfies one of
the conditions (4. 1), (4. 3) and (4. 4), all other conditions are satisfied.

Theorem 9 and Theorem 10 is an immediate consequence of Theorem
13. Theorem 9 is evident, then we show Theorem 10 only. Let # be a
diagonal measure on E(2), and extend + as a regular measure on &. If
{ An} and {B.{ are approximative images of Fourier transforms of f and
g in L*(s) respectively, then

tim [ | Auat — 7G| datu) = 0,

and

hmJ ” Bml.u - g(u)ll “2 da(u) ==0.

Hence

f |(B*An) — fu)g(u)| do(u)
= [ 1(Auit, But) — (£, glaom | do ()
< [ 1(Aut, But — gow)| dota) +
+ f [ (Anutt — f (@), g(ee)) | do(u)
S N Awt | dotun™( 1 Bt — gl | dotu)™
[ 1 At — fon da(u))']T(J | glaent |2 doa))F— 0

as 1 — oo, This concludes Theorem 10.

Chapter 5. Diagonal measures and maximal abelian
sub-algebras.

Let ¢ be a non-negative regular measure on & which satisfies the
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condition (4.1). Then ¢ is diagonal if and only if it satisfies the condi-
tion (4. 2), that is, ¢ vanishes out-side of E().

Theorem 14. Let o be a regular non-negative measure on &
which satisfies the condition (4.1). A necessary and sufficient con-
dition for o to be diagonal is that the range F(a) of the relative
Fourier transform f— F, should be a maximal abelian self-adjoint
sub-algebra of Uls).

Proof of the necessity. Let o be a diagonal measure on E(X).

We show that every definite Hermitian K in U(s)’ which commutes to
all elements in §(s) belongs to F(s). Denote by s the Fourier transform
o of ¢. For each fixed A €U we can determine a bounded measurable

function %4(2) on & such that

(AF,Kj, 1) = J’ 74 e(R)da(i). for every ¢ € M(a).

In fact, if ¢ is a non-negative bounded measurable function on E®X),

| (A.F,Ki, )| = | (A,KF,*{, F,"D| < | Al K|l Fv-T]f”-_’
~| Al K| | plada(a).

Then such a function r, exists and satisfies |7.(1)|=|K ‘I Al.
We now put 2’(A) = 74(2), then

(AF,Kj, ) = J' w(A)p() dalu) for every ¢ & Mia).
If 7 is the norm of the operator K, then
0S| AFFK | = (A*AF KD
= [ xa*a)p() do2)
and
0| AFTGT — KT = (A*AF T — KO, D

= [ Gracara) - va* Anpds)

for every AU and for every non-negative ¢ in M(a).
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This implies yi(A*A) Z1'(A*A) =20 almost everywhere.

By the separability assumption of the algebra U, we can choose a
countable sequence {A,} in 2 which satisfies the next conditions. (1).
{A.} is everywhere dense in . (2). The sub-system of all definite
Hermitians in | A,} is everywhere dense in the space 2¥ of all definite
Hermitians in 2. (3). A.,==0. (4). If A, is contained in the sequence
§A,}, then A.* is also contained in this sequence.

Except for a set T of (T) =0, the following three conditions are
satisfied.

1), A(AX) = 1'(4,)
(2). Il’(Ag) -+ A’(AJ) _'r_l,(Ak)I_g_)'lAi + Aj_ A/,;‘.
(3). If A, is a definite Hermitian, then jyu(A,) = #'(A,) =0.

If {B,!} is a sub-sequence of { A,} which converges to an element B
in %, and if 2 is a point in E®)—T, then kﬁlz'(B,,) - VB
lim| B, — B..|==0, and {.(B,)} converges to a con{f)lex number 1”/(B).
The value 1”(B) is uniquely determined for each B, and does not
depend how to choose such a sub-sequence {B.,} of { A.} which converges
to B. In fact, if {B.} and {C.} are two sub-sequences of {A,} which

converges to B, then
ﬁf_n- I A’(Bn) - }n'(cn) | é 7 lim r Bn - Cn | =Y.

This i"’(A) satisfies also
(AF,K1, 1) = [ 1"(A)g(1)dat2) for every ¢ € M)

We show that all those i are states on 2. If B and C are two
elements in 2, there exists three sub-sequences {B,}, {C,} and {D,} of
{A,} such that lim B,==B, lim C,=C and lim D, =B + C. Then

| 27(B) + 2"(C) — 2"(B + C)|==1lim| 2"(B,) + A/(C,) — 2"(D,)|
< y1im|B, + C, — D,|=0,
and 2"(B) + 2"(C)=2"(B + C).

If {B.} is a sub-sequence of {A.,} which converges to B, then B, *
is a sub-sequence of {A4,}, and

2"(B*) ==1im A(B.*) ==1lim 2'(B,) == 1""(B).
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If B is a definite Hermitian, there exists a sequencé -{B,} of defi-
nite Hermitians contained in {A4,} which converges to B. Then y (By)
= 1(B,)=0 and #2(B)=Z4"(B)=0.

Each 2”(1= E®Q) — T) is a bounded additive functional on the space
. By the Banach’s theorem, 4” is linear on the real Banach space AH
of all definite Hermitians in 2. Then 2” is linear on ¥, and is a state
such that yi — A" is also a state. Every clements in E®) — T are
elementary, then those A" satisfy 27(A)=2"(I)A(A), where ¢q(1)==
A”(I) is a bounded measurable function on E(2(), hence

(AKI, 1) =j (A) da(2) = j 2 A)golD) dald)
= (A.sFtP"f’ i)'

Therefore K coincides with F, and belongs to $(a).

Let A(s)’ N\ F(s)’ denote the uniformly closed self-adjoint algebra of
all operators in 2(s) which commute to every elements in §(s). Then
BF(o) and A(s)' N F(s)’ contains every definite Hermitian elements com-
ments commonly. It is easiely shown that such two uniformly closed
self-adjoint sub-algebras coincide with each other. Then $(s) coincides
with A(s)’ N\ F(s)', and is a maximal abelian self-adjoint sub-algebra of
A(s)’. The necessary part in the Theorem is thus proved.

To prove the sufficiency part in the Theorem, it may be convenient
to use an elementary results for Radon extentions of the Lebesgue’s inte-
grals. Let & be an abstract space on which a bounded non-negative
measure g is given. Let B(£) denote the Banach space of all real
bounded functions on £. A positive linear functional p on B(£) is called

a Radon integral on &, and denoted symbolicly by p(f) ———J fdp. If
f=2g& + ih is a complex bounded function on &, then the integral of f
is defined by [fdp=[gdp+i[hdp

The Lebesgue’s outer-integral of an element f in B(&£) is defined in
the usual way. That is,

* == == i .
) -[fd/l f_iglglf‘l(u)Jgdﬂ

Then



HARMONIC ANALYSIS ON LOCALLY COMPACT GROUPS 153

(6.1). p¥af)=ap*(f) if a=0.
(5.2). p*(f + g) Z p*(f) + p¥le).
(5.3). «MNHZ0if f<0.

(5.4). An element f in B(Q) is measurable by i if and only if
p*(f) = — p*(—f)

Lemma 5.1. Gi en f,€B(Q) and given a number 1 such that
prfa=t= —pX(—f). The integral J S dy is extended to a suitable
Radon integral p such that | fydp=t.

By the Hahn-Banach’s theorem there exists a linear functional p on
B(¢) such that p(fy) ==t and p*(f) Zp(f)= — p*(— f) for every
S EB@). p is a desired Radon extention of the measure p. In fact, if
S/ is non-negative, then p(f)= —p*(— f) =0, being a positive linear
functional. If f is a bounded measurable function, then p*(f)=
- ‘u*(—f)——:J’ fdu, andI fd/tZJ f dp. Then p is an extended
Radon integral of p. q.e.d.

Assume that ¢ is a non-negative regular measure on © which satis-
fies the condition (4.1), and for which the set $(s) is a maximal abelian
self-adjoint sub-algebra of 2A(s)’.

We shall show that + vanishes out-side of E(2).

For each 1€ © we define a new state i’ as follows.

(5.5). If s EN), then 1==J".

(5.6). If A€ EQ), then ) is a sum of two states u and v such
that u<~ai and v==(1 — a)

We can assume here that »(I) = . Then we put 2’ =u/u(l).

This correspondence 2 — i’ satisfies the next two conditions :

(5.7) A== if and only if 1 E®X.

(5.8) Every ) is normalized, and 21 — ) is a state.

Let p be an arbitrary positive Radon integral defined for every
bounded complex functions on &, which is extended from the Lebesgue’s

integralj fdo. Then obviously

HA) = [ 2(4) dp()

is a state on 2. More generally, if ¢ is a bounded non-negative mea-
surable function on &, then
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(A = [ (Aot
is a state on . Further
250(A) — 1, (A) -——j(zz(A) — (AN dp(d)

is non-negative for every definite Hermitian A in 2. Then 24, — 1, is
also a state, and there exists a definite Hermitian T, in (s)’ such that
t(A) =(A,T,, 1), where 2F, — T, is a definite Hermitian. Especially,
if ¢ is a characteristic function on a measurable set in &, then F, is
a projection, and we have F,T, = T,F,= T,. Analogously F_, Ty-s)
= Tu-aFu_¢ = Tu-4. Because Ty =T, + T(-,, we have

(5.9). F,T,= T\F,=T,.

