THEORIE DER 2-KOHOMOLOGIEGRUPPEN IN DISKRET BEWERTETEN PERFEKTEN KÖRPERN¹⁾

MIKAO MORIYA

Einleitung.

Anschließend an eine vor kurzem erschienene Arbeit von mir²⁾ will ich hier die Strukturtheorie der 2-Kohomologiegruppen entwickeln, welche die Hauptordnung eines diskret bewerteten perfekten Körpers als Definitionsbereich besitzen.

Es sei k ein diskret bewerteter perfekter (kommutativer) Körper mit $\mathfrak o$ als Hauptordnung und K eine endlich-separable Erweiterung über k, deren Hauptordnung mit $\mathfrak O$ bezeichnet wird. Ferner betrachten wir über K eine beliebige endlich-separable Erweiterung K mit $\mathfrak O$ als Hauptordnung. Bekanntlich besitzt dann $\mathfrak O$ nur ein einziges nicht-triviales Primideal $\mathfrak P$ (d. h. $\mathfrak P$ ist das von (0) und $\mathfrak O$ verschiedene Primideal aus $\mathfrak O$). Zu einem Restklassenring $\mathfrak R_m$ von $\mathfrak O$ nach $\mathfrak P^m$ ($m \geq 0$) kann man 2-Kozyklen und 2-Koränder von $\mathfrak O/\mathfrak o$ über $\mathfrak R_m$ definieren. (Zur Definition siehe § 1. 1) Die Gesamtheit $Z_m^{(2)}$ aller 2-Kozyklen von $\mathfrak O/\mathfrak o$ über $\mathfrak R_m$ bildet einen Modul mit $\mathfrak O$ als Multiplikatorenbereich und die Gesamtheit $B_m^{(2)}$ aller 2-Koränder von $\mathfrak O/\mathfrak o$ über $\mathfrak R_m$ einen $\mathfrak O$ -Untermodul. Der Faktormodul $H^{(2)}(\mathfrak O/\mathfrak o; \mathfrak R_m) = Z_m^{(2)}/B_m^{(2)}$ ist die 2-Kohomologiegruppe von $\mathfrak O/\mathfrak o$ über $\mathfrak R_m$ genannt; jedes Element aus $H^{(2)}(\mathfrak O/\mathfrak o; \mathfrak R_m)$ heißt eine 2-Kohomologieklasse von $\mathfrak O/\mathfrak o$ über $\mathfrak R_m$.

Jede 2-Kohomologiegruppe $H^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_{\mathfrak{m}})$ besitzt stets endliche Kompositionsreihe, welche aus lauter $\overline{\mathfrak{D}}$ -Untermoduln besteht; die Länge dieser Kompositionsreihe nenne ich die $\overline{\mathfrak{D}}$ -Länge von $H^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_{\mathfrak{m}})$. Dabei ist die $\overline{\mathfrak{D}}$ -Länge von $H^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_{\mathfrak{m}})$ gleich dem Exponenten $\overline{d}(K/k)$ der Differente von K/k in bezug auf $\overline{\mathfrak{P}}$, wenn m hinreichend gro3 ist. Ferner besitzt $H^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_{\mathfrak{m}})$ endliche $\overline{\mathfrak{D}}$ -Basis, wenn es kein Nullmodul ist; d. h. es gibt endlich viele, von der Nullkohomologieklasse 0 ver-

¹⁾ Die Hauptergebnisse der vorliegenden Arbeit habe ich schon mitgeteilt. Vgl. M. Moriya, Theorie der 2-Cohomologiegruppen in diskret bewerteten perfekten Körpern, Proc. Japan Acad., Vol. 30 (1954), S. 787—790.

²⁾ M. Moriya, Zur Fortsetzung der 2-Cozyklen in einem kommutativen Ring, Math, Journ., Okayama Univ., Vol. 4 (1954), S. 1-19. Ich zitiere diese Arbeit mit M II.

schiedene 2-Kohomologieklassen \bar{C}_1 , \bar{C}_2 , \cdots , \bar{C}_r derart, daß sich jede 2-Kohomologieklasse aus $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ als Linearform in \bar{C}_1 , \bar{C}_2 , \cdots , \bar{C}_r mit Koeffizienten aus $\overline{\mathbb{O}}$ darstellen läßt, und daß aus der Gleichung $\bar{A}_1\bar{C}_1+\bar{A}_2\bar{C}_2+\cdots+\bar{A}_r\bar{C}_r=0$ ($\bar{A}_i\in\overline{\mathbb{O}},\ i=1,\ 2,\ \cdots,\ r$) stets $\bar{A}_1\bar{C}_1=\bar{A}_2\bar{C}_2=\cdots=\bar{A}_r\bar{C}_r=0$ folgen.

