NOTE ON THE ISOMETRIC IMBEDDING OF COMPACT RIEMANNIAN MANIFOLDS IN EUCLIDEAN SPACES

TOMINOSUKE ŌTSUKI

In this note, we shall state some remarks on the isometric imbedding of compact Riemannian manifolds in Euclidean spaces in connection with the works of Shiin-Shen Chern and N. H. Kuiper [1]¹⁾ and the author [2]. Theorem 1 in [2] as follows is fundamental in our considerations.

Theorem A. Let M be a compact Riemannian manifold of dimension n and with the property that at every point there is a q-dimensional linear subspace in the tangent space along whose plane elements the sectional curvatures are non positive. Then M can not be isometrically imbedded in an Euclidean space of dimension n+q-1.

§ 1. Let M be a Riemannian manifold of dimension n whose line element is given by

$$ds^2 = \sum g_{ij}(x)dx^i dx^j$$

in local coordinates x^1, x^2, \dots, x^n . Let us put

$$(2) \qquad \qquad \sum g_{ij}(x)dx^idx^j = \sum \omega_i(x,dx)\omega_i(x,dx),$$

$$\begin{cases} d\omega_i = \sum \omega_j \wedge \omega_{ji}, \\ d\omega_{ij} = \sum \omega_{ik} \wedge \omega_{kj} + \Omega_{ij} \end{cases}$$

where Ω_{ij} are the curvature forms of M as is well known. Let k(p), $p \in M$, be the minimum number of linear differential forms in terms of which the curvature forms of M at p can be expressed. According to [1], n - k(p) is called the *index of nullity* at p. Let us put

$$k(M) = \max_{p \in M} k(p)$$

A generalized Tompkins' theorem as follows was proved by means of algebraic methods in [1], [3].

¹⁾ Numbers in brackets refer to the list of references at the end of the paper.

Theorem B. A compact Riemannian manifold M of dimension n can not be isometrically imbedded in an Euclidean space of dimension 2n - k(M) - 1.

We shall give more detailed results than the above theorem.

§ 2. As a preliminary we establish the following lemmas. Let R_{ijkh} be real number such that

$$(4) R_{ijkh} = -R_{iikh} = -R_{ijhk} = R_{khij}$$

and let us consider the form

(5)
$$R(x, y) = R_{ijkh} x^{i} y^{j} x^{k} y^{h + 1}$$

of real 2n variable x^i , y^i . Let m be the maximum of dimensions of linear subspaces L of the n-dimensional real vector space such that for any $x, y \in L$

$$R(x, y) \leq 0$$
.

Let k be the rank of the system of linear equations

(6)
$$R_{ijkh}x^h = 0, \quad i, j, k = 1, 2, \dots, n,$$

in x^i and L_o be the linear space of the solutions of (6). We have dim $L_o = n - k$ and

$$R(x, y) = 0, \quad x \in L_n, \ y \in L_o.$$

Lemma 1. If a linear subspace L of L_n has the property that for any two $x, y \in L$, $R(x, y) \leq 0$, then $L \cup L_0^{2}$ has the same property.

Proof. For any $x, y \in L \cup L_o$, we may put

$$x = a_1x_1 + b_1y_1, \quad y = a_2x_2 + b_2y_2,$$

 $x_1, x_1 \in L, \quad y_1, y_2 \in L_0.$

By means of (7), we get easily

$$R(x, y) = (a_1 a_2)^2 R(x_1, x_2) \leq 0.$$

Since any 1-dimensional subspace has the above property, we get

¹⁾ The summation convention of tensor analysis is used in the following.

²⁾ We denote by $L \smile L_0$ the linear space spanned by the elements of L and L_0 .

easily the following lemma.

Lemma 2. If k > 0, then $n - k + 1 \le m$.

Now, let us assume that (4) is of the form

$$R_{ijkh} = H_{ik}H_{jh} - H_{ih}H_{jk},$$

$$H_{ij} = H_{ji}.$$

Accordingly we have

(9)
$$R(x, y) = \Psi(x, x) \Psi(y, y) - (\Psi(x, y))^{2},$$

where $\Psi(x, y) = H_{ij}x^iy^j$. From (9) we may consider that -R(x, y) is a generalized discriminant of the quadratic equation $H_{ij}x^ix^j = 0$ in n variables x^i . We can easily see that

$$(10) k = \operatorname{rank}(H_{ij}),$$

Lemma 3. If R_{ijkh} is of the form (8), then $m = n - \frac{k+\rho}{2} + 1$ where $\rho = |\operatorname{signature of } \Psi(x, x)|$.

Proof. As stated above, the system of linear equatious

$$R_{ijkh}x^h=0, \quad i, j, k=1, 2, \dots, n$$

is clearly equivalent to the system of linear equations

$$H_{ij}x^j=0, \quad i=1,2,\cdots,n.$$

Let us suppose that k = n. If $\Psi(x, x) = H_{ij}x^ix^j$ is definite, then for any linearly independent vectors x, y, we have $R(x, y) = \Psi(x, x)$ $\Psi(y, y) - (\Psi(x, y))^2 > 0$ as is well known. Hence m = 1. Since $\rho = n$, the above stated relation holds good.