Now the operator T, in (s)’ such that (A, T, ) ==IA’(A)¢(A) dp(d)

is defined not only positive ¢, but evey ¢ in M(s), where ¢ = T, is a
linear mapping. Then (5. 9) is satisfied by every measurable step function
¢ == Daye;, Where ay are complex numbers and ¢, are characteristic
functions on measurable sub-sets. Every bounded measurable function
on & is a uniform limit of a sequence of measurable step functions, then
every ¢ € M(s) satisfies (5.9), and Ty commutes to every elements in
B{(s). By the assumption that F¥(s) is a maximal abelian sub-algebra of
A(s)’, T belongs to F(s), and there exists a - & M (s) such that T\ =F,.
Then

1,(A) = j V(A ) dp(d = [ A () dp(h),
and for every ¢ € M(a)
[ ot di) = [ ¢t dpn) = 1 = { o) (1) dt).
This proves 4 ==1, then the integral value
[ 1 pw) = [ KA Wdar) =a,4)
is invariant even if the extended Radon-integral p varies. Let A

be a fixed Hermitian operator in ¥, By Lemma 5.1 we can choose two
extended Radon integrals whose integral values for the integrand A'(A4)



HARMONIC ANALYSIS ON LOCALLY COMPACT GROUPS 155

are respectively the outer-integral and the inner-integral of i'(A) by o.
Then those values are coincident, and i’(A) should be measurable by a.
Even if A is not Hermitian, i(4)==1(4 + A*)]2 — ¥(A — A")/i)/2i
is measurable, and satisfies

[ #(gdatn) = [ 1A,

Then A'(A4) and i(A) coincide with each other almost everywhere.

Let {A4,} be a countable sequence in 2 everywhere dense in 2L
Except for a null-set T, we have i'(A,) =1(A,) n=1, 2,.... Then
except for ¥, we have 1'(A)=1i(A) for every A=, hence i’ =
Applying (5. 7), © — T is contained in E(), then + vanishes out-side of
EX).

Hence the sufficiency part of the Theorem is proved.

Chapter 6. Existence and uniqueness of diagonal measures.

We consider a fixed state s on 2 and a fixed maximal abelian self-
adjoint sub-algebra & of A(s). By the theorem of Gelfand-Raikov, &
is isomorphic to the Banach algebra C(£) of all continuous functions
on a suitable compact space & which is called the spectrum of &. We
express every element in & and the representative continunous function
in £ by the same letters. The linear functional p on C(£) defined by
#(K) = (Kj, {) is positive, and it determines a non-negative regular mea-
sure ¢ on £ such that

(KT, 1) ———JKu) dut) (K € 8.
Let N denote the smallest uniformly closed self-adjoint algebra which

contains & and 2(s), then & is the center of M. If X is an element in
R, for every positive function K in C(4),

(KXT, ) = (XK¥T, K*D) < X|(K), D =] X [ K@) duta)

By the theorem of Radon-Nikodym there exists a bounded measura-
ble function £x(1) on £ such that (KXj, 1) ———J&(x)K(x) dn(4). Putting
Ex(2) == 2"(X), we have
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(KXT, ) = [ 20K,

If X is a definite Hermitian in N, we have

1 1 -
| KX 7] = (KX, D)= | XK dp(1) 2 0

for every positive function K in C(£). Then A*(X) is non-negative on £
almost everywhere,

Let 7 denote the state on R such that 7(X) = (X], {).

If ¢ is a bounded non-negative measurable function on K, the linear
functional 7, on R defined by

7o X) = j XD pe(2)

is a state. Choose a constant y such that +- =y — ¢ is non-negative,
then 7,=1y7 — r, is also a state. Notice that L*(r)=L%*s), t==1,
and R(r) = R satisfies the conditions of the canonical representation of
R with respect to the state 7, then we can choose a definite Hermitian
K, in R = & = C(Q) such that

ro(X) = (XK,J, 1) = j XK (D).
Every element K in & satisfies K(i) = A"(K), and
rolK) = [ KODK (0)dptd) = [ Kgtidpn.

Then ¢ coincides with the continuous function K, almost everywhere.
We can assume that every :¥(X) is continuous on . For each fixed
X e R, the value 2"(X) is uniquely determined, because the carrier of the
measure p is & itself. In fact, if K is a continuous function on £ which
vanishes almost everywhere, then

| Ki | = [ IK()fdgu(x) =0, Kf=0and K =0,
Every 17 (1€ £) is astateon R, and 1 — i’ is a one-to-one conti-

nuous mapping of £ in a sub-space £' of the space S(N) of all normali-
zed states on N, In fact, if 1 and s are two different elements in £, then
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VK) = K1) % K(p) == p"(K) for a suitable K& &.
If K, L belong to & and X belongs to R, then

(KLXT, 1) = [ KOMLX0dp) = [ Ko 1.

This means L) X) = WLX) for L & and for X R,

Lemma 6. 1. Letl s be a state on U, and & be a maximal abelian
self-ad joint sub-algebra of U(s)Y. Let 2 denote the spectrum of &,
and embedd the algebra & on C(L). Let n be a regular measure on &

determined bj (Kf, ==J K()Ydp(2). Then every bounded measurable

Sunction on £ coincides to a continuous function on L almost every-
where. Let N denote the smallest uniformly closed sel f-ad joint algebra
which contains W(s) and K, then there exists a homeomorphism 2 — XY
of Q on a compact sub-space 2" of the set S(R) such that

(6. 1). MEKX) = K)A'(X) for every KE R and X< R,
6.2.  (KX], = [ #Xdud.

Such a homeomorphism 12— X' is uniquely determined.
The uniqueness of the homeomorphism is shown as follows :

Let 2247 be another homeomorphism which satisfies two condition
(6.1) and (6. 2). Then

(KXT, ) = [ KO2(Xdp(d = | KOrXdu(w.

Therefore 1’(X) and A X) coincide with each other.

Let A — ¥ be the homeomorphism between & and £' determined by
the conditions (6.1) and (6. 2). Ateach 1€ &£ a state 1 on A is deter-
mined by 1°(A4) = a"(A4,). i— 2° is a weakly continuous mapping of the
compact space & in a suitable compact sub-space £° of & = S().

Let p” denote the measure on £ induced from ;. by the mapping
A — 2% which is defined as follows : For every continuous function f on

2 we put p°(f) = J’ JA")dpu(2). 4 is a positive linear functional on C(£"),

then it determines a non-negative regular measure ;. such that

(6. 3). p) = [ s = [ fadpta).
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The measure p” is extended as a regular measure on & which vanishes
out-side of £°.

Lemma 6.2. The measure p° induced by the mapping 1 — 1° is a
diagonal measure, whose Fouricr transform is s, and whose set §(;.°)
coincides with the algebra R.

Proof. Every continuous function f on £ satisfies (6.3). Then
every bounded Baire’s function on £° satisfies also (6. 3). £° is a separa-
ble compact space, as a sub-space of the unit-sphere of the dual space of
a separable Banach space ., Every measurable function on £ coincides
with a bounded Baire’s function almost everywhere. If f is a bounded
Baire’s function on &7, then f(i°) is a Baire’s function on £. By Lemma
(6. 1), f(i") coincides to a continuous function K1) on & almost every-
where.

Embedding the algebra & on C(2), K, expresses an element in &.
f— K, is an algebraic isomorphism. It is one one-to-one, linear and
satisfies K,, = K;K,. Further, for every A€, we have

(KA, D= [ K Addu(o = [ runctadp
— j e () = (AL, 1),

where f — F; is the Fourier transform relative to the measure z°. K,
and F, belong to 2((s), then they are coincident with each other. So,
S — F; is an algebraic isomorphism, and the set §(;) is contained in &.

We shall show that the set F(x°) coincides with . Let K be an
arbitrary definite Hermitian in &. Then the linear functional 7, on
C(£°) such that

vl f) == Jf(lU)K(l)d,u(/l)

is a positive linear functional on C(%°). Denote by y the norm of the
operator K, then j;pu”—tx is also a positive linear functional. By the
Radon’-Nykodym'’s theorem there exists a bounded Baire’s function + on
&’ such that

lf) = j FOW)dp(2) for every fe C(o7),

If A is an element in 2, then i(A) is continuous on £°, and
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(AKT, ) = [ MAVEWdpD = [ 1 AKdp2)
— [ U AV = (AF .

K coincides with Fy and belongs to F(x°). F(x°) is a uniformly closed

self-adjoint sub-algebra of & which contains all definite Hermitians in &.
Hence $(p”) coincides with 8.
The regular measure p° satisfies (4. 3) and (4. 2), then by Theorem

13 and Theorem 14 it is a diagonal measure, which vanishes out-side of
E).

Lemma 6. 2 includes the former half of Theorem 11; that is, given
a state s and a maximal abelian self-adjoint sub-algebra & of U(s)’, there
exists a diagonal measure x” on E(M) whose Fourier transform is s and
whose set $(y”) is the algebra & To complete Theorem 11, we must
show that such a diagonal measure p” is uniquely determined.

Lemma 6.3. Let ¢ be a diagonal measure on E®R)., Let s denote
the Fourier transformof s, and 8 denote the set F(s), which is a ma-
ximal abelian-self-ad joint sub-al gebra of A(s)'. Extend the measure o
as a regular measure on & which vanishes out-side of E®). Then «
coincides with the measure p° which is determined in Lemma 6. 2.

Proof. Let the spectrum £ of &, the measure s on £, the algebra
R on L%s), the homeomorphism 2 — 2”7 between £ and a sub-set &' in
S(R), and the continuous mapping i — i° of £ on a sub-set £° in & be
as in Lemma 6. 1 and 6. 2.