In §1 gebe ich einige Definitionen und einfache Resultate, welche unmittelbar aus diesen Definitionen folgen. In §2 betrachte ich eine Zwischenhauptordnung $\mathfrak{D}^{\scriptscriptstyle (1)}$ zwischen \mathfrak{o} und \mathfrak{D} . Ein 2-Kozyklus von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\Re}_m$, dessen Einschränkung auf $\mathfrak{D}^{(1)}/\mathfrak{o}$ 2-Korand von $\mathfrak{D}^{(1)}/\mathfrak{o}$ über $\overline{\Re}_m$ wird, heißt "zerfällt in $\mathbb{O}^{(1)}$ ". Die Gesamtheit $H^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathfrak{R}}_m)$ aller derjenigen 2-Kohomologieklassen aus $H^{(2)}(\mathfrak{D}/\mathfrak{o};\overline{\mathfrak{R}}_m)$, die irgendeinen in D(1) zerfallenden 2-Kozyklus enthält, bildet einen \overline{\Omega}-Untermodul von $H^{(2)}(\mathfrak{D}/\mathfrak{o};\overline{\mathfrak{R}}_m)$. Es zeigt sich dabei, daß für ein hinreichend großes m $H^{(2)}(\mathfrak{D}/\mathfrak{o}, \mathfrak{D}^{(1)}; \overline{\mathfrak{R}}_m)$ stets zu $H^{(2)}(\mathfrak{D}/\mathfrak{D}^{(1)}; \overline{\mathfrak{R}}_m)$ $\overline{\mathfrak{O}}$ -isomorph ist. Es handelt sich in §3 um die Erweiterung des Multiplikatorenbereiches \overline{\mathbb{N}} von $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ zu einer Oberhauptordnung von $\overline{\mathfrak{D}}$. In §4 bestimme ich die Struktur von $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ im Falle, wo \mathfrak{D} aus \mathfrak{o} durch Ringadjunktion cines einzigen Elementes entsteht. Dabei heiße Deinfach normal über o. In diesem Fall ist $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \mathfrak{F}_m)$ stets zyklischer \mathfrak{S} -Modul, und die \mathfrak{D} -Länge von $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \mathfrak{R}_m)$ ist gleich $Min(\overline{d}(K/k), m)$. Eine Hauptordnung D, welche als ein Turm der einfach normalen Hauptordnungen definiert ist, heißt über v normal. In §5 wird die Struktur von $H^{(2)}(\mathfrak{D}/v;\overline{\mathfrak{R}}_m)$ bestimmt, wenn D über v normal ist. Im letzten Paragraphen behandle ich den Fall, wo $\mathfrak O$ über $\mathfrak o$ nicht normal ist. Dazu betrachte ich eine K enthaltende, über k galoissche Erweiterung K^* . Dann ist die Hauptordnung \mathfrak{O}^* von K^* normal über \mathfrak{o} und \mathfrak{O} . Bezeichnet man nun mit Ψ* das nicht-triviale Primideal aus D* und mit R*, den Restklassenring von 𝔻* nach 𝔻**, so gilt folgende 𝔻*-Isomorphierelation:

$$H^{(2)}(\mathfrak{O}^*/\mathfrak{o}\,;\,\mathfrak{R}_n^*)/H^{(2)}(\mathfrak{O}^*/\mathfrak{o},\,\mathfrak{O}\,;\,\,\mathfrak{R}_n^*)\cong H^{(2)}(\mathfrak{O}/\mathfrak{o}\,;\,\mathfrak{R}_n^*).$$

Aus der obigen Relation folgen zunächst, daß die \mathbb{O}^* -Länge von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_n^*)$ endlich ist, und daß $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_n^*)$ stets endliche \mathbb{O}^* -Basis besitzt, wenn es kein Nullmodul ist. Ist dabei n durch m teilbar, so ist $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_n^*)$ gleich der Multiplikatorenbereicherweiterung von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ zu \mathbb{O}^* . Nach der in §3 entwickelten Theorie besitzt dann $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ endliche $\overline{\mathbb{O}}$ -Länge und sogar endliche $\overline{\mathbb{O}}$ -Basis, wenn es kein Nullmodul ist. Ferner sind für hinreichend große natürliche Zahlen m die 2-Kohomologiegruppen $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ alle einander $\overline{\mathbb{O}}$ -isomorph, und sie haben die gleiche $\overline{\mathbb{O}}$ -Länge $\overline{d}(K/k)$.