In the next place, let us assume that T(x, x) is not definite. Taking a suitable base of L_n , we may put

$$H_{\alpha\alpha} = 1, \quad \alpha = 1, 2, \dots, r,$$

 $H_{\lambda\lambda} = -1, \quad \lambda = r+1, \dots, n, \quad 0 < r < n,$
 $H_{ij} = 0, \quad i \neq j, i, j = 1, 2, \dots, n,$

Let L_r , L_{n-r} be the subspaces of L_n given by $x^{\lambda} = 0$, $\lambda = r + 1$,, n; $x^{\alpha} = 0$, $\alpha = 1$, 2,, r, respectively, for which we have $L_r \cup L_{n-r} = L_n$ and $L_r \cap L_{n-r} = 0$.

Let L be a linear subspace such that $R(x, y) \leq 0$, $x, y \in L$ and

dim $L \geqslant 2$. Since the quadratic form T(x, x) is definite on L_r and L_{n-r} , it follows that

(11)
$$\dim L \cap L_r \leq 1, \dim L \cap L_{v-r} \leq 1.$$

Let $\pi_r: L_n \to L_r$ and $\pi_{n-r}: L_n \to L_{n-r}$ be the projections, then it must be

(12)
$$\dim \pi_r(L), \dim \pi_{n-r}(L) \geqslant \dim L - 1,$$

for otherwise we get easily dim $L \cap L_{n-r} \ge 2$ or dim $L \cap L_r \ge 2$ which contradicts to (11). Accordingly we get from (12)

$$\dim L \leqslant n-r+1, r+1.$$

Now, we may assume that $n-r \leqslant r$. Let us take $\xi_A = (\xi_A^a) \in L_r$ and $\gamma_A = (\gamma_A^{\lambda}) \in L_{n-r}$, $A = 1, 2, \dots, n-r$ such that

$$\sum_{\alpha} \xi_{A}^{\alpha} \xi_{B}^{\alpha} = \sum_{\lambda} \gamma_{A}^{\lambda} \gamma_{B}^{\lambda} = \delta_{AB}^{1}$$

Then we can define linearly independent vectors $\zeta_1, \dots, \zeta_{n-r+1}$ of L_n by

$$\zeta_A = (\xi_A^{\alpha}, \gamma_A^{\lambda}), A = 1, 2 \dots, n - r - 1,$$

 $\zeta_{n-r} = (\xi_{n-r}^{\alpha}, 0), \zeta_{n-r+1} = (0, \gamma_{n-r}^{\lambda}).$

Hence we have

(13)
$$\Psi(\zeta_A, \zeta_B) = \Psi(\zeta_A, \zeta_{n-r}) = \Psi(\zeta_A, \zeta_{n-r+1}) = \Psi(\zeta_{n-r}, \zeta_{n-r+1}) = 0,$$

 $\Psi(\zeta_{n-r}, \zeta_{n-r}) = -\Psi(\zeta_{n-r+1}, \zeta_{n-r+1}) = 1$
 $A, B = 1, 2, \dots, n-r-1.$

Let L be the space spanned by $\zeta_1,\dots,\zeta_{n-r+1}$. For any two vectors x, y of L

$$x = \sum_{A=1}^{n-r+1} u_A \zeta_A, \quad y = \sum_{A=1}^{n-r+1} v_A \zeta_A,$$

we get from (13)

$$\Psi(x, x) = u_{n-r^2} - u_{n-r+1}^2,
\Psi(y, y) = v_{n-r^2} - v_{n-r+1}^2,
\Psi(x, y) = u_{n-r}v_{n-r} - u_{n-r+1}v_{n-r+1},$$

hence

¹⁾ $\delta_{AB} = 1$ if A = B and $\delta_{AB} = 0$ if $A \neq B$.

$$R(x, y) = -(u_{n-r}v_{n-r-1} - u_{n-r-1}v_{n-r})^2 \le 0.$$

Thus we see that m = n - r + 1 in this case. Since $\rho = r - (n - r)$ by definition, we get

$$(14) m = \frac{n-\rho}{2} + 1.$$

In general case, we have by virture of Lemma 1 the relation

$$m = (n-k) + (\frac{k-\rho}{2} + 1) = n - \frac{k+\rho}{2} + 1.$$

§ 3. Now we shall proceed geometrical considerations. For an n-dimensional Riemannian manifold M, k(M)=0 is equivalent to that M is locally Euclidean. Accordingly we get from Lemma 2 and Theorem A a more detailed theorem than Theorem B in § 2.

Theorem 1. A compact locally non Euclidean Riemannian manifold M of dimension n can not be isometrically imbedded in an Euclidean space of dimension 2n - k(M).