The carrier § of the regular measure + on & is the smallest closed
sub-set of & whose mass coincides with the total mass of . Let f— F;
denote the Fourier transform relative to the measure 4. If 2 is an
element in £, the linear functional 2* on C({¥) defined by 1°(f) == Fx{(1)
satisfies 1°(fg) = 4% /)i%g). Then we can choose a point 4°in & such
that FA2)==f(4%). A —2° is a weakly continuous mapping whose range
is . In fact, if U is an open setin &, and if f540 is a non-negative

continuous function on ¥ which vanishes out-side of 11, thenf F(Dda(a)

= (F,{)# 0 and F;+0. Choose an element # in ¢ such that Fy )5~ 0,
then f(#’)==F{u)+0, and #" is contained in U. 21— .® maps the
compact set & everywhere densely in ¥, then its range coincides with
§. 24— 2° induces the measure p to the measure + on ¥, because
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[ rndony =(Fi, = [ Edptn) = [ fG0dpia).

we shall show that this mapping i1— 1° coincides with the mapping
A= 2% in Lemma 6. 2. The mapping 2 — i’ possesses the following pro-

perties. If K is a continuous function on £ such that I K f%dp(2) =

0 for every continuous function f on %, then K=0. In fact, if K is
such a continuous function on £, K expresses an element in & == §(s),
and there exists a bounded measurable function ¢ on F such that K = F,.
Then

(KF4, ) = f;n(i.)f(x)da().) — f KG) £0Od () =0

for every f& C(§). This means ¢ =0 and K== F,=0.
Let A be an element in %, and f be a continuous function on .
Then

jzs(m FOdin2) = Jr W(A) f)da) = (AFf, 1)
= [ (FA)du(n) — | marEmdn = j 27CA) FO)d (D),

i°(A) and 2°(A) are continuous functions on £, then they are coincident
with each other. The mapping A — 2° coincides with the mapping i — 1%,
which induces the measure ;2 to the measnre s. Then « coincides with
the measure p” constructed in Lemma 6. 2.

By Lemma 6. 2, given each couple (s, ®) of a state s and a maximal
abelian self-adjoint sub-algebra & of 2(s)’, the diagonal measure + on
EQ) such that 4=s and %(s) =& is uniquely determined. Then
Theorem 12 is completed.

Chapter 7. Positive definite functions and related
operator algebras.

We return to the separable locally compact group & considered in
the Introduction. If p is a positive definite function on ®, we denote by
A(p) the smallest uniformly closed self-adjoint algebra which contains the

identity I and all the operators P,sJ' fla)P.da on L*p). As is well-

known,
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(7.1). The set (Py: fE L)) is uniformly dense in L (p).

(7.2). G(p) ==A(p)".

(7.3). The following three conditions are equivalent. (a). p is
elementary. (b). The representative group O(p) is irreducible, that
is, there is no proper closed linear sub-space of L’(p), invariant under
the operator group Q(p) other than the 0O-space. (c). The algebra
A(p) is irreducible.

Hereafter we shall denote by p a fixed normalized positive definite
function, and by U the algebra ?(p) abbreviately. If # is a state on 2,
u* denotes the linear functional on L(®) such that

(7. 4). (f, u¥) = u(P,) for every fe& L(®).

Then u# satisfies | (f, u#) | =|u(P)| < \a(D) | P! < w(I)| f|, and (f*= f, u¥)
=u(P*P)=0. u# belongs to M((®) and is positive definite. u — u#
mapps the set © of all normalized states on 2 into the set I of all
positive definite functions p on & such that ple) < 1.

Lemma 7.1. u — u% is @ homeomorphism between © and a com-
pact sub-space €% of L.

In fact, if # and v are two elements in &, then there exists at least
one al + P, € A such that #(al + Pp) 5= v(al + Fy). Since u(Il)=v(I)
=1, we have (f, ##) = u( P Fv(P)) == (f, v¥) and u% 7~ v¥. Then u—u%
is' a one-to-one and continuous mapping of the compact space & on a
compact sub-space &% of .

If # =8, the canonical representation for the algebra ¥ in L7(x),
and the cyclic unitary representation for & on the unitary group &(u«¥)
on L*x#*) is considered. There are some relations between these repre-
sentations. The representative unitary operator for an element a€®

in &(«#) is denoted by U, and the representative operatorj flayU.da

on L*(u#¥) for an f € L(®) is denoted by U,, We must distinguish Uy to
the operator (P;), which is the representative operator for P, in L*).
Notice that

(Umz, Ui2) == (g*f, u¥) = u(P,;* Py) = ((Pput, (P)).

Then Upi#— (P),ut is an isometric mapping of L*(z«#) in L°(u). We
can now embed L*##) in a sub-space of L*(x) identifying every U4
and (P),u. Then
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(P fU#) = (P Batt = UL Usu#),

for every f, g€ L(8). The operator (P, coincides with U, in the
space L¥u?). Especially, u#& L*(u#) (P)# = Un# = (P, and

(1 — ¥, Up#) = (it — ué, (Ppt) = (P (it — u#), 1) =0,

Then u — u# is orthogonal to L*u#).

Lemma 7.2. If u=©, theu L(u) conlains L(u#). w—u% is or-
thogonal to LXu%), and every element x in L'(u) is written in a
unique way as

X=a(l — u¥) +y, ye& L(u%).

If fE L®), we have (Ppu—u¥)=0 and (Pluy==Usy for
every < Li(u#).
Notice that Ju — n#|?==1 — u#(e), then

Lemma 7.3. L%u) coincides with L(u#) if and only if u#le)==
wu(l)=1. If u#(e)=1, then the algebra N(u) coincides with the
algebra Wu*). 1f u belongs to EQV), cither ut =0, or u#e) =1 and
ute €. Conversely if =S and w*<€G, then us EQU.

Proof. The projection E of Lu#) in L%z) belongs to A(x). Let
# be an element in E®), then A(w) = (al,), and either E=0 or
E=1, If E=0, then u* vanishes. If E==1I, then L%u)= L*(u%),
=1 u#(e) =1, (¥ ==Wx), and the algebra A(x*) is irreducible. So
that ## is elementary and belongs to €.

Conversely, let # be an element in & such that u#&(, then
u¥(e) =u(l) =1, and L*u) coincides with L*z#), simultaneously A(ze)
coincides with (x#), and is irreducible. Hence # belongsto EQL).

The homeomorphism # — u# induces a one-to-one correspondence
/2 — n* between regular measures ;2 on & and regular measures % on
€% The measure 4# is defined by ##(X¥) = u(¥) for every Borel set %,
where A¥ is the image of ¥ by the mapping # — u*. Let s be a regular
measure on &, if ¢ is an element in M(s%), the function ¢¥ on & defined
by ¢#(u) = ¢(u#) belongs to M(a). ¢ — ¢¥ is an algebraic isomorphism
between M{(s%) and Mis), which satisfies

(7.5). [ gpdaty = [ gaasan.
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If & is of total mass 1, then its Fourier transform & == | #ds() is a nor-

malized state on ¥, and for every f& L(®),
(1,59 = 5Py = [ u(Phdot) = { (£, wndote) = [ (£, )0
That is,

(7.6). (f, (5)8) = J( £, 0)de*@) for every & L(S).

Now assume that ¢%(e) =1, then by Lemma 2. 2, ¥ vanishes out-side of
. TN
N, and the Fourier transform (s%) of &% is (7).

~

Lemma 7.4. Let ¢ be a regular measure on S with total mass

1 such that 6%¥(e)=1. Then ¢ vanishes out-side of N, and (5)* is
~
the Fourier transform (s°) of o°.

We now assert a converse of Lemma 7. 4.

Lemma 7.5. Lef = be a regular measure on N with total mass
1. If the Fourier transform = of = is contained in &2, then =
vanishes out-side of &%, and there exists a uniquely determined re-
gular measure ¢ on & such that = = o+

Proof. By the assumption that 7 belongs to &% there exists a
normalized state ¢ on A such that ## =7, Then ii"'(e)==:?(e)=fd7r(u)

=1, By Lemma 7. 2 the space L°(f) coincides to L*({¥) == L*(2), and the
algebra ¥(#) coincides to U(z). Extend the measure = as a regular
measure on ¥ which vanishes out-side of N, and let T denote the carier
of this extended measure. If f is a non-negative continuous function on

P such thatf fd=(1)==1, and if F; is its relative Fourier transform,
then

5’_:)’(“) = (PmFIﬁ;v 1#) == (PaF!ti 1).

On the other hand, the state 7, on U defined by #,(A) = (A, F#, 1) belongs
to &, and t# ==z,.

Let v be a fixed point in D, and U be an open neighbourhood of ».
Then we can choose a non-negative continuous function fi on 2 which
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vanishes out-side of 1, and which satisfiesf Jud=(u) =1. The system

of all those regular measures ::,"‘) converges weakly to the point mass 4,

at v, which distributes its total mass 1 at the point ». Now we have

(& 7, :jg(a)da f (@) f(2)d(2)
— [ rwdzw [ wa)g@da

— j (0, &) fulw)d=ar).

then f—;,u is a sequence in M(®) which converges weakly to ». Notice
that # — »## is a homeomorphism, and that t,.u*«’s——?:,u, then t,-u conver-
ges weakly to a state # in & such that #* =v. Hence the carrier ® of
7 is conitained in the image &% of ©.

Let » denote the regular measure in & such that #(%) == z(¥%) for
every Borel set X in &, then «% coincides with .

