THEORY OF COMPACT RINGS
KAaTsuMI NUMAKURA

In his paper K. Asano [1, Theorem 3]" proved that a commutative
ring with the identity element satisfying the ascending chain condition
for ideals is a direct sum of a finite number of Dedekind domains and
completely primary uni-serial rings if there exists no ideal between )

"and * for any maximal prime ideal . In the theory of topological rings,
as I. Kaplansky showed, the compactness assumption plays a réle similar
to that of the finiteness assumption for abstract rings.

In this note we shall investigate the structure of a compact ring
having no one-sided ideal between p and ¥ for any maximal open ideal P
and prove several theorems similar to Asano's. In case of a compact
ring, however, the ring need not be commutative but has only to satisfy
the condition that a product of arbitrary two maximal open left (or
right) ideals in the ring is commutative. Further, in this case, the
number of direct summands is not always finite. It is finite if (and only
if) the ring is a compact @-ring.

§ 1. Algebraic Preliminaries. In this section R denotes a non-
commutative associative ring with the identity element 1. Then we
shall prove

Lemma 1. Let p(+4R) be a prime ideal in R such that the residue
class ring R==R[V satisfies the descending chain condition for left
(right) ideals. Then R is a simple ring and hence p is a maximal
ideal in R.

Proof. Let it be a nilpotent two-sided ideal in R with the nilpotency
index s. Then there is an ideal n in R such that w/p==1fiand n* S p.
Since b is prime n & p, i. e. it is the null ideal in R. This shows that R
is a semilsilnple ring. If R is not simple then there exist two-sided ideals
4, b in R different from the null idcal such that ab is the null ideal.
This means that there arc two-sided ideals a, b in R with ab € p such
that a/p =& and b/p=D0. Hence, cither a or b is cqual to p but this is a
contradiction. Thercfore, R is a simple ring; that is, p is a maximal
ideal in R.

Lemma 2. Let in R the product of any two maximal left (or

1) Numbers in brackets refer to the bibliography at the end of this paper.

79



80 KATSUMI NUMAKURA

right) ideals be commutative and let p be a prime ideal such that
the residue class ring R of R by p satisfies the descending chain con-
dition. Then R is a division ring and, there fore, there exist no proper
left and right ideal containing .

Proof. By Lemma 1, Risa simple ring. If R is no division ring R
is represented as a direct sum of a fl[llte number of minimal left ideals
L(z—l 2, e+, 1) in R. Then 0y, —([,, 5t I, I Im, . I,,) (i=1,2, 72)

arc maximal left ideals in R and f\ N, is the null ideal in R. Hence therc
i=1

exist left ideals m, (=1, 2, -+, n) in R containing b such that ny/p=

ny (=1, 2, -, ) and N\, =1, Since, by our assumption, nin,= i,
i=l

there holds that myme-n, _r\ n, =y, Hence we obtain m, =1} for

some 2. But this is a contradlctxon.

Lemma 3. Let a be a two-sided ideal in R such that the residue
class ring R/a satisfies the ascending chain condition for two-sided
ideals. Then there exist prime ideals b, p., -, b, containing a such
that pp,=p, & a.

Proof. Suppose that the lemma is not true for a. Then a is ob-
viously not prime. Therefore, there exist two-sided ideals q,, o'y such
thatq, 0/, S aand a; € q, ¢/, £ a. Since (q,, a)a’, a)&S a and (q,, a) 2 q,
(a’, a) 2 a, we may supposc from the first that a,2a, a/, 2a. If the
lemma is true for both a,, a’, then it is also true for a because a, o/, E a.
Hence, there exists an ideal, say a,, for which the lemma is not true.
Thus, we may construct an infinitc ascending chain of two-sided ideals
a& a & a, & ++in which the lemma is not true for each q, ( =2 1) but this
contradicts the ascending chain condition.

Lemma 4. Let p be a prime ideal in R such that the residue
class ring R of R by v is a division ring and there exisls no proper
one-sided ideal between p and y'. Then there exists no proper one-
sided ideal between R and vy (m=0) other than powers of p; that
is, R/y™ is @ uni-serial ring.

