COMPACT MOB WITH A UNIQUE LEFT UNIT
Naok! KIMURA and TAKAYUKI TAMURA

A. D. Wallace proposed in his paper [1]" the following problem :

If a compact connected mob has a unique left unit, is this also a
right unit ??

By a mob we mean a Hausdorff semigroup according to him. We
have already given counter examples to this problem without proof [2].
In this paper we shall discuss the structure of a compact mob which has

a unique left unit but has not a right unit.

Let S be a compact mob having a unique left unit e which is not a
right unit.

Lemma 1. Se is a compact proper submob with a two-sided unit,
and S is homomorphic onto Se.

Proof. Consider a mapping f of S to Se: f(x) =xe. Then f is
continuous, and, since e is a left unit,

F(®)f(y) = (xe)(ye) == x(ey)e = (xy)e = f(xy).

Hence f is a homomorphism of S onto Se. Since S is compact and Se

is an image of S under f, Se is also a compact mob. Taking any x € Se,

x=ye for some y E S, xe ==(ye)e == y(ee) = ye = x, whence a left

unit e is also a right unit of Se. Suppose that Se == S, it is concluded

that e is a right unit of S, contradicting to the assumption. Therefore

Se is a proper submob. Thus the lemma has been completely proved.
We remark that each element of Se is fixed under f.

Lemma 2. The inverse image of e under the homomorphism f
of S to Se is composed of only one e.

Proof. Let x be an element of S such that f(x)==xe =e. Then,
forany y €S, xy ==x(ey) = (xe)y == ey = y. It follows that x is a left
unit. According to the uniqueness of left unit, we have x ==e.

From Lemmas 1 and 2 we have easily the following theorem :

1) Numbers in brackets refer to the references at the end of the paper.
2) We correct the misprint in the paper {1], p. 499, the 2nd line, as follows:
read “compact connected mob” for “compact mob."”
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Theorem 1. S is decomposed into the class sum of To, S ———-EE§_;.p T.
such that '

(1) a is only one element of Se which is contained in T,

(2) T, is composed of only one e,

(3) ToT, C To where a, b € Se.

Now let G =3Se and let ® be a set of mappings ¢.a € G) of S
into S defined as ¢.x)==ax. Then ® and f satisfy the following
conditions.

(C1) f 1is a continuous idempotent mapping of S onto G, and only
one e is mapped to e by f,

(Cz) the correspondence & — ¢. is an algebraic’ homomorphism of
G to @,

(C3) when g¢.(x) is considered as an image of (a, x), ¢. isa conti-
nuous mapping of G X S into S,

(Ca) ¢dle) = a for every a € G,

(Cs) ¢.x) =x for every x € S,

(Ce) ¢uf = f ¢a for every a € G.

On the other hand, it can be shown that these conditions characterize
S.

Theorem 2. Let S be a compact set and let G be a proper subset
of S as well as a compact mob with a two-sided unit e. I1f a map-
ping f of S onto G and a set ®© of mappings ¢.a € G) of S into S
‘are given such that the conditions (C1) ~ (Ce) are satisfied, then we
can construct a compact mob with a unique left unit e which is not
a right unil, so that S is the extension of G and S is homomorphic
to G. Moreover G is isomorphic to ®.

Denote by a-b the given product of @ and b in G. Let us define a
product xy of x and y in S as follows:

%y = @ra(y).
At first we shall prove the following Lemmas 3 and 4.

Lemma 3. f is a homomorphism of S onto G with respect to
the new multiplication, and maps each element of G to itself.

Proof. According to (C1), for any @ € G, as thereis x € S such
that f(x) =@, we have f(a) = f(f(x)) = f(x) = f(x) =a.

1) By an algebraic homomorphism we mean a mapping which preserves product.
We require no continuity of it.
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By (Co), JS(xy)==(¢ra(¥)) = Cra(S(3) = ¢r s (fy) = f(y

Lemma 4. In G the new multiplication coincides with the for-
mer one: ab==a+b for a,b<G.