Inhaltsverzeichnis.

Einleitung.

Kaiptel I. Fundamentaleigenschaften der 2-Kohomologiegruppen.

- §1. Vorbereitungen.
- § 2. Zerfällung der 2-Kohomologieklassen.
- § 3. Erweiterung des Multiplikatorenbereiches einer 2-Kohomologiegruppe.
- Kapitel II. Struktur der 2-Kohomologiegruppen in diskret bewerteten perfekten Körpern.
 - § 4. Struktur der 2-Kohomologiegruppen mit einfach normaler Hauptordnung als Definitionsbereich.
 - §5. Struktur der 2-Kohomologiegruppen mit normaler Hauptordnung als Definitionsbereich.
 - § 6. Struktur der 2-Kohomologiegruppen mit allgemeiner Hauptordnung als Definitionsbereich.

Kapitel I. Fundamentaleigenschaften der 2-Kohomologiegruppen.

In diesem Kapitel bezeichnet $\mathfrak o$ durchweg die Hauptordnung eines diskret bewerteten perfekten Körpers k und $\mathfrak O$ die Hauptordnung einer endlich-separablen Erweiterung K über k. Ferner bezeichnet $\overline{\mathfrak O}$ die Hauptordnung einer beliebigen endlich-separablen Erweiterung \overline{K} über K (\overline{K} kann eventuell mit K übereinstimmen) und $\overline{\mathfrak P}$ das nicht-triviale Primideal aus $\overline{\mathfrak O}$.

§ 1. Vorbereitungen

1. 2-Kozyklen und 2-Koränder. Für eine nicht-negative ganze rationale Zahl m betrachten wir den Restklassenring $\overline{\mathbb{R}}_m$ von $\overline{\mathbb{Q}}$ nach $\overline{\mathbb{Q}}^m$. Hierbei lassen wir auch $m=\infty$ zu, indem wir unter $\overline{\mathbb{Q}}^\infty$ das Nullideal aus $\overline{\mathbb{Q}}$ und infolgedessen unter $\overline{\mathbb{R}}_\infty$ die Hauptordnung $\overline{\mathbb{Q}}$ selbst versteht.

Nun sei f eine eindeutige Abbildung des Produktraumes $\mathfrak{D} \times \mathfrak{D}$ in $\overline{\mathfrak{D}}$ mit folgenden Eigenschaften:

- 1) Für beliebige Elemente X, Y aus $\overline{\mathbb{Q}}$ gilt $f(X, Y) \equiv f(Y, X) \mod \overline{\mathbb{R}}^m$.
- 2) Für beliebige Elemente X_i , Y_i (i = 1, 2) aus \mathfrak{O} gilt

$$f(X_1 + X_2, Y_1 + Y_2) \equiv \sum_{i,j=1}^{2} f(X_i, Y_j) \quad \text{mod } \overline{\mathfrak{P}}^m.$$

3) Für beliebige Elemente X, Y, Z aus $\mathfrak D$ gilt

$$Xf(Y, Z) + f(X, YZ) \equiv f(XY, Z) + Zf(X, Y) \mod \overline{\mathfrak{P}}^m$$

4) Für beliebige Eelemente x, y aus θ gilt

$$f(x, y) \equiv 0 \mod \overline{\mathfrak{P}}^{"}$$

Dabei soll man für mod $\overline{\mathfrak{P}}^{\infty}$ die Kongruenz durch die Gleichheit ersetzen. Dann heißt f ein 2-Kozyklus von \mathbb{O}/\mathfrak{v} über $\overline{\mathfrak{R}}_m$. Zwei 2-Kozyklen f_1 und f_2 von \mathbb{O}/\mathfrak{v} über $\overline{\mathfrak{R}}_m$ heißen einander gleich, wenn $f_1 \equiv f_2 \mod \overline{\mathfrak{P}}^m$ gilt¹⁾.