Proof. The lemma is trivial when b= p*. Therefore, we assume
p=£p% Then P has an element p with p ¢ p>. By assumption, the left
and right ideals generated by p and p* are cqual to p. Hence, for any
element £ in R there exists £ in R such that

Ep=pt’ mod V"

By using the above congruence relation, we can easily show that, for
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any integer i 21, b’ is at once a right and left ideal gencrated by p* and
P+ Let now a% R be a left ideal between R and p*. Then we can
determine the ideal »’ (s = m) such that a 2 p* but a 2 p*~' where we put
R=19°. If as~ ) there is in a an element « €' (i < s) such that « ¢y,
Hence, for some £ 2 0 mod p in R, there holds

o Efpl mod P,

Since R is a division ring there exists some 7 € R such that 5.7; =1 mod
p; that is,

za=p' mod p*,
so that we obtain
P e =P mod p.
Hence, it follows immediately
a2((p e, PI2(7, P =p,

where ("7 ¢, ») and (p*, p') denote left ideals in R. But this gives
a contradiction, and therefore a =",

Similarly we can prove that a right ideal between R and b is a
power of .

Since in Lemma 4 p* is at once a left and right ideal generated by p*
and p**', we obtain easily the following : :

Corollary. Let b be a prime ideal in R satisfying the assumptions
in Lemma 4. Then, if V' =9 (i = 1), the residue class ring p'[p* is
a cyclic left and right R/p-module with the generating element §p'}
where | p'} denotes the residue class in Y'[V'*' containing p'.

§2. Some properties of compact rings. By a topological ring R
we mean an associative ring which is also a Hausdorff space such that,
fora, b= R,a — b and ab are continuous functions of @ and b. If " — 0
then a is called a fopological nilpotent element or in short a nilpoient
element., If a"==0 for some positive integer 7, then @ is termed an
algebraic nilpotent element. An algebraic nilpotent element is clearly
a topological nilpotent element. An ideal (left, right or two-sided) a of R
with the property a” — 0 is termed a fopological nilpotent ideal and an
algebraic nilpotent ideal is an ideal a such that a”==0 for some integer
72, An idcal which consists cntirely of topological (algcbraic) nilpotent
elements is said to be a topological (algebraic) nilideal. By the radical
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of a ring we always mean the Jacobson radical, i.e., the set-theorctical
join of all gnasi-regular right (or equivalently left) ideals”. A topologi-
cal ring is called a @-ring if the totality of quasi-regular elements is
open?.

Throughout this section, we denote by © a compact ring with the
identity element 1.

Lemma 5. 2 is totally disconnected and has a complete system of
compact open ideal (in this note an ideal means a two-sided ideal)
neighborhood of 0.

Lemma 6. The radical of < is topologically nilpotent and every
one-sided topological nilideal is contained in the radical, hence every
one-sided topological nilideal of O is topologically nilpoteni®,

Lemma 7. Every open prime ideal b of © is maximal.

Proof. Since b is open (and so p is also closed) the residue class
ring ©/p is discrete. Furthermore, /b is compact as a continuous
image of a compact set O, hence ©/p is a finite ring. Therefore, by
Lemma 1, p is maximal.

Lemma 8. Every open ideal a of © contains a product of a finite
number of maximal open prime ideals.

Proof. Since ais an open ideal and O is compact the residue class
ring O/a is finite so that ©O/a statisfies the ascending chain condition.
Hence, by Lemma 3, there exist prime ideals p,, -+, I in © containing a
such that p,-=-p, E a. Since every », (1 <7 < s) contains the open ideal
a, p; is also open and so maximal.

Lemma 9. Let a and b be both left (or reght) ideal in O and b be
closed. If (a, D) =90 then (;\ as, ;\ b)) = O,

=] n=]
Proof. By the assumption (q, 0) =9 there exist elements @ in a
and b, in b such that ¢+ b,==1 and so &®*=1—2b, — b*=1—b,,
where b, ==2b, — b’=Db. In general @’'==1— b, for b,=0. Let A =={a’:

n=1, 2 4} A,={a":i=+} and D(A) =‘/j\ A, where A's mean

topological closures of A’s, then D(A) is not empty and is a commutative
multiplicative group with the property A-D(AP € D(A), DA)-ACS

1) Cf. [8] and [6].

2) Cf. [81.

3) Cf.[8, Theorem 8, Lemma 9 and Lemma 10J, 797 and [10].

