NOTE ON THE ISOMETRIC IMBEDDING OF COMPACT
RIEMANNIAN MANIFOLDS IN EUCLIDEAN
SPACES

ToMINOSUKE OTSUKI

In this note, we shall state some remarks on the isometric imbedding
of compact Riemannian manifolds in Euclidean spaces in connection with
the works of Shiin-Shen Chern and N. H. Kuiper [1]" and the author [2].
- Theorem 1 in [2] as follows is fundamental in our considerations.

Theorem A. Let M be a compact Riemannian manifold of di-
mension n and with the property that at every point there is a g-
dimensional linear subspace in the tangent space along whose plane
elemenls the sectional curvatures are non positive. Then M can not
be isomelrically imbedded in an Euclidean space of dimension
n+qg—1.

§1. Let M be a Riemannian manifold of dimension 2 whose line
element is given by

(1) ds* =3 g (x)dx‘dx’
in local coordinates x', x° +=++ , X", Let us put
(2) T gy(x)dxidx’ =T wi(x, dx)wilx, dx),

dwx = Z wj /\ Wi,
(3)

d(l)u = Z Wik /\ wry + .Qtj

where #;; are the curvature forms of M as is well known. Let Z(p),
p € M, be the minimum number of linear differential forms in terms of
which the curvature forms of M at p can be expressed. According to
(1], 7 — R(p) is calied the index of nullity at p. Let us put

k(M) = ma)énk(p)

A generalized Tompkins’ theorem as follows was proved by means of
algebraic methods in [1], [3].

1) Numbers in brackets refer to the list of references at the end of the paper.
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Theorem B. A compact Riemannian manifold M of dimension
n can not be isometrically imbedded in an Euclidean space of di-
mension 2n — k(M) — 1.

We shall give more detailed results than the above theorem.

§2. As a preliminary we establish the following lemmas. Let Ry
be real number such that
(4) Rum = - Rmn == - Rtm == Rkhu
and let us consider the form
(5) R(x, ¥) = Ryux'y’x*y™ »

of real 2» variable ', 3. Let m be the maximum of dimensions of
linear subspaces L of the n-dimensional real vector space such that for
any x,y € L

R(x, ) <0.
Let % be the rank of the system of linear equations
(6) Rywx'==0, i, j,k=1,2 , 7,

in 2' and L, be the linear space of the solutions of (6). We have
dim L,=n — k and

(7) Rx,y)==0, x& L, ye L.

Lemma 1. If a linear subspace L of L, has the property thal
Jor any two x,y € L, R(x, ) <0, then L\JL,® has the same pro-

perty.
Proof. For any x,y € L\UJ L, we may put

X=ax; + by, y=2ax+ by,
x,x €L, y,y.€ L,

By means of (7), we get easily
R(x, y) == (@,a.) R(x;, x2) < 0.

Since any 1-dimensional subspace has the above properiy, we get

1) The summation convention of tensor analysis is used in the following.
2) We denote by L L, the linear space spanned by the elements of L and Lo.
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easily the following lemma.
Lemma 2. If k>0, then n—k+ 1< m.

Now, let us assume that (4) is of the form

(8 ) Rijkh = HtkHjh - Hmij,
Hij ——‘Hﬂ.

Accordingly we have
(9) R(x, y) = #(x, x) ¥ (y, y) — (#(x, y)),

where #(x,y) == H;;x'y’. From (9) we may consider that — R(x, ) is a
generalized discriminant of the quadratic equation Hx'x’=0 in #»
variables x', We can easily see that

(10) k == rank (HU)‘

Lemma 3. If R is of the form (8), then m==n — 5% +1
where p ==|signature of ¢(x,x)|.
Proof. As stated above, the system of linear equatious

Rijnx"==0, i,jk=12 e, n
is clearly equivalent to the system of linear equations
H‘ljx] = 0, i == 1, 2, ceceee 2,

Let us suppose that k=wn. If #(x, x) = H,;x'x’ is definite, then
for any linearly independent vectors x,y, we have R(x,y)= #(x, x)
¥(9, ¥) — (#(%, )*>0 as is well known. Hence m ==1. Since p =1,
the above stated relation holds good.

In the next place, let us assume that 7°(x, x) is not definite. Taking
a suitable base of L,, we may put

Hmag:]_, “=1,2, sereney,
Ho=—1 2==7+1, oo o 0<7<nm,
Hy,;=0, i%j)i,j—_—"l,a ------ , 7,

Let L, L,., be the subspaces of L, given by x*=0, 1=7 +1,
eeven, 1y X% =0, a==1, 2, cereer , ¥, respectively, for which we have
L UL, ,=L, and L. NL,.,=0.

Let L be a linear subspace such that R(x,y) <0, %X,y €L and
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dim L > 2. Since the quadratic form #'(x, x) is definite on L, and L.,
it follows that

(11) dimLNL <1, dimLNL,.,.<1.

Let = :L,— L, and =,_,: L,— L,_, be the projections, then it must be
(12) dim =(L), dim 7,-(L) > dim L — 1,

for otherwise we get easily dim LN L,_, >2 or dim LN L. >2 which
contradicts to (11). Accordingly we get from (12)

dimL<Lnn—7r+1, 7+ 1.

