ON FIBRES OF FIBRE SPACES WHOSE TOTAL
SPACE IS CONTRACTIBLE

MASAHIRO SUGAWARA

1. In this note, we consider a fibre space (E, F, B, p), where E is
the total space, B the base space, the map p: E— B the projection,
and F==p""(b,) the fibre over a point b, B, in the sense of Serre,
(i.e., being assumed the truth of the covering homotopy theorem for
maps of finite polyhedra). The purpose of this note is to prove the
following theorem.

Theorem 1. In a fibre space (E, F, B, p) such that the total space
Eis a CW-complex and the fibre F is a locally finite CW -complexV,
we assume that E is contractible to a vertex x, € F in itself (with
X0 Slationary throughout the contraction). Then F is a homotopy-
associative H-space having a (lwo-sided) inversion?.

2. As the first step of proofs of Theorem 1, we prove the following
theorem, which is an analogy of the result of E. H. Spanier and J. H. C.
Whitehead [4, Theorem (1.1)].

Theorem 2. If the fibre space (E, F, B, p) salisfies the kypotﬁeses
of Theorem 1, then there exists a (continuous) map 12 of E X F into
E having the following properties:

(1) peplu, x) =plu) for every uc E and x < F.

(2) p|FXF=y is an H-structure of F having %, as an unit
element.

(3) This H-structure ;. has a left inversion?.

Proof of (1) and (2). We notice that E X F and

1) For definitions, Cf.[6], §5, p. 223.

2) A space X is an H-space (has an H-structure) if there is a multiplication g in
X, i.e. a map p:Xx XX, such that pu(xo,x)= s(x,x0) = x for some xgp (called an
unit) and every x¢X. If two maps (x,y,2) = ulx, #(y,2)) and (x,¥,2) > pluix,y), 2} of
Xx Xx X into X are homotopic each other, we say x is homotopy-associative. , has
a (two-sided) inversion, if there exists a map o:X — X such that the maps x - u(o(x),
x) and x - u(x,06(x)) of X into X are homotopic to the constant map x - ro respec-
tively. If only one of these maps has this property, we say ¢ is an one-sided (left
or right) inversion of .
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E\/Ff—'-'(EXxO)U(an F) and F\/F=(F><xo)U(x0XF)

are CW-complexes, because E and F are CW-complexes and the latter
is locally finite®.

Let &.: (E, x,) = (E, x,) (0<#<{1) be the homotopy between %k, =
the identity map and %,: E — x, the constant map, which gives a con-
traction of E; and we define the map go: E X F— E by gy, x) = x.
and the homotopy g'.: EV F—- E(0<t<1) by

&' (u, %)) = ky(n),
for € E and x&< F.
g,t(xa, x)=x,

Then, there is a homotopy g,: E X F— E (0<{t< 1) of g, which is an
extension of g,* and it holds relations gi(#, %,) == % and g,(x,, x) = x.
Therefore the map p-g,: E X F— B satisfies p - gi(u, x) = p(u) for
(#, x)= EN/ F.

Let W: EX EX I— B(I=[1,2]) be defined by

p o ginlu, x) for 1 <1t < 3/2;
h(u, %, 1) =
<t <

p e k;);_;;(u) for 3/2 t 2'

Then A'(s, x,1) = p o gi(#, %), h'(% X F X I) = b, and h'(«, x, 2) == p(u).
Also A'|(E~N/ F) x I is homotopic, relative (E X %, X 1)\U(E X %, X 2)
U (xg X FX I), to the map #:(EN/F) X I - B such that &(#, x, 1) =
p(#). This homotopy can be extended, first to a homotopy of (E X F X1)
\U(EX FX2)\U(EN/ F) X I as stationary on (EX FX1)\U(E X F X 2),
and then to a homotopy of E X F X ] into B (by applying the homotopy
extension theorem for CW-complex). The last map h: Ex FX I— B
defines the homotopy #,: E X F— B (1 <t<2) which satisfies 7, ==
pe° g and
t=2 and  (#,x)EE X F,

h(u, x) == p(u), for
1<t<2 and (u#,x)= EN/F.

Because (E, F, B, p) is a fibre space in the sense of Serre and E X F
is a CW-complex, we can apply the covering homotopy theorem due to
I. M. James and J. H. C. Whitehead [2, Theorem 5.1], and hence there

3) Cf.[6], §5, property (H), p. 227.
4) This is a consequence of the homotopy extension theorem for CW-complexes,
cf. [6], § 5, property (J), p. 228.
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exists a homotopy g.: E X F—>E (1<t<2) such that p - g, =h, and
stationary with A, It follows immediately that the map p = g. satisfies
the properties (1) and (2).

3. Proof of (3). As (E, F,B,p) is a fibre space, it follows evi-
dently that (E X F, F X F, B, p’) is also a fibre space, where p': E X F
— B is defined by p'(#, x) =p(#) and F X F==p'""(b,) is the fibre over
b.€ B.

