THEORY OF COMPACT RINGS II
KAaTtsuMi NUMAKURA

§ 1. Introduction. In his paper [1]V K. Asano investigated the
theory of semi-primary rings and gave some results concerning these
rings. A ring R is said to be semi-primary if the radical N of R is al-
gebraically nilpotent (i.e. N"==(0) for some positive integer 72) and the
residue class ring R/ N is semi-simple.

In the theory of topological rings compact rings play a role similar
to semi-primary rings in that of abstract rings.

We shall prove in this paper several theorems concerning compact
rings which are similar to Asano’s and determine the structure of com-
pact rings satisfying certain conditions.

From these results, the condition II of [§3; 10]% can be replaced by
the condition :

II'. There is no open left (or right) ideal between b and V* for
any maximal open prime ideal p.

Therefore, under the condition I of [§3:10], the condition II of
{§3:10] and the condition II' are equivalent to each other. This means
that if there is no open left ideal between p and p* then there is no opcn
right ideal between P and P° and conversely.

In §2 of this paper we shall give some preliminary results concer-
ning compact rings with identity. We shall consider, in §3, compact
completely primary rings and prove three theorems (Theorems 3.1, 3.2
and 3.3) which will be used in the later sections. §4 is devoted to studies
of compact primary rings. In the last section, §5, we shall determine
the structure of compact rings which satisfy some conditions.

Most of theorems of this paper may be proved using the fact that “a
compact ring with identity is an inverse limit of finite rings” (see [11]),
but we shall not use this result and prove directly.

§2. Preliminary propositions. Throughout this paper we will
use the terminology of Kaplansky [5, 6 and 7]. For example the radical
of a ring always means the Jacobson radical (see [4]) and nilpotence

1) Numbers in brackets refer to the bibliography at the end of this paper,
2) Cf. [10; Theorem 71.
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means topological nilpotence (see [10]).
In this section we denote by 2 a compact ring with identity. Then
the following two lemmas are well-known" :

Lemma 2.1. O is totally disconnected and has a fundamental
system of compact open ideal neighborhoods of 0.

Lemma 2.2. The radical of © is a nilpotent ideal and every
one-sided nilideal is contained in the radical.

Now we prove the following two lemmas which are known results
for abstract rings satisfying the minimum condition for one-sided ideals,
and the proof of Lemma 2.4 is the same as in the case of abstract rings.?

Lemma 2.3. If a is an ideal of © such that a = Oa == b9 then
a==g%0 = Lbp.

Proof. From the assumption Oa = b2 there exist elements x and
y of © such that xa@ ==b and by == a. Then @ = xay and a = x"ay" for
any positive integer #. If we denote by [’(x) the closure of positive
“powers of x, and by K(x) the set of cluster points of the set of powers of
% then K(x) is known to be a (topological) group with the property
I'(x)-K(x)» Cc K(x) and K(x¥)-/"(x) C K(x) ([8] and [9]; these results
depend only on the compactness of /'(x)). Let e be the identity of the
group K(x) then a ==ea. Hence b = xa = x(ea) == (xe)a.

Since xe belongs to the group K(x), if we denote by z an inverse
element of xe in K(x), then

2b == z(xe)a = ea ==a.

Therefore, Da =Lzb C Ob. As a=9Dg is an ideal and b € a it is
clear that Ob C ©a. Hence we get Oa == Op. Similarly we can obtain
a9 == b,

Corollary. A mnecessary and sufficient condition for an element

a of O to be a unit of O is that a has a left (or right) inverse.

Lemma 2.4. If aandb areideals of © such that a = Oa, b = Ob
and (0,0) = O then ab ==Dba,
Proof. By the assumption (a, b) = O there is an element a’ such

1) Cf. 5]

2) Cf. [1] and [2; Chapter 2].

3) If A, B are two subsets of © then A*B denotes the set of all elements of D
of the form ab, where a € A, be B,
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that @’a=1(b). Since b ==90b is a closed ideal the residue class ring
$/b is also a compact topological ring. Therefore, by Corollary of
Lemma 2.3 we have aa’' =1 (b).