4) Cf. [8, Theorem 14, Theorem 15 and Corollary].

5) Let M, N be two subsets of © we denote by M- N the set of all elements of
the form ab, where a in M and 6 in N,
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D(A. If we denote by e the identity clement of the multiplicative
group D(A4), then ea=D(A)-AZ D(A). Hence ea has the inverse
element (ea)™" in D(A), i.c., e=(ea) '(ea). At the same time, since a
is a left ideal, e==(ea) '(ea) =[(ea 'ela=a; that is, a contains an
idempotent e. Let Ule) be any neighborhood of e. Then, since eeD(A)==

(\ A, there is an @ = Ule) and so b;, =1 —a"1— Ule). This shows
=]

that f==1 — e €0 because b is a closed ideal. Moreover, f2 =(1 — ¢)’==
1 — e ==/ is an idempotent and so f & f\ b* therefore f\ arn, ML)

n=1 #=1
e + f=1. (In case a and b are right 1deals the proof is similar.)

Let a he a left (right or two-sided) ideal of £. Then we may casily
show that the topological closure a of a is also a closed left (right or two-
sided) ideal. Furthermore, we obtain ab 2 ab for ideals a, b in © where
a, bdenote the topological closures of a, b respectively.

Let now {P: 2 € .} be the family of all maximal open prime ideals

C, where . is an index system and Py 7= b, for A5 (), p=4). Put

7

11\ = (). Since all b’s are opcn and so closed, we obtain from Lemma 9

DaE'

g||

(m p f\p )—=LJ for 4 == u, hence (q qu.)==90. Thus for any finite

=1 =1

number of q.’s, say Qap >y Ga, WE have
(A 0x, MM Oa_y M A,

for i==1, 2,:-, 7.
Lemma 10. If a and U are ideals of © such that ab="0aq, then
ab 2 (ab, ba)

NN ) =9

i+)

We obtain therefore ap =2

Proof. Sinceab=ab, ab=ba=20ba.
(@b, bal
Lemma 11. If a and b are ideals in © such that ab=ba and (q,

0)=9, thenab=aNhb.

Proof. First of all, we prove that a\b=(a b, b a). In fact, itis
clear that a/N\b2ab, aMb=20baandsoaMNb2(ab, ba) Conversely,
aNt=GNDHT=@GNHMa =MDy @M S (baab). It
follows from the above and Lemma 10 that

aNb=(ab, ba)ESab.

AsanNb2ab, we obtaina\b=ab.

1) Cf. [13, Lemma 3] and {14, Theorem 1_.
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Lemma 12. If pap.=b. 0 for any 2, n= A, then QAqA =(0).

Proof. We show that the assumption AQ\ qx == (0) leads us to a con-
tradiction. In fact, if Q\q)\% (0) we can find an element ¢ of © and a
compact open ideal neighborhood U of 0 such that c& QAq,\, c 4 U.

Since U is an open ideal, by Lemma 8, U contains a product of a finite
number of P\'s ;

U2 b pz e i,
where Pay oo, i, are distinct maximal open prime ideals and 7, =1 for
i=1, 2, +,s As U is closed we have

U2 p,'\} P2 oo p;: .

From the fact (b, ¥y, == ({ 5 7) and Lemma 11 we conclude that
UB NN 26N e N Na 2N 63

This is a contradiction to the assumption ¢ § U. Thus the lemma is
proved.

As q, is a closed ideal of © the residue class ring Sf)A = O/q, is also
a compact topological ring. We deno:te by O the Cartesian direct sum of
§O,, 1€ A}. (It is well-known that ¥ is compact by the weak topology.)