We now apply Lemma 7.4 and 7.5 to the state ¢ on A defined by
q(A) = (A, D), then it satisfies g# =p. If s is a regular measure on
E@l) whose Fourier transform is ¢, then ¢% is a regular measure on N
which vanishes out-side of & whose Fourier transform is p. Conversely,
if = is a regular measure on & whose Fourier transform is p, then there
exists a uniquely determined regular measure » on & such that % =g,
whose Fourier transform is q.

Theorem 15. o — o% is a one-lo-one correspondence between the
system of all regular measures on EQl) whose Fourier transform is
q, and the system of all regular measures on ¢ whose Fourier trans-
Jorm is p.

Theorem 16. Let o be a regular non-negative measure on EQ)
whose Fourier transform is q, then the Fourier transform of o% is
p. Let ¢ — F, denote the Fourier transform on Mi(a%) relative lo
the measure o¥ and let ¢* — F,j# denote the Fourier transform on
Ms) relative to the measure o. Then F, coincides with F,# for every
¢ € M(o#), and F(a*) coincides with F(a).

Proof. The correspondence o — s% between regular measures o in
E() and regular measures % in & /iriduces the correspondence between

their Fourier transforms & — (7)? = (¢®). Especially, if 4, is a measure

1) 1rfn(A)= ,[Afll dr.
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relative to ¢ € M(s%), then (m2))¥ = (a%),. Notice that
ae(A) = (AF,p, p) forevery A€ A(p)

and

TN

(o¥)(@) = (P, F,b,p) for every a€ ®,

where F,z and F, belong to U(p) =&(p)’. By Lemma 7. 4 ([ﬁ;,)# is the

TN .
Fourier transform (4%), of (4%),. Then

.

[ 1(@) (PuFyeb, p) da = (PFpeb, V) = ol P) = (f, 7%0)
=j f(a) (P.E,p, p) da.

This proves (P,F,p, p) = (P,F,p, p) and F, == F.
Hence the range $(a#) of the map ¢ — F, coincides with the range
Ble) of the'map ¢¥ — Fz. :

Theorem 17. Let = be a bounded non-negative regular measure
on C.. If one of the following four conditions are satisfied, all other
conditions are necessarily satisfied.

(1). = is diagonal.

(2). The Fourier transform ¢ — F, relative to = is an algebraic
isomorphism.

(3). Let L°(x) denote the Hilbert space of all measurable and
square summable functions on €, then for every ¢ L'(z) we can
choose a sequence {f.} in L(®) such that

tim [ 1700 — ¢ d (1) =0
and
]imJ‘(f’%)(/‘.)d::(l) =Jlgo(/l) |* d=(2).
(4). Lel p denote the Fourier transform of =, and lel = denote the
regular measure on EQUP)) such that % == and that q(A) = (Ap, D)

==(A) for cvery AUp). Then o is diagonal on EQX).
Proof. The next Lemma asserts a characterization of the orthogo-
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nality relation between positive definite functions on ®.

Lemma 7.6. In order that two positive definite functions q and r
be mutually orthogonal, it is necessary and sufficient that, puliing
p==q +7 theoperator K in &(pY determined by q(a) = (P,Kp, p) be
a projection.

Proof. 1If ¢ and # are mutually orthogonal positive definite func-
tions, u(a@) = (P,K(I — K) ¥, p) is a positive definite function such that
g — u and 7 — u are positive definite. This implies # =0 and K(I — K)
==(0. Then K should be a projection.

Conversely, assume that ¢ and 7 be two positive definite functions
such that the operator K is a projection. If v is a positive definite func-
tion such that ¢ — v and # — » are positive definite, the operator V
determined by (@) = (P, Vb, D) is a definite Hermitian such that K — V
and I — K — V are positive definite. This implies V=0 and v =0.
Hence ¢ and # are mutually orthogonal.

To prove the Theorem, it is sufficient to show that the three condi-
tions (1), (2) and (3) are respactively equivalent to the last condition (4).

Proof that the condition (1) is equivalent to the condition (2).

Let = be a measure on € with =(€) =1, whose Fourier transform
is p. and let s be the measure on E(QA) such that+¥*=7 and ¢ =g,
then g% = p. Let ¢ — F, be the Fourier transform relative to =, and let
¢ denote the characteristic function on a Borel set in €. z is diagonal
if and only if all those F, (¢ are characteristic functions on Borel sets in
¥) are projections. ’

On the other hand, the measure s is diagonal if and only if all those
F, (¢ are characteristic functions on Borel sets in E()) are projec-
tions. The correspondence ¢ — ¢# between M(z) and M(s) induces the
one-to-one correspondence between the set of all characteristic functions
¢ on those sets X measurable by 4, and the system of all those charac-
teristic functions ¢* on sub-sets X#% in € measurable by =. Because F,==F_
is satisfied for every ¢ € M(a), those sets (F, : ¢ are characteristic func-
tions on Borel sets in €) and (F,2: ¢* are characteristic functions on
Borel sets in E()) are coincident with each other. Therefore » is diago-
nal if and only if # is diagonal.

Proof that the condition (2) is equivalent to the condition (4).

The measure s on E() is diagonal if and only if the relative Fou-
rier transform ¢# — F,# between M(s) and F(s) are algebraicly isomor-
phic. Notice that ¢ — ¢# is an algebraic isomorphism between M(z) and
Mi(s). Then is diagonal if and only if the relative Fourier transform
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¢ — F, between M(z) and §(z) is an algebraic isomorphism.

Proof that the condition (3) is equivalent o the condition (4).

Let = be a non-negative regular measure on & which satisfies the
condition (3). If ¢ is a function in L*(z), there exists a sequence {f.}
in L(®) such that

lim f 1 £2) — @) Fda(d) =0,

and

T
lim J G 0dx() ——~f[go(x) d (2).

Notice that f.(a%) = A(L;)) and (f.*f.)(1) = A(Lz * L)) for every 1< E®),
then we have

tim [ X(Z5) — %D Fdo() = 0
and

lim [ (L;,*Lz,) da(d) = [ | 570D Pd a0,

{L,ﬂ} is an approximative image of the Fourier transform of ¢%¥. Then
the measure « satisfies the condition (5. 4) in Theorem 13, and is a diago-
nal measure on E().

Conversely, assume that ¢ be a diagonal measure on E(2(). The set
(Pp: f€ L(®)) is everywhere dense in LXp) = L*q). If ¢ is a bounded
measurable function in M(z), then ¢# is a bounded measurable function
in E®), and we can choose a sequence L,p which converges to F,p —
F . By Lemma 4.2, we have

lim [, 2(L;) — ¢¥0) P dati) =0,
and
tim [ ALy, *L;) dott) = [ [ $HD P da).

Therefore



168 MINORU TOMITA

lim Jfl (F)(2) — oD P dn(2) =0
and
TN
lim j For P (Dd(2) = j () P dl).

Hence the measure = satisfies the condtion (3) in the Theorem. The
equivalency of the conditions (3) and (4) is thus proved. This concludes
the Theorem.

The main theorems 1, 2, 3 and 4 in the Introduction are now easily
shown. Theorem 1 is evident, then we shall prove the rest.

Proof of Theorem 2. Let = be a diagonal measure on &, p be its
Fourier transform, and ¢ be the diagonal measure on E((p)) such that
o = . If two sequences {f.} and {g.} in L(®) are approximative ima-
ges of the Fourier transforms of functions ¢ and + in L*z) respectively,
as we already observed in the proof of Theorem 17, L7 and Lj are ap-

proximative images of functions @#% and # respectively. By Theorem
10, we have

lim [ | A(L5,*Ly,) — gFOpA) | dr(2) = 0,
Notice that FL,,—"*LZ;) = #(g,*f.), then
TN P
lim [ [(@*(0) — g0 | dz(2) = 0.

This is the Parseval’s equalty in Theorem 2.

Proof of the Theorem 3. If = is a diagonal measure on &, by
Theorem 17, the relative Fourier transform ¢ — F, is an algebraic isomor-
phism. Therefore it is sufficient to show that F(z) is a maximal abelian
self-adjoint sub-algebra of &(p)’. Let p be the Fourier transform of =z,
and let ¢ be the diagonal measure on E(A(p)) such that

a¥ ==7z. By Theorem 11, %(s) = F(z) is a maximal an abelian self-
adjoint sub-algebra of ()’ = A(p)’ == G(p)".

Proof of Theorem 4. Let p be an arbitrary normalized positive de-
finite function on ®. Then the state ¢ on A = A(p) such that ¢(A) =
(Ap, p) is normalized. Further L*p) == L*gq), W(g) =A and p = q satis-
fies the conditions of the canonical representation of 2.
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According to Theorem 17, the system of all diagonal measures on &
whose Fourier transform is p, and the system of all diagonal measures
on E() whose Fourier transform is ¢ is one-to-one correspondent by the
correspondence ¢ — o%. And we have always F(s) = F(a¥). Given each
maximal abelian self-adjoint sub-algebra & of A(p) == A(p)Y = W(g), a
diagonal measure ¢ o7 E®) whose Fourier transform is ¢, and the
range F(s) of which relative Fourier transform is &, exists and is
uniquely determined. Then the diagonal measure = on & whose Fourier
transform is p, and the range (=) of which relative Fourier transform
is 8, exists and is uniquely determined.

Chapter 8. The Plancherel’s theorem on unimodular groups.

A locally compact group © is called unimodular if & has a two-
sided invariant (Haar) measure ;. Consider a fixed separable unimodular
group &, and let L*®) denote the Hilbert space of all measurable and
square-summable functions on &, Let € denote the space of all elemen-
tary positive definite functions on ®, on which the Pontrjagin’s topology
is defined. A Borel measure = on € is called fundamenial if the follow-
ing three conditions are satisfied.