On the other hand, since ab € a == Ogq, there is an element b’ so
that ab = b’a. Hence ~

b’ =b'aa’ = aba = 0 (b).

This shows that ab = Oab == Ob’e C ba. Similarly we get ba C ab and
so ab == ba,

Let us consider now maximal open prime ideals of O. As the same
notations with [10] let {p,; 2 € A1{ be the set of all maximal open prime’
ideals of © and put Nj.,p; == q,, moreover we assume P, 7 p, if 2 7 p.
Then we have proved in [10] that (g, q,) = © for 1 % fu.

Lemma 2.5. For any 2 € A we have q,==0q; and hence qn==q}
Jor n=1, 2,

Proof. Suppose . 5= qi; then there exists an element z € qx which
does not belong to 'c}: Then since a is compact there exists a compact
open ideal neighborhood V of 0 such that z € qf + V= U. Since g,
is compact and U is an open ideal containing g3, there is an open ideal
W containing q, such that W* C U. Since D, P}, -+ is a descending chain -
of compact sets whose intersection is equal to q,, we can find a positive
integer m so that b7 € W. Then

U=UOW:OWmomroqus 2

Therefore we have arrived at a contradiction. Thus q, == q3.

Let us assume qx == q} and prove qx = qf*. Since 07" D qFx == qalx
=0} we get 0" D g3 == qx. This shows that q7*' = q,.

Now we give the following two lemmas without proofs, because the
lemmas can be proved by using the methods of [10].

Lemma 2.6. If Q\q.==qu. for any 7, n € A then Nacalr==(0)
and hence O is decomposed into a complete direct sum of compact
primary rings.

Lemma 2.7. Under the assumption of Lemma 2.6 let O == 3,0,
be an expression of © as a complele direct sum of compact primary
rings O)’s.

If a is a closed left (right or two-sided) ideal of O then a can
be written in the form
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a == 2,0,

where a, is a closed left (right or two-sided) ideal of ©O,. (X, de-
notes complete direct sum.)
Using the above lemmas we get the following theorem ;

Theorem 2.1. Let © be a compact ring with identity. Then the
Jollowing four conditions are equivalent :

(1) © is a complete divect sum of compact primary rings.

(2) A product of any two maximal open prime ideals is com-
mulative, i.e, P\, =P\ for any I, p € A.

(3) 0au==0q.0 for any 2, n € A

(4) An ideal a of O with the property a==0’ has an idenlity
as a ring.

Proof. From Lemma 2.7 it is obvious that (1) implies (2), (1) implies
(3) and (1) implies (4). We have proved in Theorem 1 of [10] that (2)
implies (1) ; and Lemma 2.6 shows (3) implies (1).

We shall prove (4) implies (3). By Lemma 2.5 every q, has the pro-
perty .= q;, therefore q, has an identity as a ring. Let e, be an
identity element of q, then q, = De, Since (4, q.) = O for 1 7% we
obtain, by Lemma 2.4, q\q.==0,0. In case 2 ==p, (xq,= 0.0\ is ob-
vious. Thus the theorem has been completely proved.

§ 3. Completely primary rings.” In this section we denote by ©
a compact completely primary rving with a radical ».

Lemma 3.1. If there is no left ideal between p and 9 then
every power of Y is open, hence the set of powers of p forms a
Sundamental system of ideal neighborhoods of 0.

Proof. 1If p=)* then, since b is nilpotent by Lemma 2.2, p must
coincide with 0. In this case ©=0/p =K is a finite field and our
lemma is true.

We suppose that p=p° and let p be an element of p which does
not belong to p°. Then by the assumption that there is no left ideal be-
tween p and P, we get pb=Cp + p>. Therefore p* = Op" + p*** for
any positive integer #. Then p*/p*' is a cyclic left K(=O/p)-module.