Bemerkung. Ist f ein 2-Kozyklus von $\mathfrak{D}/\mathfrak{o}$ über \mathfrak{R}_m , so kann man für beliebige Elemente X, Y aus \mathfrak{D} dem f(X,Y) eindeutig die f(X,Y) enthaltende Restklasse $\overline{f}(X,Y)$ aus dem Restklassenring $\overline{\mathfrak{R}}_m$ zuordnen. Wegen der Eigenschaften 1)—4) wird dann \overline{f} ein 2-Kozyklus von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ im eigentlichen Sinne, es ist aber in unserer Theorie vorteilhafter, daß man nicht \overline{f} sondern f heranzieht.

Eine eindeutige Abbildung g von $\mathfrak D$ in $\overline{\mathfrak D}$ heißt eine 1-Kokette von $\mathfrak D/\mathfrak o$ über $\overline{\mathfrak R}_m$, wenn für jedes Element x aus $\mathfrak o$ stets $g(x)\equiv 0 \mod \overline{\mathfrak P}^m$ und für beliebige Elemente X, Y aus $\mathfrak D$ stets $g(X+Y)\equiv g(X)+g(Y)$ mod $\overline{\mathfrak P}^m$ gilt²). Aus einer 1-Kokette g von $\mathfrak D/\mathfrak o$ über $\overline{\mathfrak R}_m$ kann man stets einen 2-Kozyklus ∂g von $\mathfrak D/\mathfrak o$ über $\overline{\mathfrak R}_m$ bilden, indem man für beliebige Elemente X, Y aus $\mathfrak D$

$$\partial g(X, Y) = Yg(X) + Xg(Y) - g(XY)$$

setzt. Dabei nennt man ∂g den 2-Korand von g.

Sind nun f_1, f_2 2-Kozyklen von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$, so definiert man die Summe $f_1 + f_2$ von f_1 und f_2 durch die Gleichung

$$(f_1 + f_2)(X, Y) = f_1(X, Y) + f_2(X, Y),$$

wo X, Y unabhängig alle Elemente aus $\mathfrak D$ durchlaufen. Offenbar ist f_1+f_2 auch ein 2-Kozyklus von $\mathfrak D/\mathfrak v$ über $\overline{\mathfrak R}_m$. Man verifiziert ohne Schwierigkeit, daß die Gesamtheit $Z_m^{(2)}$ aller 2-Kozyklen von $\mathfrak D/\mathfrak v$ über $\overline{\mathfrak R}_m$ bei der oben definierten Summenbildung einen $\overline{\mathfrak D}$ -Modul bildet. Ein 2-Kozyklus f' von $\mathfrak D/\mathfrak v$ über $\overline{\mathfrak R}_m$ heißt zu f kohomolog, wenn es eine 1-Kokette g von $\mathfrak D/\mathfrak v$ über $\overline{\mathfrak R}_m$ gibt, so daß

$$f' \equiv f + \partial g \mod \overline{\mathfrak{P}}^m$$

ist, in Zeichen: $f \sim f'(\overline{\mathfrak{P}}^m)$. Ist insbesondere

$$f' \equiv \partial g \mod \overline{\mathfrak{P}}^m$$

so heiße f' zur Null kohomolog : $0 \sim f'(\overline{\mathfrak{P}}^m)$. Nach Definition gilt offenbar folgende Äquivalenzrelation :

¹⁾ Dies bedeutet, daß für beliebige Elemente X,Y aus $\mathfrak D$ stets $f_1(X,Y)\equiv f_2(X,Y) \mod \overline{\mathfrak P}^m$ gilt.

²⁾ g heiße eine lineare Abbildung mod \$\overline{\mathbb{R}}^m\$ von \$\overline{\mathbb{D}}\$ in \$\overline{\overline{\mathbb{D}}}\$.

- i) $f \sim f(\overline{\mathfrak{P}}^m)$.
- ii) Aus $f \sim f'(\overline{\mathfrak{P}}^m)$ folgt $f' \sim f(\overline{\mathfrak{P}}^m)$.
- iii) Sind $f \sim f'$, $f' \sim f''$ ($\overline{\mathfrak{P}}^m$), so ist

$$f \sim f''(\overline{\mathfrak{P}}^m).$$

Wegen der obigen Aquivalenzrelation kann man von einander kohomologen 2-Kozyklen sprechen.