We shall prove, under the assumption pr b, = p.P» for any J, p € 4,
that © is isomorphic and homeomorphic to O. )

Let ¢, be the natural homomorphism of © onto 9, and for any
element @ of O let us put ¢(a@)={e¢x(a)}. Then it is clear that ¢ is a
homomorphic and continuous mapping from 9 into O. Let a =%+ 0 be an
clement of O, then since Q\qh——— (0), @ ¢ q. for some - € .I. Hence ¢.(a)

is a non-zero element of O, and ¢(a) is a non-zero element of AD This
shows that ¢ is univalent. Finally, let {a\| be any element of ©, where
each &, is the 2-component of {a\}{. If we put ¢.7'(@\)= M,, then M\’s
are closed subsets of ©, and we can express My =a\ + 0, ax E M,.
Taking any finite number of M)’s, say M,, **, M, , we shall show
lf;‘\]MAﬂéqs (the empty set). As (0, DAJ):‘D for =1, 2, +++, i, where
bAJ—_——‘ﬂA] ARINA 0a,_, M

a = b,\{ R bai E Gy €\ E b:\,-

g (Y M Gy) we can write

Then ¢, + =+ ¢\ € (\ M, For, if ¢ + - + ¢\ & M, =a, +a,
=] 20



THEORY OF COMPACT RINGS 85

for some &, then ¢y + =+ €, + G, b+ 0 € (ay, — ) +a, =
b’m + 0y, =0, On the other hand, since ¢\, € q, for i~k we have
arrived at a contradiction. Hence { M, | has the finite intersection pro-
perty and since © is compact we have f\ M, 5= ¢. Choose an element

a in f\ M,, then it is clear that 9((2)—‘ ia,\i This shows that ¢ is an

onto mappmg Since © and © are compact the univalent continuous
mapping ¢ is a homeomorphism. Thus © and © are 1somorph1c and
homeomorphic each other.

Lemma 13. Each @A =0/q,\is a primary ring.
Proof. We denote by 0, the zero element of O, and let Pa == D/aa

(since P, is closed Py 2 q,), then N pi = (6,\). If P, is not a topological
7i=1
nilideal, it must contain a non-zero idempotent?, which contradicts the

fact f\ Py = =(0,). Hence Pa is a topological nilideal and is a topological

1=l

nilpotent ideal from Lemma 6. Moreover, ‘,A/p,\—— £/p, (finite simple)
and hence £, is a primary ring with the radical p.. (Note that P is the
unique max1ma1 two-sided ideal in 9, i.e., every two-side ideal properly
contained in 33,\ is contained in pa.)

It follows from the above we have the following theorem:

Theorem 1. A compact ring O with the idenlity element 1 in
which the product of any lwo maximal open trime ideals is com-
mutative is isomorphic and homeomorphic fo a Cariesian direct sum
of compact primary rings.

Theorem 2. In Theorem 1, if © is a Q-ring it is isomorphic
and homeomorphic to a Carlesian direct sum of a finite number of
compact primary rings and conversely.

Proof. Let R be the radical of ©, then by Lemma 6, R is topologi-
cally nilpotent. Hence R*» C p, for some positive integer 72(i). As I
is prime R C b, ; that is, every b, contains R. At the same time R is
open?, therefore the number of maximal open prime ideals is finite.
Hence the number of the direct summands is finite. The converse is
trivial.

Lemma 14. If in © the product of any lwo maximal open left
(or right) ideals is commutative, then producis of maximal open prime

1) Cf. [14, Theorem 1].
2) Cf. [8, Theorem 7 and Lemma 10].
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ideals are commutative and <[y is a finite field, where p is any
maximal open prime ideal.

Proof. Since p is an open prime ideal O/ is a finite ring so that,
by Lemma 2, ©/p is a finite division ring. By the well-known theorem
of Wedderburn, it is a finite ficld. Clearly b is a maximal left ideal in ©
and therefore the product of any maximal open prime ideals is commuta-
tive.

As a direct consequence of Theorem 1 and Lemma 4 we have the
following theorem:

Theorem 3. A compact ring O with the identity element 1 in
which the product of any two maximal open left (or vight) ideals is
commutative is isomorphic and homeomorphic lo a Cartesian direct
sum of compact completely trimary rings, and the number of the
direct summands is finite if and only if O is a Q-ring.

§ 3. Structure of compact rings satisfying special conditions.
In this section we consider the structure of a compact ring © with the
identity element 1 satisfying the following conditions :

1. The product of any two maximal open left (or right) ideals in
O is commulative.

I1. There exists no one-sided open ideal between p and ¥ for any
maximal open prime ideal y in ©. .

Then from ‘Theorem 3 and the condition I ¥ is a Cartesian direct
sum of compact completely primary rings ©,’s and the number of the
direct summands is finite if and only if © is a Q-ring.