Now, we may assume that # — 7 < 7. Let us take £,==(£3) € L,
and y,= @) € L,_,, A==1,2, +++»;,n — 7 such that

Lo EER= 20 {1\0}1}5 == (J4n D
Then we can define linearly independent vectors &, ++«* , Eursy Of Ly by

Ca=(L70), A=12n—7—1,
cﬂ—f = (E:o-n 0)1 g'ﬂ—-ri'] = (0, 7/'1'\l—r)-

Hence we have

(13) Ilr(gdy t}l) = 'I"(gm Cn-—r) = '[‘-(CAy gn—ri-l) = q‘.(gn—r’ Cn—r+l) == 0)
fF(Cn—r, tﬁ-—r) = — Il"(é’n—rﬂy tn—-r«}-]) =1
A’ B :1, 2, esee 3 — ¥ — 1.

Let L be the space spanned by &;;++*++, {p-rss. For any two vectors
x,y of L
n—-r+l n—r+l
x-_—_-zu,t;_i, ysszCA;
A= A=]
we get from (13)

’I;(x, x) = un—r"2 - t‘n—v"&]zp
’I"(y, y) == vn—v-2 - v?l—r+12,
v(x, .V) == Up—Vn—r — Un-r+1Vn—r+1,

hence

1) dan=1if A= B and sap=0 if A5 B.
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R(x) y) - - (un—rvn—-r-—l - un-—r—lvn—r)z < 0-

Thus we see that m = — » + 1 in this case. Since p=7 — (n —7)
by definition, we get

(14) m—_—”z“f’+1.

In general case, we have by virture of Lemma 1 the relation

m—-:(n——k)—i-(k

_P+1)=n—£__|l+l.
2 2

§ 3. Now we shall proceed geometrical considerations. For an n-
dimensional Riemannian manifold M, k(M) =0 is equivalent to that M
is locally Euclidean. Accordingly we get from Lemma 2 and Theorem
A a more detailed theorem than Theorem B in § 2.

Theorem 1. A compact locally non Euclidean Riemannian ma-
nifold M of dimension n can not be isometrically zmbedded in an
Euclidean space of dimension 2n — k(M).

Now, let M be an #-dimonsional Riemannian manifold whose cur-
vature forms

(15) Q= Z Ripnewi N\ on

are of the form (8). If k(p) >3, p = M, then H,; is determined uni-
quely save for signs as is well known. Accordingly the absolute value
of signature of the quadratic form H;x'x’ is an invariant of M at p.
We denote this by p(p) and put p(M) = maxX,cxyp(p). Furthermore if
k(p) < 4, then the field of H,; satisfies the Codazzi’s equation

(16) Hu,x; - H(L-,_]_—‘:

Since (8) is the Gauss equations, M can be locally isometrically imbed-
ded in an Euclidean space of dimension 7z + 1. By means of Lemma 3
and Theorem A, we obtain the following theorem.

Theorem 2. Let M be a compact Riemannian manifold of di-
mension n on which there exists a symmeltric tensor field H, such
that
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R’ljx:h = HikHjh - Hmij .

Then M can not be isometrically imbedded in an Euclidean space
of dimension 2n ~%(k(M) + p(MD)), P

This theorem shows that even though M is of imbedding class 1,
that is it can be locally isometrically imbedded in an Euclidean space of
dimension 7 4 1, it does not so in the large and shows negatively an
order of imbeddability of M into Euclidean spaces.

Lastly we consider the case k(M)==2. Then there exists a skew-
symmetric tensor S;; such that

17 Risin = aS5;Sim,

that is M is a space of separated curvature. Thus we get generally the
following theorem.

Theorem 3. A compact Riemannian manifold of dimension n
with separated curvature and with non-positive scalar curvature can
not be isometrically imbedded in an Euclidean space of dimension
2n — 1,

§ 4. In this section, we shall investigate especially compact Rie-
mannian manifolds of dimension 3. By means of orthonormal frames,
we put

R;*:xz: = Kn, Ry = Kz;: == K32’
R;n:n == Kzz, Rlz'.':x = I{:u = Km:
Rmz = Ksa, Rzr.n = K12 = K?l

and
xzy:! _ x3y~z — vi’ x:lyl _ x1y3 =% x'y — x2y! == 2.

Then we have easily the equations

(18) Ry =R/ = % Ry — Kiy, R=R/
and
(19) R(z, ) = = RS o' — Rip'"

1) We put p(M) = max ., p(p), p(p)= | signature of (Hifp))' .
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Making use of frames such that R; =0, i % j, we get

(20) ZR(JC,J’) =(— Ry + Ran + R;:::)UI‘Ul + (Ry — Rn + R;:;:)U."Ug
+ (R + Ry — Ry’

In order that =2 ==3, it is necessary and sufficient that R, R.., R, <0
and |Ryl, | R..|, | Rw| are the lengths of the sides of a triangle including
the case in which the triangle degenerates. In order that m ==1, itis
necessary and sufficient that R, R», Ry >0 and R, R», Ry arc the
lengths of the sides of a triangle. Thus we obtain the following theorems.

Theorem 4. A compact Riemannian manifold of dimension 3
with the property that at every point its Ricci tensor Ry; is negalive
semi-definite and the absolute values of its eigen values are the
lengths of the three sides of a triangle (including the case in which
the triangle degenerales), can not be isometrically imbedded in an
Euclidean space of dimension 5.

Corollary. A compact Einstein space of dimension 3 with non-
positive scalar curvalure at every point can not be isometrically im-
bedded in an Euclidean space of dimension 5.

Theorem 5. A compact Riemannian manifold of dimension 3
with the property that there exists no point at which its Ricci tensor
Ry; is positive definite and its eigen values are the lengths of the
three sides of a triangle, can not be isometrically imbedded in an
Euclidean space of dimension 4.
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