Proof. By (C2) and (Cs), ¢us(e) =¢u.nle) =a+b. On the other
hand, by (Cs) and Lemma 3, ¢d@ie)) = ¢uld) == ¢ya{b) == ab, whence
a*b = ab.

The Proof of Theorem 2. If we define xy as above mentioned,
it is proved that the product is associative by use of Lemmas 3 and 4. In
fact %(¥2) = ¢ (92) == ¢ 10 (L70)(2) == Crimrery (2) = Crimran (2) = ¢y (2)
== (xy)z. The continuity of multiplication is clear by (Ci) and (Cs).
From (Cs), it follows that e is a left unit. Its uniqueness is proved as
follows. Let ¢ be a left unit of S, and let x be an inverse image of
% € G under f:f(x) =u. From cx =x, we have f(c)u = u for every
u € G; f(c) coincides with a two-sided unit of G, i.e. f(c)==e. The
condition (Ci) makes it hold that ¢==e. Next we shall prove that
f(x) = xe. By (Cy) and the definition of the multiplication, we have
F(x) = f(x)+e = f(%)e == ¢ry=n(€) = ¢ry(e) = xe. In particular, for a€ G,
f(a) =a. Since G is a proper subset, G 3 xe > x for x € S—G. This
shows that a unique left unit ¢ is not a right unitof S. Thus S is a
compact mob having a unique left unit but no right unit., Of course S
is homomorphic to G by Lemma 1. The proof of one-to-one correspon-
dence of @ — ¢, is clear by the following.

axb ode)=axb=q¢e); hence ¢, ¢

Thus the proof of the theorem has been completely finished.
Now we shall investigate whether G is unipotent or not.

Lemma 5. Let X be a compact unipotent mob, an idempotent of
which is e. If eX= X, then X is a group".

Proof. Let x be any element of X. Since XX is a compact submob
of X, it contains e ?, in other words, zx = ¢ for some z € X. Of course
e is a left unit of X. Hence X is a group.

Theorem 3. Let S be a compact mob with a unique left unit e
which is not a right unit. Then Se contains an idempotent beside e.

1) The proof of Lemma 5 is similar as that of Lemma 1 in [4] or Lemma 2 (2
in [5]. (Readers should remark the supplement to [5], Kodai Math., Sem. Rep., No. 3,
1954, p. 96.)

2) See Lemma 4 in (3].
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Proof. At first we shall prove that S contains an idempotent differ-
ent from e. Suppose that S is unipotent. Since e is a left unit, from
Lemma 5 follows that S is a group and so e is a right unit of S at the
same time. This conflicts with the assumption. Therefore S contains
an idempotent different from e. Let @ be an idempotent beside e. Ac-
cording to Lemma 2, @e = e¢; and it is proved that ae is an idempotent :
(ae)(ae) == alea)e = (aa)e = ae. Hence Se contains an idempotent ae
distinct from e.

Finally we give examples of S.

Example 1. Finite semigroups. (See [6].)

(1) S==1{a,b,c,d}, G=1la d}.

abced ¢a(X) = @,
adlaaaa
blaaaa f= (23 sg) ) 0dX) == x.
claaaa
dlabcd
(2) S=1a,bc¢d}, G={ab, d}.
__(abcd
Qng Fa == (abaa)’
zaba“ fe (abcd _ (abcd
abab = \abad/" ¥ = \abab)’
clabaa abed
dlabcd fa :(abcd)'

In particular, we give examples of a connected S.

Example 2. S={(x,); 0Zx<y<1), G={x; 0<x< 14,
The multiplication and the topology in G are given as usual, and S is
considered to contain a subset corresponding one by one to G: (x, x) ©x;
f and @ are defined as

SUx, ) =2%, ¢, )= (ax, ay) for every a € G.

Then the example is equivalent to Example 1 in the previous paper [2].
Example 3. Let us consider Example 2 in (2], the symbols in
which are used also here.

x, if xE A,
S=AUB, G=A, f(x)= ;
0, if x € B,

ax, if x € A,
for a€ A, ¢ux)==
x, if x = B.
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