Throughout this section we use the same notations-as in § 2. Then
by the condition 11 we have the following lemma :

Lemma 15. If, for any maximal open prime ideal p in O, P is

not open in O then p= NV, hence O/ais a finite field, where q==
o =]
m pn.

n==]

Proof. Let {U,} be a complete system of compact open ideal neigh-
borhoods of 0 in L. Then, for any U s~ 20) S p, (v, U,) is an open
ideal between p and p°, hence by the condition II either (p*, U,) =) or
W, Us) =P~

If p* is not open then (¥*, U,) == for every U, C p. This shows that
p¥'is everywhere dense in b, so 2=,

Now we assume that, for some interger s2(> 1), P* =p. Then p+ 2

5

P’ p=1° hence P»¥7" ==p? =), Therefore, if }* is not open we have q ==
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and ©/q==9/p is a finite field.

From the conditions I, II and Lemma 15 each @,\ is a compact com-
pletely primary ring having no one-sided ideal between §, and p,* for the
radical p or a finite field.

Now, then we consider the structure of a compact ring ©’ with the
following properties :

1. ' is completely primary but is not a field.

2. There is no one-sided ideal between VY and V" for the radical
V.

By Lemma 4, we obtain the following

Lemma 16. There exists no one-sided ideal between ©' and Y™
other than powers of V' ; thatis, <'|Y" is a uni-serial ring.

Lemma 17. i) (=1, 2, ) form a complete system of neigh-
borhoods of 0 so that ' = p™.

ii) P 7= (0).

iii) V' is the unique maximal open ideal of L',

Proof. i) Let a be an open ideal. Then there exists an integer »
such that " € a: this means, by Lemma 16, that a is a power of V.
Therefore, every ideal neighborhood of 0 is a power of Y. Let now p'™ -
(0) for some . Then there exists an element ¢(5%= 0) €y and an ideal
neighborhood U of 0 such that ¢ § U. Since U =" for some » and
¢ €™ it must be P 2V that is, P’ is an open ideal of /. Hence p'*

(i==1, 2,+) form a complete system of necighborhoods of 0. As n prt
==(0), V' % p™

ii) If §’ ==(0) then L' is obviously a discrete ficld.

iii) Since £’ is completely primary P’ is a maximal open ideal in O/,
As every open ideal is, by i) and Lemma 16, a power of ¥, ' is the
unique maximal open ideal of ',

If, for some integer m, P ==(0) then &’ is discrete and finite.
Hence we obtain.

Theorem 4. If in O p™ =(0), for some inleger m, then ' is a
completely primary uni-serial finite ring.

Lemma 18. Every proper one-sided ideal” (open or not) in '
coincides wilh some V'"; that is, there exisls o proper one-sided ideal
in O other than V', V¥ p® ...,

Proof. Let (5=, (0)) be any left ideal of <, then there is an
integer m (= 0) such that p* 21, p"' 2 (. Choosc an clement ¢ of [

1) A proper ideal means an ideal =9, (0).
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not contained in P”*'. Then for any »=m, (D¢, V) is an open left
ideal contained in p™ but not in p“*'. Therefore, by Lemma 16,
(Olc, ) must coincide with p'™. Since {p™; =1, 2, -} forms a neigh-
borhood system of 0, ’c is everywhere dense in P™. Furthermore ©'c
is compact and closed, so ¢ =", whence [==p'". In case of right
ideals, the proof is similar.

Theorem 5. O is an integral domain if and only if p"™~(0)
for every integer m.

Proof. If ¥ =(0) for some integer sz then ©’ has to have a zero
divisor.

Now we assume that for every m p'™ == (0). Since, by Lemma 17,
' =~ p” there exists an element = contained in ¥ but not in . Then by
Lemma 18, O’z =9’ =z O’ and by induction O'z* =p” =z" ', If ¢ and
b are non-zero elements of ©’, then there exist integers v and p such
that ap”, a ¢ Y, b=p™ b ¢ p**' and hence we can express @ =
w7, b ==v:*, where #, v must be units? of O/, (P means O’ and =’
means 1.) Therefore ab =—=u 7"vz* =wu v, « 2%, where v, is a unit with
the property #,=* =x"v. If ab=0 then ="**=0 and so """ =
O'z"*# = 0, which contradicts p™ =0 for every m. Hence ab+# 0 and
©' is an integral domain. '

Let & be a totally disconnected locally compact (t.d.l. c.) division
ring. An element a 5= 0 of © is termed divergent if @™’ is a topological
nilpotent element and « is called a neutral element if a is neither diver-
gent nor nilpotent.