1) A ring R is said to be primary if R has an identity and the residue class
ring R/ N of R modulo its radical N is a simple ring, and R is completely primary
if R is primary and R/N is a division ring.
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Since K is a field there is no left ideal between p* and Y**' for n =1, 2,

Suppose P* is open but Y**' is not open (we put © =p"). Then for
any ideal neighborhood V which is contained in Y* p**' +V is an open
ideal between p* and p**'. Hence p**' +V must coincide with p*; p*+?
+ V =1)" This equality holds for any ideal neighborhood V C p*. This
means that p**' is everywhere dense in }*, i.e. P**' = p". Then for any
positive integer m = % we have " — p*. Since p is nilpotent p* must
be equal to zero. Then O =2 /p* is a finite set and any subset of © is
open, which is a contradiction to the assumption »**' is not open. Hence

any power of p is open.

Lemma 3.2. If there is no left ideal between vy and V° then ©
has no proper left idealV other than powers of .

Proof. First we shall prove this lemma for open left ideals. Let a
be an arbitrary open proper left ideal of ©. Then since p is nilpotent
there exists a positive integer s such that

pYCa pEa,

where, since p is open by Lemma 3.1 and since O/ is a field, s = 1.
To prove a =P°, suppose ' & a. Then there is an element @ of a which
does not belong to P’. Since @ is a non-zero element of © and p is
nilpotent there exists a positive integer i such that ¢ € p* but a § p**,
where { { s, If p=19° then by the same argument as in above lemma
our lemma is true. Therefore we suppose P %= p° and let p be an element
of b not belonging to p>. Then by Lemma 3.1 for any positive integer »
we have p* = Op" + p**'. Hence, for some £ 2 0 mod p in O, we have

a= Epi (mod pi-r—))

Since ©/p is a field there exists some 5 € O such that 7 =1 mod p;
that is, ya =p' (mod p™*’). Therefore we get

ps—i—lva Eps—-l (mod ps)’
where we put p” = 1. Hence it follows immediately that
a> Dps—i—lva - bs ) Dps—] + px ___:ps—l.

But this gives a contradiction, and therefore a = p°,

1) A proper left (right or lwo-sided) ideal a of D is a left (right or two-sided)
ideal distinct from D and (O).
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Now let I be any proper left ideal of ©. Suppose | C y', [ Z p**! and
z an element of | which does not belong to p'*'. Then for any ideal
neighborhood V C p* (by Lemma 3.1 1" is open) Oz + V is an open left
ideal such that p* D Oz + V, p**' 2Oz + V. This implies, by the above,
Oz + V=19 Since this equality holds for any ideal neighborhood V C p*
we obtain Oz is everywhere dense in ¥, i.e. Oz =1)". Hence

p=0Uz=0zC .
Thus we get [ = p".

Lemma 3.2’ (Dual of Lemma 3.2). If there is no right ideal be-
tween p and Y then O has no proper right ideal other than powers
of b.

Lemma 3.3. Let R be a completely primary finite ving with
radical N such that N*=0. If there is no proper left ideal of R
other than N then there is no proper right ideal of R other than N,

Proof. Since K= R/N is a field, if N is a principal right ideal
then R has no proper right ideal other than N, We shall prove that N
is a principal right ideal.

Let G=R\N" (% [?) then G is obviously a multiplicative group
whose identity is the same with that of R. Take any non-zero element ¢
of N; then, since R has no proper left ideal other than N, N = Ra.
Hence

N=Ra=(GUN)a= GalU Na = GaU 0.

For any subset X of R we denote by ord(X) the number of elements of
X. Then

ord(N) = ord(Ga) + 1,

because Ga 0.

We prove now ord(Ga) = ord(eG). For any %,y € G, if xa = ya
then (* — ¥)a=0 hence x — ¥ must be contained in N. Therefore
a(x — y)=10; this means ax — @y =0 and so ax =qay. This implies
ord(Ga) = ord(aG). Similarly we obtain ord(Ga) < ord(eG), that is,
ord(Ga) = ord(aG).