Now, let M be an n-dimonsional Riemannian manifold whose curvature forms

(15)
$$Q_{ij} = \frac{1}{2} \sum R_{ijkh} \omega_k \wedge \omega_h$$

are of the form (8). If k(p) > 3, $p \in M$, then H_{ij} is determined uniquely save for signs as is well known. Accordingly the absolute value of signature of the quadratic form $H_{ij}x^ix^j$ is an invariant of M at p. We denote this by $\rho(p)$ and put $\rho(M) = \max_{p \in M} \rho(p)$. Furthermore if $k(p) \le 4$, then the field of H_{ij} satisfies the Codazzi's equation

$$(16) H_{i,k} - H_{ik,j} = 0.$$

Since (8) is the Gauss equations, M can be locally isometrically imbedded in an Euclidean space of dimension n+1. By means of Lemma 3 and Theorem A, we obtain the following theorem.

Theorem 2. Let M be a compact Riemannian manifold of dimension n on which there exists a symmetric tensor field H_{ij} such that

$$R_{ijkh} = H_{ik}H_{jh} - H_{ih}H_{jk}$$
.

Then M can not be isometrically imbedded in an Euclidean space of dimension $2n - \frac{1}{2}(k(M) + \rho(M))$.

This theorem shows that even though M is of imbedding class 1, that is it can be locally isometrically imbedded in an Euclidean space of dimension n+1, it does not so in the large and shows negatively an order of imbeddability of M into Euclidean spaces.

Lastly we consider the case k(M) = 2. Then there exists a skew-symmetric tensor S_{ij} such that

$$(17) R_{ijkh} = \sigma S_{ij} S_{kh},$$

that is M is a space of separated curvature. Thus we get generally the following theorem.

Theorem 3. A compact Riemannian manifold of dimension n with separated curvature and with non-positive scalar curvature can not be isometrically imbedded in an Euclidean space of dimension 2n-1.

§ 4. In this section, we shall investigate especially compact Riemannian manifolds of dimension 3. By means of orthonormal frames, we put

$$egin{array}{ll} R_{2323} = K_{11}, & R_{3112} = K_{23} = K_{32}, \ R_{3131} = K_{22}, & R_{1223} = K_{31} = K_{13}, \ R_{1212} = K_{33}, & R_{2331} = K_{12} = K_{21} \end{array}$$

and

$$x^2y^3 - x^3y^2 = v^1$$
, $x^3y^1 - x^1y^3 = v^2$, $x^1y^2 - x^2y^1 = v^3$.

Then we have easily the equations

(18)
$$R_{ij} = R_{i'jk}^{k} = \frac{1}{2} R \delta_{ij} - K_{ij}, \quad R = R_{i'}^{k}$$

and

(19)
$$R(x, y) = \frac{1}{2} R \sum v^{i} v^{i} - R_{ij} v^{i} v^{j}.$$

¹⁾ We put $\rho(M) = \max_{p \in M} \rho(p)$, $\rho(p) = |\text{signature of } (H_{i,j}(p))|$.

Making use of frames such that $R_{ij} = 0$, $i \neq j$, we get

(20)
$$2R(x, y) = (-R_{11} + R_{22} + R_{33})v^{1}v^{1} + (R_{11} - R_{22} + R_{33})v^{2}v^{2} + (R_{11} + R_{22} - R_{33})v^{3}v^{3}.$$

In order that m=3, it is necessary and sufficient that R_{11} , R_{22} , $R_{33} < 0$ and $|R_{11}|$, $|R_{22}|$, $|R_{33}|$ are the lengths of the sides of a triangle including the case in which the triangle degenerates. In order that m=1, it is necessary and sufficient that R_{11} , R_{22} , $R_{33} > 0$ and R_{11} , R_{22} , R_{33} are the lengths of the sides of a triangle. Thus we obtain the following theorems.

Theorem 4. A compact Riemannian manifold of dimension 3 with the property that at every point its Ricci tensor R_{ij} is negative semi-definite and the absolute values of its eigen values are the lengths of the three sides of a triangle (including the case in which the triangle degenerates), can not be isometrically imbedded in an Euclidean space of dimension 5.

Corollary. A compact Einstein space of dimension 3 with nonpositive scalar curvature at every point can not be isometrically imbedded in an Euclidean space of dimension 5.

Theorem 5. A compact Riemannian manifold of dimension 3 with the property that there exists no point at which its Ricci tensor R_{ij} is positive definite and its eigen values are the lengths of the three sides of a triangle, can not be isometrically imbedded in an Euclidean space of dimension 4.

REFERENCES

- [1] S.S. CHERN and N. H. KUIPER, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space. Annals of Math., Vol. 56, 1952, pp. 422-430.
- [2] T. ŌTSUKI, On the existence of solutions of a system of quadratic equations and its geometrical application. Proc. of Japan Acad., Vol. 29, 1953, pp. 99—100.
- [3] T. Ōtsuki, Some theorems on a system of matrices and a geometrical application. Math. Journal of Okayama Univ., Vol. 3, 1953, pp. 89-94.
- [4] Т. Отзикі, Isometric imbedding of Riemann manifolds in a Riemann manifold. Journal of Math. Soc. Japan, Vol. 6, 1954, pp. 221—234.
- [5] T. Ōtsuki, A construction of closed surfaces of negative curvature in E4. Math. Journal of Okayama Univ., Vol. 3, 1953, pp. 95-108.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received November 19, 1955)