Then the set O* of all non-divergent elements of & forms a compact
open integral domain and the set p* of all topological nilpotent elements
forms a maximal open ideal of O* such that O*/p* = K* is a finite field.
And every element x of & contained in O* or x7’ & p*: that is,

& = O* \ pr+),

where P** is the set of all non-zero elements of p*. Such an O* is called
a maximal compact open order of &,

1) An element » is said to be a unit if there exist #/, #// such that w'u=uu""=1.
In the above case x is not contained in ¥’ and D/p’ is a field, hence there exists u’

such that w'e=1 (). It follows that (®'x's,p)= D’ and, by Lemma 9, (T'n'z, ;Jp'")

=9, that is, (D'w'n,0)=9D’, whence D'n'su =©’. Analogously there exists «/ such that
ww'D =9, Hence u is a unit.
11) Cf. [5].
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A division ring I is said to be a semi-topological division ring, if t
is a Hausdorff-space and mappings (x, ¥)— x -+ ¥, (x, ¥)— xy from the
product space f X t into £ are continuous. Then we have the following
two lemmas.

Lemma 19. A locally compact semi-topological division ring
is a topological division ring.

This lemma has been proved in [12, Theorem 7].

Lemma 20. Let K be an abstract division ring and >, a'family.
of subsets of K with the following properties :

(i) Uef\z U=(0),

(i) if V, We, then there exists U in > such that USVNW,

(iii) if Vel ac V then there exists U in > such that a +
Uucv,

(iv) if Ve >, then there exists U in >, such that U —UZV,

(v)Y if Vel then there exist U, and U. in > such that
uu, oV,

(Vi) for any V€33 and a of K there exists U, and U, in >3, so
that V2a U, V22U a.

Then we can introduce a topology in K, by which K becomes a
semi-topological division ring having >, as a complete system of
nei ghborhoods of 0.

The proof is clear. :

Theorem 6. A compact integral domain O with the radical p
(0) i1z which there is no one-sided ideal between p and v is a maximal
compact open order of a t.d.l.c. division ring.

Proof. Since © is a compact integral domain it is a completely
primary ring ([8], Theorem 19) but not a field, because p %= (0). Thus,
by Lemmas 17, 18 and Theorem 4, © has no proper one-sided ideal other
than p, ¥? = and, for every integer m, P™=~(0). And every element
a # 0 of O can be written in the form @ == #z* = %' for some fixed = €,
where # and #’ are units of ©.

If ¢ and & are two non-zero elements of ©, then Og and Ob are
non-zero left ideals of O, say Qg =1y", Ob=p* Then (0)=£p <
LaNOb for x = max (v, ). Hence there exist non-zero elements %, ¥ in
O such that x @ = y b. In the same way, we can find non-zero elements
x’, ¥’ such that @ x’ = b »". Therefore O can be extended to the quotient
division ring & in the sense of an abstract ring". If we take {p, §* P,

1) Cf. {2], [31 and [7].



90 KATSUMI NUMAKURA

wnsed as > in Lemma 20, then > satisfies the condition (i)—(vi) of
Lemma 20. In fact, (i)—(v) are obvious. To prove (vi) let x = ab™’ be
any element of &, where @ and b are contained in ©. Then for any }*,
b =" for some ». As ) is nilpotent and b* is open there is a §* such
that p'a & Y =p'b, therefore V2 P*adb™’ =»p*x. Similarly we may
prove that xp* C ) for some ;. Hence & becomes a semi-topological
division ring having the system 3}, of neighborhoods of zero. Morcover,
it is clear that the original topology of © is equivalent to the relative
- topology induced in ©, and hence © is totally disconnected, locally com-
pact. Since © is locally compact, by Lemma 19, & is a topological
division ring. Thus © is a compact open ordéer of a t.d.l.c. division
ring.