1) Let A be a set and B, C subsets of A. We denote by B\C the complement
of C in B, that is, the set of elements of B not contained in C.
2) [] denotes the empty set.
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Then, from ¢R =a(GUN)=aGUaN==aGU {0} and aG does not
contain 0, - we have

ord(aR) = ord(aG) + 1 = ord(Ga) +A 1 ==ord(N).

Since aR is contained in N we get N = aR.

Theorem 3.1. If there is no left (or right) ideal of O between
b and P then there is no proper one-sided ideal of O other than
powers of P.

Proof. We prove this theorem in case of left ideals. By Lemma 3.2
£ has no proper left ideals other than powers of .

Let R ==%/p* then by Lemma 3.1 §* is open and therefore R is a
finite ring. We denote by N the radical of R then N==p/p* and for R,
N all conditions of Lemma 3.3 are satisfied. Hence R has no proper
right ideal other than N. This means there is no right ideal between
and y°. Hence by Lemma 3.2’ ©© has no proper right ideal other than
powers of p.

From Theorem 3.1 and proofs of Lemmas 3.1, 3.2 we obtain the
following theorem :

Theorem 3.2. In © the following twelve conditions are equi-
valent to each other:

(1L) Every left ideal of O is a principal left ideal.

(1R) Every right ideal of O is a principal right ideal.

(1) O is a principal ideal ring, that is, if |,t and m are left,
right and two-sided ideals, respectively, then =g, t=>00 and
n ==V¢ = ¢O.

(2L) p is a principal left ideal.

(2R) b is a principal right ideal."

(2) Yy is a principal left and principal right ideal.

(8L) There is no left ideal between b and v

(3R) There is no right ideal between b and p.

(3)  There is no one-sided ideal between » and y°.

(4L) O has no proper left ideal other than powers of p.

(4R) O has no proper right ideal other than powers of V.

4) O has no proper one-sided ideal other than powers of b.

From Theorem 3.2 and results of [10] we get the following :

Theorem 3.3. If O satisfies one of the twelve conditions of
Theorem 3.2 then O is
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1) a finite field if and only if p=0,

2) a completely primary uni-serial finite ving if and only if
p* == 0 for some positive integer m = 2.

3) a maximal compact open order of a totally disconnected lo-
cally compact (t.d.1.c.) division ring" if and only if v" 0 for any
positive integer n.

§ 4. Primary rings. Throughout this section © denotes a compact
primary ring with radical p. Then by a Kaplansky's theorem? O is a
matrix ring over a compact completely primary ring O, : O == 37 ,.10.C4),
where ¢,'s are matrix units. If b, is the radical of ©, then it is well-
known that p == 237 ;PeCis

Then we have the following theorem’ :

Theorem 4.1. In O the following nine conditions are equivalent
lo each other:

(1L) Ewvery left ideal of © is a principal left ideal.

(1R) Every right ideal of © is a principal right ideal.

(1) 9O is a principal ideal ring.

(2L) p is a principal left ideal.

(2R) b is a principal right ideal.

(2) b is a principal left and principal right ideal.

(8L) p/v* is a cyclic left O-module.

(3R) P/¥* is a cyclic right O-module.

(3) /v is a cyclic left and right O-module.

Proof. It is clear that (1L) implies (2L) and (2L) implies (3L).

We prove that (3L) implies (1L) and (1R). Since b/p* is a cyclic
left O-module we get O/P* is a left uni-serial ring.¥ Hence D,/by’ is a
left uni-serial ring and therefore there is no left ideal between b, and Py

1) Cf. £3].

2) Cf. [5]

3) Cf. [1 and 2]. For abstract rings the same theorems with Theorem 4.1 has
been completely proved by Asano, therefore we omit a detailed proof of this theo-
rem.
4) A ring R is called left uni-serial if

(a) R satisfies the descending and the ascending chain condition for left
ideals,

(b) R is a direct sum of a finite number of primary rings,

(¢c) if e is a primitive idempotent of R then a left ideal Re has a unique
composition series as a left R-module.
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Then by Theorem 3.2 we can conclude that any left or right ideal of 9,
is a principal ideal. Therefore any left or right ideal of © is a principal
ideal.