8.1). € isasumofaset T of measure-0, and countable system
of compact sub-sets with finite masses.

(8.2). If f isa function on & summable and square summable
by the Haay measure on ®, then f satisfies a Plancherel’s equalily

flf(m ¢ da =“Sz(a"b)jTa) 1b) da db d=(2).

(8.3). If Xis a Borel setin C with a finite mass, we denote by
¢x the function on & such that ‘

pxl@) = J A@d=).

If X and Y are mutually disjoint Borel sets in € with finite masses,
then

| ¢xt@rtarda —o.

If - is a Borel measure on &, we denote b.y‘ L*(z) the Hilbert space
of all functions on € measurable and square summable by .
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Theorem 18. If z is a fundamental measure on €, then t posses-
ses the following properties.

8.4). If f€ LX), the Fourier transform fof f:

o .
£ #;rg.[”x(a)f(a)da

MH )0

exists. f(A) is a function on € and belongs to L*(z).
8.5). If fe LA®), the inversion law

13 3 {3\ 2
f(@ 1;.3&.Lfa-,u) d=()

T(F)<Loo
is satisfied, where f. denotes the translation of f;
fub) = fa™'b).

8.6). If ¢ L%z), then the Fourier transform ¢ of ¢:

i\ 1 T 3
¢a) li;;rg.fFl(a)gp(x)dr(l)

T(F)<oo

exists. g¢(a) is a function on & and belongs to L*(O®).
(8.7). If ¢ and  are elements of Lz), then

[ p@igt@ida = [ ¢yt
and

[ $(@ritap) da = [A@pta1gia) deia).

(8.8). If ¢ is an element of Lz), then $=¢. If f is an

1), 2) and 3). lLi.m. is the abbreviation of the limit in the mean. For instance,

(8.4) implies that, given any positive number & we can choose a Borel sub-set H

of ® with a finite mass such that every Borel set X with a finite mass which con-
tains H satisfies

J | fa) — una)ﬂa) da|? dr(\) < &.
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element of L*®), then f—f. The operator f— f defined on LY®)
is a projection operator.

8.9). If fis an element of LXG®), then given any positive
number ¢, we can choose @ ¢ € L*z), vy, .... € Lz) and a,....
a,sQ such that

[lrm —¢w - £ trtaw) - juzad|?dx <e.

A closed linear sub-space WM of L*(®) is called a maximal abelian
sub-system of L°(®) if M satisfies the next three conditions.

(8.10). f =M implies f* =M, where f* denotes the function in
L*®) such that f*@)=f(a™).

(8.11). If f, geM, then

f fla)gla™'b) da = I gla) f(a™'b) da.

(8.12). If f is an element of L?(®), then given any positive number
e, we can choose ¢ €M, 4, .... 4, =M and a,,....a,€® such that

J | f (%) — ¢(x) — 3 (§rul@ix) — §rlxa) |* dx e,

Theorem 19. If t is a fundamental measure on €, the Fourier
transform ¢ — ¢ maps L) on a maximal abelian sub-system of
LX@®). Conversely, if M is a maximal abelian sub-system of LA®),
a fundamental measure r on € which maps L) on W exists.
The correspondence between fundamental measures and maximal
abelian sub-systems of L*®) is one-to-one.

Proof of the Theorem 18,

Let L(®) denote the set of all summable functions on @&, and
LGN LAG) denote the set of all summable and square summable func-
tions on &, The Plancherel’s equality (8. 1) implies

8.13). (f, g) =j f@) 2@ da =SSS/1(a“‘b)g(a) £(b) da db d=(4) for

every f, g LIG)NLYS). '
A faithfull unitary representation of ® on L¥®): a=®— L, is
determined by

Lof =fu (fu(®) = f(a™b), f€ LX®)).
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If f€ LA®), the integral operator L, is defined by

(L,%) (@) =j FB)xb'a) db (x € LA®)).

Lemma 8.1. If ¢ is @ bounded function on € measurable by -,
then there exists a bounded linear operator K, on L*(®) which satis-
fies

(K., & =SSSx(a"‘b)§(5) 73 da db ¢(3) d=(2)

for every f, g LOYNLAB). K, commutes to every L.(aEG) and
to every L, (f € L(®)).
Proof. Notice that

ﬁ 2aB) @ fb) dadb =0 for €€ and FELONLA®). A
bilinear form (f, g), in LGN LYS):

.00, = (|| 1a0)2@ 1 ®) da ab ¢ az

satisfies the inequality
lell, )=, Ne= — ¢ oS, 1),
so that a bounded linear operator K, on L*(®) is determined by
(K, f, 8 = (f, &) for every f, g€ LGN LXG).

K, is definite if ¢ is non-negative and real. The norm of K, does not
exceed |¢|.. K, commutes to every Li(a€®), because, for f, g€ L(®)
LXG),

(KwLaf» g) == (Kgo,f, La—lg)

= ([[ 10a0zB 1@ ab de o0 ar.
If f= L(®), then L, is a strong integral L,::f fl@)L,da, and K,
commutes to L.

Lemma 8.2. If ¢ is a bounded, summable, real and non-negative
Junction on €, then its Fourier transform
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9@ = [ @ o0 d =)

is a bounded, continuous, poitive, definite and square-summable
Junction on ®. K, is an integral operator

(K, f) (@ = [ b7a) £ &) db (f € L®)).
There exists an element Y in L) such that
pla) = [ 5@B) p(b) b
Proof. Let t, denote a Borel measure on G:
X0 = [ @) d=(a.

7, is a bounded regular measure in the sense of Definition 2, 1. then by

Theorem 7, &(a) == J Malg(A)d:(1) is a continuous positive definite func-

tion on .
And
(%, £, &)= [{| 1a"0)2@ 1 ®) da ab o1) a2
={[rewe-0z@ da av.
Hence

(K, ) (@) =f 7(b) $(b~'a) db.

pla) = ¢(a) is a continuous positive definite function, and the correspon-
ding cyclic unitary representation for & is dotermined as follows. There
exists a Hilbert space L*(p), a strongly continuous unitary representation
a=®— P, on L p) and a cyclic element P in L%p) such that pla) ==

(Pap, p).
Then for f, g€ LGN LY(G),

(K, f, K,” g) = (K, f, 8) = SS ¢la”'bigla) /() da db
= (pr’ Pﬂ‘p)!
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1
where P,——*J f(a) P,da. Now Pp— K,*f is an isometric mapping
of L¥p) in a sub-spacz of L(®). We can therefore embedd the space
: ]
L¥p) as a sub-space of L¥®) identifying every Py and every K,2f.
1
By Lemma 8.1 K, and K, *commute to every L{f & L(®)), then
a 1
LjPaszjK¢2g=K¢z(f° g)SPngp.

This means that L. and P, represent the same operator on L*p).
Especially L= P, and :

[ 7@5@ da=(Pp, o)=L, v
— || r@pia-05® da ab.
That is,
pla) = [ plaBp(b) db.

Similarly

[ 71073@ da = (L, ») = (K2 £, )

=}, K29 = f@ (K= (@ da.

Thus ¢ coincides to Kv_gp and belongs to LX®).

Lemma 8.3. If ¢ and | are two bounded non-negative func-
tions on € summable by « such that

I«ﬁ(a)}‘(b‘) da =0,
then we have
[s®r30a) ab=o.
¢ and r are mutually orthogonal as a pair of positive definite

functions, i.e. there is no positive definite function r #*0 such that
% —r and \» — r are positive definile.
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Proof. Let b be an element in L(®) such that a) = J p(@”’b)p(b)db,
then

[ $@7@ da =S§¢(a>p*(ba—’>5%> db da
=SSP*(0)¢(G"b)W) da db

— (Kp*)@)P¥a) da — j (K, 2v%) (@) |* da —0.

Then K,p* = KWJZ_(Kw_I'-" p*)==0 and
[ ¢®ry67a) ab =H¢(b)v(a”‘bc)b(c) db dc
= [ gtbc @ TBib(e) db de = [ Kp¥Bw*(ba) db =D,
Those i,‘?(a) and };‘-r(a) are mutually orthogonal positive definite func-

tions. If they are not mutually orthogonal, there is a positive definite
function 7 <0 such that § — 7 and « — 7 are positive definite. Since

0 _s_“m-’b) 7@ £ (b) da db ;“9; @ BT @ (5) da db <l ¢ | (S, f)

for every f in L(G)YNLYW®), there exists a definite Hermitian K, on
L*(®) such that

SSr(a-'b)M 1) da db = (K. f, g).

Operators K,, K, — K, and K, — K, are simultaneously definite
Hermitians, whereas K,K,=0. Then K,==0 and #==0, which con-
tradicts to the assumption that 0. Hence ¢ and v are mutually
orthogonal.

By Lemma 8. 3 and the condition (8. 3), we have immediately

Lemma 84. If A and B are mutually disjoint Borel seis in €
with finite masses, then ¢. and ¢n are mulually orthogonal positive
definite functions such that

f Gub)es(b™'a) db =0,

Lemma 8.,5. If A is a Borel set in € with a finitc mass, then
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the operator K, = K

0, iS a projection operator, and

4@ = pu@) = [ pub)pu(b7a) db.