Now, let # =ab~' be any element of & which is not contained in O,
where @, b=©O. Then we can express ¢ = =", b =vz* for =€) but
7 &Y, where u,v are units of ©. Since OPx ==ab™’ = (ux*)(wz*)" =
uzx” "™, u,v' €O, we have » { u. Hence x7' ==vz""u"' =) because
of v, v '€9O and z**=p. Thus, for every element x of &, either x €L
orx~'eb:

& =0 \Up*,

where P* is the set of all non-zero elements of b.

From Theorems 3, 4, 5 and 6 we have

Theorem 7. Let © be a compact ring with the identity element 1
in which the product of any two maximal open left (or right) ideals
is commutative and there is no one-sided open ideals belween b and V°
Sfor every maximal open prime ideal . Then O is a Cartesian direct
sum of maximal compact open orders of t.d.l. c. division rings, com-
pletely primary wuni-serial finite rings and finite fields. And the
number of the direct summands is finite if and ouly if © is a
Q-ring.

Corollary. 9O is the same as in Theorem 7 and is a Q-ving then O
satisfies the first axiom of countability.

Let © be a compact ring with the identity clement 1 in which the
product of any two maximal open left ideals is commutative and b a
maximal open prime ideal of ©. Then the following conditions are equi-
valent when b 7 p”

1) There exists no left ideal between b and .

2) There exists no open left ideal between P and -

3) p/¥is a cyclic O-left module. '
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4) If ais a left ideal such that p 2 a 2 9* then there exists a left
ideal a’ such that a = ba’.

5) Left ideals between p and P* are totally ordered.

6) For any three left ideals a, b, ¢ with p 2 a, b, ¢ 2 v°, there holds
that

anN@o=@Nbane.
7) For any three left ideals a, b, ¢ with p 2 q, b, ¢ 2 7,
[a: (b)), == ([a:b], [a:c]y),

where [a:0], = {x: 20 S 0, x €90}, that is, [a:Db], is the left quotient
ring of a by b,

Finally we give two theorems without proof.

Theorem 8. Let © be a compact ring with the identity element 1
in which the product of any two maximal open left (or right) ideals is
commutative. Then O is a Cartesian direct sum of maximal compact
open orders of t.d.l.c. division rings, completely primary uni-serial
finite rings and finite fields, when O satisfies one of the following
seven conditions :

For any maximal open prime ideal b,

1. there exists no one-sided ideal between b and V,

2. there exists no one-sided open ideal belween b and VY,

3. /v is a cyclic O-left and right module,

4., if a is a left ideal with Y 2 a2 9® then there exists a left
ideal o’ such that a =pa’, and if 0 is a right ideal with » 2 a0 2V’ then
there exists a right ideal o' such that a = a''p,

5. left ideals between b and ¥ are totally ordered, and the same
is true for right ideals,

6. for any three left ideals 0,0, c with p 2 a,b,¢ 2 p°,

anN®Gao=(@Nbanc),

and the same is true for right ideals,
Sfor any three left ideals a,b, c with p 2 a,b, ¢ 2 %

fa:(bMe)], = (la:b], [a:c]y),

and the same is true for rvight ideals taking right quotient ideals.
Corollary. Let © be a compact ving with the identity element 1

in which the product of any two maximal open left ideals is commu-

tative. Then, if every maximal open prime ideal of 2 is a principal
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left and right ideal, every closed ideal of © is principal left and
right ideal.

Theorem 9. Let © be a compact Q-ring with the identily element 1
in which the product of any two maximal open left ideals is commuta-
tive. Then the following seven conditions are equivalent to each other.

1. © is a Cartesian direct sum of a finite number of maximal
compact open orders of t.d.l.c. division rings, completely primary
uni-serial finile rings and finite fields.

2. There is no one-sided ideal between b and Y for any maximal
open prime ideal .

3. For any maximal open prime ideal b, b/V* is a cyclic left and
right O-module.

4, Every one-sided ideal of O is a principal ideal.

5. For left ideals a,b,a & b, there exists a left ideal ¢ such that
a==b¢, and for right ideals a, b with a &b, there exisls a right
ideal ¢ such that a = cb,

6. For any three left ideals q, ¥, ¢,

an®,c)=(@Nbaneo.

It is the same with right ideals.
7. For any three left ideals a, b, ¢,

a: (M), ==([a:b], [a:c]y).
It is the same with right ideals taking right quotient ideals.
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