Similarly we can prove that (1R)— (2R) — (3R)— (1R) and (1L).
Furthermore, (1L) and (1R) < (1), (2L) and (2R) < (2), and (3L) and (3R)
< (3).

From Theorems 3.3 and 4.1 we obtain the following structure theo-
rem:

Theorem 4.2. If O satisfies one of the nine conditions of Theo-
rem 4.1 then O is

1) a matrix ring over a finite field if and only if =0,

2) a matrix ving over a completely primary wuni-serial finile
ring if and only if Y ==0 for some positive integer m = 2,

3) a matrix ring over a maximal compact open order of a

t.d.l.c. division ring if and only if V"0 for any positive integer
n.

§ 5. Structure of compact rings with certain conditions. In
this last section we give two structure theorems (Theorems 5.1 and 5.3)
concerning compact rings with certain conditions.

First of all we give the following theorem which is an immediate
consequence of Theorem 3.3 and Theorems 3, 7 of [10].

Theorem 5.1. Let © be a compact ring with identity in which
a product of any two maximal open left (or right) ideals is com-
mutative and there exists no open left (or right) ideal between b
and VY for every maximal open prime ideal p. Then O is a com-
Dlete divect sum of maximal compact open orders of t.d.l.c. divi-
sion rings, completely primary uni-serial finite rings and finite
fields. And the number of the direct summands is finite if and
only if O is a Q-ring.

Theorem 5.2. In a compact ring O with identity the following
nine conditions are equivalent to each other :

(1LY Ewvery closed left ideal of © is a pricipal left ideal.

(1R) Ewvery closed right ideal of © is a principal right ideal.

(1) Every closed ideal of O is a principal left and principal
right ideal.

(2L) Every maximal open prime ideal of © is a principal left
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ideal.

(2R) Every maximal open prime ideal of O is a principal
right ideal.

(2) Every maximal open prime ideal of O is a principal right
ideal.

(8L) A product of any two maximal open prime ideals of O is
commutative and for any maximal open prime ideal b, P/V’ is a
cyclic left O-module.

(3R) A product of any two mvximal open prime ideals of O
is commutative and for any maximal open prime ideal b, /Y’ is a
cyclic right O-module.

(3) A product of any two maximal open prime ideals of © is
commutative and for any maximal open prime ideal b, P/V is a cyc-
lic left and right O-module.

Proof. 1t is clear that (1L) implies (2L). We suppose (2L) holds ;
then, by Lemma 2.4, a product of any two maximal open prime ideals of
O is commutative. Moreover, since every maximal open prime ideal p
is a principal left ideal: Op =p, we get p*==Op> Hence p/V’ =
Op/Op® is a cyclic left O-module. Thus (2L) implies (3L).

We now prove that (3L) implies (1L) and (1R). From Theorem 2.1
is a complete direct sum of compact primary rings Oxs: 9 == 5,0, If
a is a closed left ideal of ©O then by Lemma 2.7 a can be expressed in
the form a = 3,a,, where cach a, is a closed left ideal of ©,. Therefore
to prove that (3L) implies (1L) and (1R) we may assume that © is a
compact primary ring. Then from Theorem 4.1 we can conclude that
(3L) implies (1L) and (1R).

Similarly we can prove (1R) — (2R) — (3R) — (1R) and (1L). More-
over, we can eéasily get (1) = (2) — (3) — (3L) — (1)

Finally we get the following theorem as a direct consequence of
Theorems 4.2 and 5.2 :

Theorem 5.3. Let O be a compact ring with identity which
satisfies one of the nine conditions of Theorem 5.2. Then © is de-
composed into a complete direct sum of compact primary rings
Oys: O = .0, and each compact primary ring O\ appearing in
the direct summands has a type of 1), 2) or 3) of Theorem 4.2.
Moreover the number of the direct summands is finite if and only
if Ois a Qring.
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