Proof. Let {X,} be an assending sequence of Borel sets in & with
finite masses such that T(@——‘(Zt X))=0, and let A, denote the

common part of X, and A. Put ¢,=¢x, Yu=¢s, K.=K, and
T.=K,. Then by Lemma 8. 4,

KK.=TK, n==12,....)
The norms of those operators K, and T, are not larger than 1., {K.}
and {T,} converge weakly to the identity I and the operator K, respec-
tively. In fact, if f, g are elements in L(&)NLXS) then
&1, = xa"p1g0) 0 da ab ata
S 1@ 0g@rr®) daab aen =1, )
and
(1.1, & =—‘”Lﬂl(d"b)g(a)f(b) da db d=(2)
([ @ n2@r®) da ab acn = .1, 2

as 2 —.00, Sothat K,=K,K,==K,* and K, is a projection, that is,

pula) = [ 3.0Vp.(07a) db.

Lemma 8.6. Let A be @ Borel set in € with a finite mass. If
¢ and - are functions in L*z) which vanish out-side of A, then

[ 305 671a) b = [ T@py ) detr
and
[ @@ da=[ oy de(a.

Proof. Define a Borel measure z, on € by (X)) ==(XNA). .
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is a regular measure on €, and p(a) = ¢.(a) ==I}.(a) dr 1) is a con-
tinuous positive definite function. If B is a Borel set contained in A4,
then by Lemma 8. 3 (¢s(a) = J Bx(a) dr (1) and ¢._x(a) =Jf " B%(a) dr )

are mutually orthogonal positive definite functions. Therefore = is.a
diagonal measure on €. By Lemma 8. 5,

$(@) = 52(@) = [ pu0)3.07a) db = (Lufs 3.

The smallest closed linear sub-space L*(p) which contains all L.¢, (2= ®)
is the range of the projection operator K, and the group of those unitary
operators L, restricted on the space L*p) is the cyclic unitary represen-
tation group which corresponds to the positive definite function p. If ¢
is a real, bounded and measurable function on & which vanishes out-side
of A, then we can choose a constant y such that yK, = K, are positive
definite. K, is a projection, then K,K,=K.,K,=K, and ¢(a) ==

= [ $0)3.67a) db = [ 9.(0)3(67'a)db = (K,$.) (@). The operator K,

restricted on L*(p) commutes to every operator L, restricted on L*p),
and satisfies

(LuK(p;pA, ¢A) = (quS;Ay La—léALa_]S"A)
= (SO; La‘]q‘)\A)

= [ 015.ab) db= [ $®)pu6a™ db
— §la™) = [ @pdea).

Then ¢ € M(z4) — K, is the Fourier transform relative to the measure
T4 Ta iS a diagonal measure, and by Theorem 3 ¢ € M(z,) = K, is an
algebraic isomorphism. If ¢, y» are bounded measurable functions which
vanish out-side of 4, we have K,, == K,K, and @y ==g@e+. That is,

| @igrp) de = [ §015'a) ab.
Notice that (@) = (fra ) = [ 2@ (1) dz.(a)
then

[ e ¥ de) = [ $10)57@) da.
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Finally, if ¢ and +» are two arbitrary elements in L*z) which
vanishes out-side of A, we can choose two sequences {¢,} and {yn.} of
-bounded measurable functions on & which vanish out-side of A, and

which satisfy [1%(1) ¢ [ de(d) >0, jlcp,,(l) — $DPd:() >0 as
n—» o, Then
fula) = [ Aalp.2) d=2) = j(a) = [ 1@lg(n) d=(1) and 4.(@) > Fa)

uniformly on @& as n — oo,

Therefore
[13@ = §t@ I da= [ 1.0 = )1 detd) >0,
[1i@) = @) da = [1yt) — 4012 d2) - 0;
[ $075@) da = [ gy dw.

and

[ s®13a) db = [ 1@etpn) d=tw.

We are now in the position to prove (8. 4)...(8.9) in the Theorem 18.
The system of all elements in L*(z) which vanish out-side of certain Borel
sets in & with finite masses, is everywhere dense in L*(z), and for every

element + in this system the Fourier transform «[r(a)=JM—a)«[r(l)dr(x)

is determined. This transform ’\II"—"\i;' is isometric, and extended to an
isometric transform of L*z) on a closed linear sub-space N of L*(®).
Let +» be an element in L*(z). For each Borel set F in € with a finite
mass the function rr on €: ye(d) =4(1) for AEF and (1) =0

out-side of F: is defined, and satisfies 1!/‘=(15.i.m. yr. That is, for
FE7F <o

every positive number ¢, there exists a Borel set F, in & with a finite
mass such that every Borel set F with F2 F, and with a finite mass

satisfiele\p(/l) — r#(2)|* dr(2) Ce. Then the Fourier transform of +»:
@) =i, Frl@) = 1im. [ 2@y ds )

exists.
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Notice that, if ¢, «» belong to L’(z),

| H@pptn detr = [ 4401 j.r67a) ab
> [¢wria ab

and

[ e d=d) = [ 4(@7521@) da

- [ $a)§t@ da

uniformly on @ as F— €. Then we have t}3e two equality in (8. 10),
Proof of (8. 7). The Fourier transform f(i) of an f € LIO)NLYS):

f)y= J MNa)f(a) da is a bounded continuous function on &, and if ¢ is

a function in L*(zr) which vanishes out-side of a certain Borel sub-set of
€ with a finite mass, then f satisfies

| Faig® a “ F@NaelD) d=(2) da
= f fl@)¢a) da.

Denote by P the projection operator on the set M = (¢ : ¢ € L*(z)), and
Y be an element of L*z) such that Pf ==+;. Then

[ 7w d=ty = [ 7(@iFT@ da = [ jaif@ da
= f YD (R) d= (1)

f coincides with +» and belongs to L*z). The transform f—-»f is
bounded and linear on L(®)N\LX®), which is extended to a bounded
linear transform of L*®) in L%:). If f is an element in L®) and H
is a Borel sub-set of & with a finite mass, a function f, on & is defined
by fula) = f(a) on H and fuy(a)==0 out-side of H. fi converges to Va
by the topology of L*®) as H—>®. Then f}{ converges to f by the
topolgy of L?(r) as H— . That is, the Fourier transform of f:
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fk= l.i.m. f;;==l.i.m.l[ Ma)f(a)da
H-0 HoG J 7
K(H }<en MH)L e

exists and belongs to L*®). Here

A

f=1lim. fu=Llim. P(fa)=Pf.
H-§ H-6

u{H)<eo w(H)<eo

P is the projection operator on the space (¢ : ¢ € L*(z)). From this, we
have ¢ == ¢ for every ¢ € L’(z). In fact, if f & L¥®), then

(f, 4) = (Pf, 4) = (f, §) for every + € L(z).
Especially, if ¢ € L¥z), then & LA®) and

(@A) = (&, ) = (&, ) = (, ¥)

for every « € L*(z). This means ¢ = é.

We next show the invertion formula (8. 4),

If F is a Borel sub-set of € with a finite mass, then the operator
K- on L¥®):

(Ke /) (@) = [ £ (0)ps(6™'a) b

is a projection operator, and converges strongly to the identity as F— Q‘
Then for every f & LXG),

a —lolulll- I(F a ———1.1.111- S.J‘F b b d
it '.- . F

=lLim. | fa-1(2) d=(Q).
FoE F

Proof of (8.12).

Lemma 8.7. Let f be a function in LX®) under the condition

of
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©.14). | f@}pa™b) da=[ @) f(a'b) da for every p=M.

Then f is a Fourier transform of a suitable +» & L(z).

Proof. If f in L*®) is under the condition of (8.14), then
Si=5 (/i + % and fo= (f — f*) are also under the condition of
(8.14), and satisfy fi*==f;, fo¥==f,. Since f==f; + ifs, itis sufficient
to prove the Lemma assuming that f is under the conditions of (8.14)
and

(8.15). f=S*

If g is a function in L*®), we denote by R, the closed operator in
LY(®):

(Rh) (a) == [ gb)g(b'a) db for every he DR,.
D(R,) denotes the set of all ~ in L*®) such that
Jl f hb)gb~'a) db)* da < oo.

The adjoint operator of R, is the operator R,y. In fact, if 2 and & are
two elements in L*®) such that (x, k) == (Ryx, ) for every x& D(R,),
then 7€ D(R,%) and % == R,h.

J satisfies the conditions (8.14) and (8. 15), then R, is self-adjoint
and commutes to every K, as ¢ are bounded and square summable func-

tions on &, R, has the spectral resolution R,= f 2 d E(12), where every

E(2) commutes to every K, (as ¢ is bounded and in L*z)).
S is the limit of the sequence (f.: f.=E@#n) f — E(—n—0)f) in

L*®), whereas R, = (E(n) — E(-n—0)R, == "2 dE(1) commutes to

-

every K,. Then f, satisfies the conditions (8.14) and (8.15). If every
f. is the Fourier transform of a certain ¢, in L*z), then f=Llim. f,
is the Fourier transform of lLim. ¢,=¢ in L*z). Therefore it is sufi-
cient to prove the Lemma assuming that f in L*®) is under the condi-
tions of (8. 14), (8.15) and

(8.16) R, is bounded linear.

