COMPACT MOB WITH A UNIQUE LEFT UNIT

NAOKI KIMURA and TAKAYUKI TAMURA

A. D. Wallace proposed in his paper [1]¹⁾ the following problem:

If a compact connected mob has a unique left unit, is this also a right unit?²⁾

By a mob we mean a Hausdorff semigroup according to him. We have already given counter examples to this problem without proof [2]. In this paper we shall discuss the structure of a compact mob which has a unique left unit but has not a right unit.

Let S be a compact mob having a unique left unit e which is not a right unit.

Lemma 1. Se is a compact proper submob with a two-sided unit, and S is homomorphic onto Se.

Proof. Consider a mapping f of S to Se: f(x) = xe. Then f is continuous, and, since e is a left unit,

$$f(x)f(y) = (xe)(ye) = x(ey)e = (xy)e = f(xy).$$

Hence f is a homomorphism of S onto Se. Since S is compact and Se is an image of S under f, Se is also a compact mob. Taking any $x \in Se$, x = ye for some $y \in S$, xe = (ye)e = y(ee) = ye = x, whence a left unit e is also a right unit of Se. Suppose that Se = S, it is concluded that e is a right unit of Se, contradicting to the assumption. Therefore Se is a proper submob. Thus the lemma has been completely proved.

We remark that each element of Se is fixed under f.

Lemma 2. The inverse image of e under the homomorphism f of S to Se is composed of only one e.

Proof. Let x be an element of S such that f(x) = xe = e. Then, for any $y \in S$, xy = x(ey) = (xe)y = ey = y. It follows that x is a left unit. According to the uniqueness of left unit, we have x = e.

From Lemmas 1 and 2 we have easily the following theorem:

¹⁾ Numbers in brackets refer to the references at the end of the paper.

²⁾ We correct the misprint in the paper [1], p. 499, the 2nd line, as follows: read "compact connected mob" for "compact mob."

Theorem 1. S is decomposed into the class sum of T_a , $S = \sum_{a \in S^a} T_a$ such that

- (1) a is only one element of Se which is contained in T_a ,
- (2) T_e is composed of only one e,
- (3) $T_aT_b \subset T_{ab}$ where $a, b \in Se$.

Now let G = Se and let Φ be a set of mappings $\varphi_a(a \in G)$ of S into S defined as $\varphi_a(x) = ax$. Then Φ and f satisfy the following conditions.

- (C_1) f is a continuous idempotent mapping of S onto G, and only one e is mapped to e by f,
- (C₂) the correspondence $a \rightarrow \varphi_a$ is an algebraic¹⁾ homomorphism of G to Φ ,
- (C₃) when $\varphi_a(x)$ is considered as an image of (a, x), φ_a is a continuous mapping of $G \times S$ into S,
 - (C₄) $\varphi_a(e) = a$ for every $a \in G$,
 - (C₅) $\varphi_e(x) = x$ for every $x \in S$,
 - (C₆) $\varphi_a f = f \varphi_a$ for every $a \in G$.

On the other hand, it can be shown that these conditions characterize S.

Theorem 2. Let S be a compact set and let G be a proper subset of S as well as a compact mob with a two-sided unit e. If a mapping f of S onto G and a set Φ of mappings $\varphi_a(a \in G)$ of S into S are given such that the conditions $(C_1) \sim (C_6)$ are satisfied, then we can construct a compact mob with a unique left unit e which is not a right unit, so that S is the extension of G and S is homomorphic to G. Moreover G is isomorphic to Φ .

Denote by $a \cdot b$ the given product of a and b in G. Let us define a product xy of x and y in S as follows:

$$xy = \varphi_{f(x)}(y).$$

At first we shall prove the following Lemmas 3 and 4.

Lemma 3. f is a homomorphism of S onto G with respect to the new multiplication, and maps each element of G to itself.

Proof. According to (C_1) , for any $a \in G$, as there is $x \in S$ such that f(x) = a, we have $f(a) = f(f(x)) = f^2(x) = f(x) = a$.

¹⁾ By an algebraic homomorphism we mean a mapping which preserves product. We require no continuity of it.

By (C₆), $f(xy) = f(\varphi_{f(x)}(y)) = \varphi_{f(x)}(f(y)) = \varphi_{f(x)}(f(y)) = f(x)f(y)$.

Lemma 4. In G the new multiplication coincides with the former one: $ab = a \cdot b$ for $a, b \in G$.

Proof. By (C₂) and (C₄), $\varphi_a\varphi_b(e) = \varphi_{a \cdot b}(e) = a \cdot b$. On the other hand, by (C₄) and Lemma 3, $\varphi_a(\varphi_b(e)) = \varphi_a(b) = \varphi_{f(a)}(b) = ab$, whence $a \cdot b = ab$.