Making use of p, let ¢: EX F— E X F be defined by

o(u, x) == (12(u, x), X) for € E and x€ F,

and set ¢=¢|F X F. Then, by property (1), p’° g(u, x)==7p'(x, x)
for every #= E and x € F. Therefore ¢ induces an endomorphism of
the homotopy sequence of the fibre space (E X F, FX F, B, p').:

o = mpnl(B) = (FX F) = o(E X F) = 2,(B)— -
l i-x- ~L [ l Q-Z"* 1.*

s —‘)73-724—](8) - Tfn(F X F) - TTn(E X F) - '4’-'7;(3)'_'> b
where i, is the induced isomorphism of the identity map i:B— B.
Because E is contractible to x,, the map ¢: E X F— x, X F such that
g(u, x) = (x4, ) induces an isomorphism of #.(E X F) onto ma(x, X F),
and hence ¢, is an isomorphism onto, by g==¢ < ¢. Therefore, by five
lemma, it is immediately seen that ¢, is an isomorphism onto; and this
shows that the map ¢: FX F— F X F is a homotopy equivalence, as
F X F is a CW-complex®. We denote by ¢: F X F— F X F a homotopy
inverse of ¢, i.e., a map such that # - ¢ and ¢ - ¢ are homotopic to the
identity map, respectively.

We now define maps ¢ and - of F into F by

G(x) =, ° 6(xﬂ) x))
for x= F,
(xX) = @. o 6(x,, %),

where ¢, is the projection of F X F onto F of the first factor, and ¢.
onto F of the second factor. As ¢ can be written by ¢(w) = (n(q,(w),
g.(w)), g.(w)) for we F X F, we have @eofc j(x)——=(,u(a(x), (%)), «(x))
where j:F—x, X F is j(x)==(%, x). Because ¢ ¢ is homotopic to
the identity map, let i.: FX F— F X F be a homotopy between Z,==
¢ © 0 and ¢, == the identity map; then ¢, :i,° j: F— F defines a homo-

5) This is a consequence of Theorem 1 of [6, §1, p. 215].
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topy between maps x — u(a(%x), z(x)) and x— x, of F into F, and also
g.ci,> j: F— F between maps x—z(x) and x — x. Combining these
properties, it is seen that the map x — pu(a(x), x) of F into F is homotopic
to the map x — p(a(x), : (%)) and hence to the constant map x — x,. This
show that # is an inversion of . and so (3) is valid; and hence proofs of
Theorem 2 is completed.

4, As the second step, we prove the following theorem, which is an
modification of results of H. Samelson [3, Theorem 1] and [5, Theorem
1].

Theorem 3. If the fibre space (E, F, B, p) satisfies:

(1) There exists a map p: EX F— E, having properties (1),
(2) and (3) of Theorem 2.°

(2) E is contractible to x, (with x, stationary).

Then there exists an H-homomorpism® f, which is also a weak
homotopy equivalence”, of F into the space A(B) of loops in B with
the base point b.

If Fis a locally finite CW-complex in addition, the H-structure
1 of F is homotopy-associative, and also has a (two-sided) inversion.

Proof. The existence of such map f can be shown by applying [3,
Proposition 1] and [5, Theorem 1].

Becaiise f induces isomorphisms of all homotopy groups of F and
A(B), two maps of a CW-complex into F are homotopic if and only if
two composed maps of these maps and f are homotopic each other®.
Therefore, if we assume F is a locally finite CW-complex, the homotopy-
associativity of F, i.ec. the fact that two maps (¥, y, 2) — pu(x, p(y,2))
and (x,y,2)— p(u(x,y),2) of FX FX F into F are homotopic, is an
immediate consequence of the fact that f is an H-homomorphism and the

6) For H-spaces X and Y with multiplication g and ;4 respectively, we say a
map f: XY is an H-homomorphism, if two maps (x1,x2) - f o u(x1,%2) and (xy,72)
= a'(f(x1), fix2)) of Xx X into Y are homotopic. If u# and & have inversions ¢ and o
respectively, we assume in addition that two maps x = foo(x) and x 2d' o flx) of X
into ¥ are homotopic each other.

For the may f of this theorem, the multiplication of F is p=z| F x F and that
of the H-space A(B) is the natural multiplication (composition of loops).

7) This means that f induces isomorphisms of all the homotopy groups of F and
A(B).

8) This property is easily proved, for example, by making use of Theorem 1.7
of [1, Chapter VII, p. 98].
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H-space A(B) of loops in B with natural multiplication (composition of
loops) is homotopy-associative.

As the consequence of the homotopy-associativity of x, it is easy to
show that the left inversion « of 12 is also the right inversion, as follows.
As the map x — u(a(x), x) is homotopic to the constant map x — x,==an
unit, the map x—asca(x) of F into F to the map x— pulae° (%),
1(a(x), x)), and the latter to the map x — p(u(s ¢ o(x), a(x)), x), and so to
the identity map x — x. Therefore the map x — (%, #(x)) is homotopic
to the map x — p(a° s(x), 6(x)), and hence to the constant map x— x, of
F into F. This proves o is also a right inversion of (1, and proofs of
Theorem 3 is completed.

Combining Theorems 2 and 3, we have Theorem 1 immediately.
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