Assume that an element f in L*®) satisfies the three above condi-
tions. For each Borel set F in € with a finite mass, we put fr = Ky f
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= [ 70)3r(b7a) db, then | fr(B)pe(b™'a) db = fe(@) and KiRy,= Ry, K
== Bbj'

If every fr is the Fourier transform of a certain ¢r in L(z), then
f= l.i.rré. S+ is the Fourier transform of ¢ = Li.m. ¢r in L*z), therefore
F Fog

it is sufficient to prove the Lemma assuming that the considered element
f in L*®) satisfies the four conditions (8.14), (8.15), (8. 16)and

(8.17). R/Ky = KzR;,= R, for a certain Borel set F in € with a
finite mass.
If F is a Borel set in the condition (8.17), as we alrcady observed, the
regular measure 7 on € : (X)) =(FNX) is a diagonal measure,

and p(a)= ¢r(@) = (Lapr, ¢5) = [ A(@) dzs(2) is a continuous positive de-

finite function. The Hilbert space L*(p) of the cyclic unitary represen-
tation for @ which corresponds to p(@) is the range of the projection Kp.
If ¢ is a bounded function on & measurable by r and which vanishes
out-side of F, then its Fourier transform relative to the measure r is
the restriction of the operator K, on the space L*(p). Then the set of all
bounded operators K, restricted on the space L*(p) consists of a maximal
abelian sub-algebra of the commutor &(p)’ of &(p).

By the assumption f satisfies the four conditions (8. 14)....(8.17),
then the restriction of the operator R, on L*p) commutes to every
operators L, and K, restricted on L*p), and consequently coincides with
the restriction of a certain K, such that « is bounded and vanishes out-
side of F. Those operators K, and R, are coincident with each other on
L*®); f and + are coincident with each other. This establishes the
Lemma 8. 7.

We shall now prove (8. 12) of Theorem 18.
For each ¢€® and f & LX®), let I, f denote the function in L¥®):
(raf) (B) = f(ab) — f(ba). The set M= (p:¢ € L(z)) is a closed linear
sub-space of L*®), and by Lemma 8.7 an element f in L*®) belengs
to M if and only if f is orthogonal to every "¢ (@€ ®, ¢ €IM). Then
the orthogonal component of the space M in L*®) is spaned by all those
.y, and the smallest linear set which contains all ¢ and all /'y (a €S
M) is everywhere dense in L¥®). This concludes (8.12). Thus
Theorem 18 is completed.

An auxiliary result for self-adjoint operators.

Let A and B denote two self-adjoint operators on a Hilbert space $
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with the respective spectral resolutions A4 == J 2dEQ2) and B = J rd F(p).

We assume that A and B commute’ to each other, then every pairs
EQ2) and F(z) commute to each others?,

A complex resolution of the identity {G(z)} is the system of all
those projections G(z) defined for every complex number z =21 + ip as
G(2) = EQ) F(p).

If ¢ is a real Baire’s function on the complex number field &, which
is bounded in each open circular in  with finite radius, then a self-

adjoint operator ¢(A + iB) ——-—-ngp(z)dG(z) is determined by

(p(A + iB)x, ) = [ p(2) d (E(2)%, )

for every %,y in the domain D(g(A + iB)), where the domain D(¢(A +
iB)) of the operator is the set of all those x in $ with

[le@ralca s <=,

and integralsfgo(z) d (G(2)x, y) are Lebesgue-Radon-Stieltjes integrals®
on & If ¢ is uniformly bounded on &, ¢(A + iB) is a bounded linear
operator. Clearly we have A = J 2dG(2 + ip) and B=J‘udG(A + i),

then we put A —B = I (4 — p)dG( + ip). A — B is a self-adjoint ope-

rator.

Lemma 8.8. Lel g be an element in the domain DA — B) with
(A — B)g=0, then EQQ)g = F(A)g for every real number 2i.

Proof. Let ¢ be a real function on the real number field R, which
is bounded and continuous together with its derivative ¢'(2). Then the
function «» on &:

P2+ dp) = (p(2) — @(p)) (1 — p) for 2+ p,
(A + ip) == ¢'(2) for A=p

1) [7]. P. 301. Def. 8.2.
2) M.H. Stone [7]. P. 314. Def. 8.5.
3) M.H. Stone [7] P.P. 312—313
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is a uniformly bounded continuous function on &, and, if g is an element
in DA — B) with (A — B)g =0, then

4 -BiglP=[|G - wPdI G+ img|*=0
and

|¢(A)g — ¢(B)g||2=Jl¢(A) — e ?d G2+ ipg*

— [0 + ipfQ = pr | GG+ ipg P =0,

where ¢(A) = [ ¢(2) dE() and ¢(B) = [ ¢(x) dF() are bounded Hermi-
tian operators on . Hence

Sub-lemma 1. If ¢ is @ function on R bounded and continuous
together with its derivative, then ¢(A)g = ¢(B)g.

If {¢.} is a uniformly bounded sequence of Baire’s functions on R

with ¢.(3) — ¢(2) at each point in R, then ¢.(A)g converges to ¢(A)g.
In fact,

louAlg — ot A)g 1= [1.2) — pl2) P A BRI g 1* = 0

as # — o, Then

Sub-lemma 2. If {¢,} is a sequence of wuniformly bounded
Baire's functions on R with ¢.(2) — ¢(2) at each point in R, and if
¢(A)g = o.(B)g for n=1, 2,...., then we have ¢(A)g = ¢(B)g.

By Sub-lemma 1 and Sub:lemma 2, we have ¢(A)g=¢(B)g for
every bounded Baire's function ¢ on . Let ¢, be the characteristic
function on the interval (— o, 2), then

E(\)g = ¢px(A)g = o\(B)g = F(J) g.
Thus Lemma 8. 8 is proved.

Lemma 8.9. If f and g are two elements in L¥®) such that
f=r%g=g" and [f)gWbadb— [gb)f(67a) db, then two sel-

adjoinl operators R, and R, commuic lo each other.
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Proof. The operator R;: (R:h) (a) =Ih(b)f(b"‘a) db for every
he DR, ; is self-adjoint, and has the spectral resolution Ry== J 2d E(A).

D(R,) is the set of all 2= L¥S) such thatfh(b)f(b"a) db belongs to

L*(®).
The operator Z on L%O®): h— Zh=h* is conjugate-linear, iso-
metric and Z°= 1. Then the operator L,=ZR,Z is a self-adjoint

operator. D(L;) is the set of all %z in LX®) such thatJ f(D)h(b'a) db
belongs to L¥@®). For every k2 in T(L,) we have LA =f J(D)A(b™'a)db.
The spectral resolution of L, is L,=de ZEMNZ., Put f,=Enf

-

— E(—n—0)/, then R,‘,=J"sz(z), and L, =ZR, Z—|"214
v k " _]

ZE(x) Z. Every pairs R, and L, commute to each others, in fact,
R;L;h =Ly R, h= (fu<h-[fs)(a) for every hE L(S).

Every pairs E(2) and ZE(p)Z, consequently the pair R, and L,
commute to each others, respectively.

Every element 2 in L(®) N L%®) belongs to DR, DL, and
D(R; — L,), and satisfies

(R, — L)h =R — Lk =j F®) (hb~'x) — h(xb~)db. If k is an
element in DR, — L,), for every 4 in L(G)NLYS), we have

((Ry — Lok, h) = (&, (R; — Lyh)
——‘SS ) (kb'a) — klab™)) hila) dadb.

Then

(R, — Lk (@) = J 1(b) (k(b~'a) — klab~))db.

Conversely, if kis an element in LX®) such that &'(a) =I Fb) (k(b'a)
— flab™) db belongs to L’(®), then for every & in DR, — L,) we have

Ry — L, B) =SSk(a) (f(a@'b) — f(ba~")k@) dadb = (h, k).
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R; — L,is self-adjoint, then % belongs to (R, — L)) and k' = (R, — Lyk.
By the assumption of the Lemma, f and g are elements in LX@®) such
that /= f* g = g* and | f(a)g(a”b) da— | gla)f(a™'b) da.

Then we have g€ DR, — L) and (B, — Lyg==0.
By Lemma 8.8 we have E(Q)g = ZE())Zg (— o {1 o), then

Rog—| "dEng—| "id ZEWZg—L,z.
That is,

J'g(b)f,.(b-’a) db=f £B)gb@) db (=1, 2....).

Let R, = I A d F(2) be the spectral resolution of R, and put gn = F(m)g
— F(— m — 0)g, then analogously

f gnd) f(b7a) da =_J fub)gnda)db (n,m=1,2,...).

R, and R, are bounded operators, and commute to each other. Hence
all those paires E(2) and F(u), R, and R, commute to each others re-
spectively,

Proof of Theorem 19.

We consider a fixed maximal abelian sub-system IR of LX®), M
satisfies the three conditions (8. 10), (8.11) and (8. 12).

Putting (/'.f) (b) == f (ab) — f(ba), the latter two conditions are
equivalent to the following two conditions respectively.

8.11). If feM and a=®, then I'.f is orthogonal to every
g,

(8.12). LAQ®) is the closed linear span of the sum of the space
M and the set (I'.f: a€®, f&M).

By (8.12) and (8.13), the orthogonal component of the space I is
the closed linear span of the set (/.f:a€®, f€M). Then

Lemma 8.10. If g is an element in L*®) such that

fg(b)f(b”‘a) db =J fb)gba) db for every f <IN,



HARMONIC ANALYSIS ON LOCALLY COMPACT GROUPS 187

then g belongs to .
An element # in LX®) is called a unit if it satisfies w(a) = u(a™")

=Ju(b)u(b“‘a)db. An element # in LX®) is a unit if and only if R, is

a projection.

Lemma 8.11. The smallest linear set which contains all units in
M is everywhere dense in I,

Proof. If f is an element of W, f is a linear combination f= f,
+ if, of those f; in M with f,=f*. Therefore it is sufficient to show
that all those elements f in W with f= f* are approximated by linear
combinations of units in ¢,

If f is an element in M with f= f* R, is self-adjoint and has the

spectral resolution R,= j AdEQ).