The Proof of Theorem 2. If we define xy as above mentioned, it is proved that the product is associative by use of Lemmas 3 and 4. In fact $\chi(yz) = \varphi_{f(x)}(yz) = \varphi_{f(x)}(\varphi_{f(y)}(z)) = \varphi_{f(x) \cdot f(y)}(z) = \varphi_{f(x) f(y)}(z) = \varphi_{f(x)}(z)$ = (xy)z. The continuity of multiplication is clear by (C_1) and (C_3) . From (C_5) , it follows that e is a left unit. Its uniqueness is proved as follows. Let c be a left unit of S, and let x be an inverse image of $u \in G$ under f: f(x) = u. From cx = x, we have f(c)u = u for every $u \in G$; f(c) coincides with a two-sided unit of G, i.e. f(c) = e. The condition (C_1) makes it hold that c = e. Next we shall prove that f(x) = xe. By (C₁) and the definition of the multiplication, we have $f(x) = f(x) \cdot e = f(x)e = \varphi_{f(f(x))}(e) = \varphi_{f(x)}(e) = xe$. In particular, for $a \in G$, f(a) = a. Since G is a proper subset, $G \ni xe \neq x$ for $x \in S - G$. This shows that a unique left unit e is not a right unit of S. Thus S is a compact mob having a unique left unit but no right unit. Of course S is homomorphic to G by Lemma 1. The proof of one-to-one correspondence of $a \to \varphi_a$ is clear by the following.

$$a \rightleftharpoons b$$
, $\varphi_a(e) = a \rightleftharpoons b = \varphi_b(e)$; hence $\varphi_a \rightleftharpoons \varphi_b$.

Thus the proof of the theorem has been completely finished. Now we shall investigate whether G is unipotent or not.

Lemma 5. Let X be a compact unipotent mob, an idempotent of which is e. If eX = X, then X is a group¹⁾.

Proof. Let x be any element of X. Since Xx is a compact submob of X, it contains e^{2} , in other words, zx = e for some $z \in X$. Of course e is a left unit of X. Hence X is a group.

Theorem 3. Let S be a compact mob with a unique left unit e which is not a right unit. Then Se contains an idempotent beside e.

¹⁾ The proof of Lemma 5 is similar as that of Lemma 1 in [4] or Lemma 2 (2') in [5]. (Readers should remark the supplement to [5], Kōdai Math. Sem. Rep., No. 3, 1954, p. 96.)

²⁾ See Lemma 4 in [3].

Proof. At first we shall prove that S contains an idempotent different from e. Suppose that S is unipotent. Since e is a left unit, from Lemma 5 follows that S is a group and so e is a right unit of S at the same time. This conflicts with the assumption. Therefore S contains an idempotent different from e. Let e be an idempotent beside e. According to Lemma 2, e is an idempotent: e is an idempotent: e is an idempotent e distinct from e.

Finally we give examples of S.

Example 1. Finite semigroups. (See [6].)

(1)
$$S = \{a, b, c, d\}, G = \{a, d\}.$$

$$abcd \qquad \varphi_a(x) = a,$$

$$aaaa \qquad baaaa \qquad f = \begin{pmatrix} abcd \\ aaad \end{pmatrix}, \qquad \varphi_a(x) = x.$$

$$caaaa \qquad dabcd \qquad \varphi_a(x) = x.$$

(2) $S = \{a, b, c, d\}, G = \{a, b, d\}.$

$$\begin{array}{ll} ab\,cd \\ a \overline{abaa} \\ b \overline{ab\,ab} \\ c \overline{abaa} \\ d \overline{ab\,cd} \end{array} \qquad \begin{array}{ll} \varphi_a = \begin{pmatrix} ab\,cd \\ ab\,aa \end{pmatrix}, \\ \varphi_b = \begin{pmatrix} ab\,cd \\ ab\,ab \end{pmatrix}, \\ \varphi_b = \begin{pmatrix} ab\,cd \\ ab\,ab \end{pmatrix}, \\ \varphi_a = \begin{pmatrix} ab\,cd \\ ab\,ad \end{pmatrix}. \end{array}$$

In particular, we give examples of a connected S.

Example 2. $S = \{(x, y); 0 \le x \le y \le 1\}, G = \{x; 0 \le x \le 1\}.$ The multiplication and the topology in G are given as usual, and S is considered to contain a subset corresponding one by one to $G: (x, x) \leftrightarrow x$; f and Φ are defined as

$$f((x, y)) = x$$
, $\varphi_a((x, y)) = (ax, ay)$ for every $a \in G$.

Then the example is equivalent to Example 1 in the previous paper [2].

Example 3. Let us consider Example 2 in [2], the symbols in which are used also here.

$$S = A \cup B, \quad G = A, \quad f(x) = \begin{cases} x, & \text{if } x \in A, \\ 0, & \text{if } x \in B, \end{cases};$$

$$\text{for } a \in A, \quad \varphi_a(x) = \begin{cases} ax, & \text{if } x \in A, \\ x, & \text{if } x \in B. \end{cases}$$

REFERENCES

- [1] A. D. Wallace, Indecomposable semigroups, Mathematical Journal of Okayama University, Vol. 3, No. 1, 1953. pp. 1-3.
- [2] N. Kimura & T. Tamura, Counter examples to Wallace's problem, Proc. Japan Acad., Vol. 31, No. 8, 1955, pp. 499-500.
- [3] K. Numakura, On bicompact semigroups, Mathematical Journal of Okayama Univ., Vol. 1, 1952, pp. 99-108.
- [4] T. Tamura, On finite one-idempotent semigroups, Jour. of Gakugei Tokushima Univ., Vol. IV, 1954, pp. 11-20.
- [5] T. TAMURA, On compact one-idempotent semigroups, Kōdai Math. Sem. Rep., No. 1, 1954, pp. 17—21.
- [6] T. TAMURA, Notes on finite semigroups and determination of semigroups of order 4, Jour. of Gakugei Tokushima Univ., Vol. V, 1954, pp. 17-27.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY
MATHEMATICAL INSTITUTE,
GAKUGEI FACULTY, TOKUSHIMA UNIVERSITY

(Received January 9, 1956)