Let @ and 3 be those numbers such that either a =3 > 0 or
0> a= A3. Let ¢.s denote the function on the real number field such
that ¢.e(1) ==+ for &« > 2 = B8 and ¢aa(2) = 0 for either 4 > aor 3=
Then Igo.,,g(/l) d E(2) is a bounded operator, and #.g =J¢GB(1) d EQ)f
is an element in LX®) such that Ry, = E(a) — E(#), R, commutes
to every R, as g =M, then every E(2) commutes to every R,(ge ),

and R, commutes to every R, (g M), that is, Jumg(b)g(b“a) db =
fg(b)uag(b"a) db for every g . By Lemma 8,10, #,s are units in

M. If ¢ is a linear combination of those functions ¢.s then J (VDA EQ)f

is clearly a linear combination of those #.s== I¢¢B(x) d E(A)f. Let «

be a function on the real number field such that ++(0) =0 and (1) == 1
for 27 0. Then we can choose a uniformly bounded sequence (1) of
those functions, which are linear combinations of ¢.s, and which con-
verges at each point 1 to the function 4.

Now J ¢a(2) dE()) f converges to f (1) dE(2) f= f by the topology

of L¥®). Then f is approximated by the linear combinations of units in
IR, and the Lemma is concluded.

Let # be a unit in ™M, and denote by L*#%) the smallest closed linear
space which contains all L.%#, which is the range of the projection operator
R.. The group &%) of all operators L, restricted on the space L*(z).
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consists of the unitary representation group for @ which corresponds to

the positive definite function #(a@) == (L., u).

Lemma 8.12. Let # be a unit in M, and let WM{u) denole the
set of all restrictions of such operators R, on L*(%) that f belongs
to M and R, is bounded. Then M(u) is a maximal abelian sub-al-
gebra of the commutor 8@) of the unitary group S#).

Proof. Let K be a bounded linear operator on L%#) which com-
mutes to every L, in &) and every R, in M(z). If k is a summable
and square summable function in ®, K commutes to the operator L, =

Jh(a)La da and satisfies

KR = KL, = L,Ku = R,h,

where g == Ku belongs to L?(#). Now we have Kh = R,k for every h
in L*(%), then K coincides with the restriction of the operator R, on
L*(%). The operator R, commutes to every R, in 9t such that R; is
bounded linear, and to every R, such that # is a unit in 9. Then

Ig(b)u(b"a) db =‘J u(b)g(d'a) db for every unit # in T,

The smallest closed linear set which contains all the units in M
coincides with M, then every element % in I satisfies

j 2(b)k(ba) db — jk(b)g(b-’a) db,

By Lemma 8.10 g bhelongs to !, and % belongs to Pz). Hence
WM(x) is a maximal abelian sub-algebra of &(z)’.

By Theorem 3 the algebra Ui(x) determines a diagonal measure -,
on € whose relative Fourier transform ¢ — R; is an algebraic isomor-
phism between Miz,) and W(u). If ¢ is a bounded and measurable
function on €, its relative Fourier transform R; in M(z) is determined
by

(LoRot, ) = j 2D drul D).

We can assume that ¢ is an element of I and contained in the range of
the projection R,. Then
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pla) = [ ub)p(b™'a) db = (L Rout, ) = [ K@y d-u(.

If ¢ and + are bounded functions on ¢ summable by z,, then
Rz = R;R; and

[ ®)4.6-'a) db = (L ReRi, ) = (L~ Regan, w)
= ngo(z)\p(a)d ul2).

Especially,

[#®75®) ab = [ ¢w¥@ deutar.

Lemma 8.13. If #, and u, are mutually orthogonal units in M,
then there is a Borel set N in € such that v, (& — N)=0 and
7u,(N) = 0.

) Prooj. wu=u, + u;is a unit, and the restrictions of R, and Ry, on
L*#) are mutually orthogonal projections. Then there exists a Borel set
N in € such that Ry = R;,. The measure t,:7;(X) = r, (XN N) is now

a diagonal measure with u,(a)=Jl(a)drl(l), whose relative Fourier

transform mapps Mi(z;) on TM(z,). Then =; coincides with Tup and oy
coincides with ¢ — z;. Hence (€ — N)=0 and z,(N)=0.

Lemma 8.14. There exists a system {u:} of mutually orthogonal
units in M such that I = Z: Ry,

Proof. The family of all sub-systems of "M whose elements are
mutually orthogonal units in M, is inductive, and by the Zorn’s lemma
there is at least one maximal system in the family. We consider such a
fixed maximal system {#;}, then there is no unit in % orthogonal to
every #; other than 0. R, are mutually orthogonal projections, and
E= ){J R,, is a projection on L*(@®).

If g is an element in L*(®) such that R, is bounded, then R,, = ER,.
In fact, for every 2 in LY(®), we have

Rygh = h ° (Eg)l)= ; h cgou = E(Rgh).

1) fog is the convolution: (fog)(a) = [f(b)g(b—la) db
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If # is a unit in M, every R.liu:—fu(b)u,(b"a) db is contained in

M, and Eu ==X R, u is contained in M. Ry = ER, = R,Ru=R.R,,
= R.E is a projection. Then Ex and (I — E)« are units in I, (I — E)u
is orthogonal to every #;, and we have (I — E)u =

Therefore

ER,==R.,E =R, for every unit u in M,

We now show that E is the identity I. Assume that E is not the
identity I, then there is an element f in L*®) such that | f]=

(JIf(a)l%ia)lT:l and Ef==0. We can choose a g in L*®) such
that |/ — g| <% and R, is bounded linear. Then hA=(I — E)g is
0. In fact,

lhlZId - Eyfl— | - B (f - 21> +.

Notice that R,= (I — E)R, is bounded and linear, then %2==R,h* be-
longs to L¥®). It satisfies k(@) = k*(@), Ek = ERi* = Rpnh* =0

and 25~0. In fact, k{a)= J’W h(ba) db is a continuous function on ®

with ke) = [14®) * db =[] # .

Now for every unit #z in "R, we have
RE=R,Ek=0 and

Jk(b) #(b~'a) db = 0. Since u=u* and k== k*, we have
Iu(b)k(b”’a) db=0. M is the smallest closed linear space which
contains all units in M, then we have

j £ (B)E(b"a) db — j EB) f(b'a) db = 0

for every f in M. By Lemma 8. % and %* should belong to N,
therefore,

Jk(b“)k(b"a) db=0 and E—=0.

This contradicts to the fact k2550, then E should be the identity I.
This concludes the Lemma.
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Let {#:} be a system of mutually orthogonal units in M with =

;Ruu and for each w; determine the diagonal measure z,==r,. If

i % j, then there exists a Borel set N;; such that N,;=& — N, and
Ts(Nﬂ.) == Tj(NiJ) =0,

Now {N,: N, = ijI‘ N} are mutually disjoint Borel sets in & such
J=

that z(E — N))==0 (=1, 2, ....). We define a Borel measure = on
€ by

(X)) = $ (X N N,) for every Borel set X.

We shall show that r is a fundamental measure whose Fourier
transform ¢ — ¢ maps L*(-) in M,

Every diagonal measure z, is regular, and satisfies the condition 8. 1,
then  satisfies the condition 8.1. <t satisfies the condition 8.2. In fact,
if f and g are summable and square summable functions on &, then

[ 102 da = 53R, 1, Ry ) = 3 [ w670 2) f(@) db da.
Notice that
wi@) = [ 1@ deit) = [ , 24@) de (),
then
| 11@2@ da - m b2 g®) /(@) db da d=(1),

the Plancherel’s equality is satisfied.
If A and B are Borel sets in & with finite masses,

o) :JW?(E) de) and i) =  T@) deda)

BON,

are elemsnts in the range of the projection R,. Andif A and B are

mutually disjoint, they are mutually orthogonal. Further f |gil@) | da =
«(ANN) and [|4(a)[* da—= <(BON),

Then ¢.(a) = f K@) d=) = £ gla)

and
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oula) = [ 1@ de(@) = £ i@

are mutually orthogonal elements in L*®). Thus r satisfies the condi-
tion (8.3), and z is a fundamental measure.

The Fourier transform ¢ — ¢ maps L°(z) on M. In fact, if ¢ is
a bounded function on & summable by r which vanishes out-side of a
certain N, then ‘

pla) = [ i@ de) = [ 1@ d=)

belongs to M. Therefore the Fourier transform ¢ — ¢ maps L%(z) in
a sub-space of 9. But, the range of the Fourier transform is a maximal
abelian sub-system of LX), then it coincides with Ik,

Finally, the correspondence between fundamental measures on €
and maximal abelian sub-systems of L*@®) is one-to-one. To prove this,
it is sufficient to show that, if r and p are two fundamental measures
such that their respective Fourier transforms map L*z) and L*p) on
the same maximal abelian snb-system I, then p=r-.

If - and p are such two fundamental measures, choose a system
{s,} of mutually orthogonal units in M such that 7 = > R,. Then those
u, are respectively Fourier transforms :

wla) = [ , 7@ d=) = [, @) dp(a.

The measures 7, and p; are defined by =(X)=<(XNE,) and by
p(Y) = p(Y N F,) respectively. For each fixed #, 7 and p, are diagonal
measures which correspond to the same positive definite function #i(a)
and the same maximal abelian sub-algebra M(zx,) of &(#,)’. By Theorem
3, = and p, coincide with each other, then == ;r, and p:%: pi

coincide with each other. This completes Theorem 19.
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