Nun bildet die Gesamtheit $B_m^{(2)}$ aller zur Null kohomologen 2-Kozyklen von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ offenbar einen $\overline{\mathfrak{O}}$ -Untermodul von $Z_m^{(2)}$; der Faktormodul $H^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$ von $Z_m^{(2)}$ nach $B_m^{(2)}$ besitzt $\overline{\mathfrak{O}}$ als Linksmultiplikatorenbereich, er heiße die 2-Kohomologiegruppe von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$. Jedes Element aus $H^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$ ist eine 2-Kohomologieklasse von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ genannt.

2. Normale 2-Kozyklen und normale 2-Kohomologieklassen. Ein 2-Kozyklus f von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ heißt normal, wenn für ein beliebiges Element x bzw. X aus \mathfrak{o} bzw. \mathfrak{D} stets

$$f(x, X) \equiv 0 \quad \text{mod } \overline{\mathfrak{P}}^m$$

gilt. Eine 1-Kokette g von $\mathfrak{D}/\mathfrak{o}$ über \mathfrak{R}_m heißt normal, wenn stets die Kongruenz

$$g(xX) \equiv xg(X) \mod \overline{\mathfrak{P}}^m$$

erfüllt ist, wo x bzw. X alle Elemente aus $\mathfrak o$ bzw. $\mathfrak O$ durchläuft.

Es sei $W_1 = 1$, W_2 , ..., W_n eine Minimalbasis von $\mathfrak D$ über $\mathfrak o$ und $X = \sum_{i=1}^n x_i W_i$ ein beliebiges Element aus $\mathfrak D$, wo die $x_i (i=1,2,\cdots,n)$ Elemente aus $\mathfrak o$ bezeichnen. Dann setze man für einen 2-Kozyklus f von $\mathfrak D/\mathfrak o$ über $\overline{\mathbb R}_m$:

$$g(x_iW_i) = f(x_i,W_i) \ (i = 1, 2, \dots, n) \ \text{und} \ g(X) = \sum_{i=1}^{n} g(x_iW_i).$$

Nach Definition ist g sicher eine lineare Abbildung mod \mathfrak{P}^m von $\mathfrak{D}/\mathfrak{o}$ in \mathfrak{D} , und außerdem gilt für ein beliebiges Element x aus \mathfrak{o} :

$$g(x) = g(xW_1) = f(x, W_1) = f(x, 1) \equiv 0 \mod \overline{\mathbb{B}}^m$$
;

d. h. g ist eine 1-Kokette von $\mathfrak{D}/\mathfrak{v}$ über $\overline{\mathfrak{R}}_{m}$. Ferner besteht wegen der Relation $xf(x_i, W_i) + f(x, x_i W_i) \equiv f(xx_i, W_i) + W_i f(x, x_i) \mod \overline{\mathfrak{P}}^m$ folgende Kongruenz:

$$f(x, x_i W_i) \equiv -x f(x_i, W_i) + f(x x_i, W_i)$$

$$\equiv -x g(x_i W_i) - x_i W_i g(x) + g(x x_i W_i)$$

$$\equiv -\partial g(x, x_i W_i) \quad \text{mod } \overline{\Psi}^m.$$

Setzt man also $f_0 = f + \partial g$, so gilt offenbar:

$$f_0(x, X) = f(x, X) + \delta g(x, X)$$

$$\equiv \sum_{i=1}^n \{ f(x, x_i W_i) + \delta g(x, x_i W_i) \} \equiv 0 \quad \text{mod } \overline{\mathcal{P}}^m;$$

d. h. der zu f kohomologe 2-Kozyklus f_0 ist ein normaler 2-Kozyklus von $\mathbb{D}/0$ über $\overline{\mathbb{R}}_m$. Mithin ist gezeigt, da3 jede 2-Kohomologieklasse von $\mathbb{D}/0$ über $\overline{\mathbb{R}}_m$ mindestens einen normalen 2-Kozyklus von $\mathbb{D}/0$ über $\overline{\mathbb{R}}_m$ enthält.

Nun sei der 2-Korand einer 1-Kokette g von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ normal. Dann ist

$$\partial g(x, X) \equiv 0 \mod \overline{\mathfrak{P}}^m$$
;

wegen $g(x) \equiv 0 \mod \overline{\mathfrak{P}}^m$ folgt sofort:

$$\hat{\sigma}g(x, X) = xg(X) + Xg(x) - g(xX)
\equiv xg(X) - g(xX) \equiv 0 \mod \overline{\mathfrak{P}}^m,$$

also muß g notwendig eine normale 1-Kokette von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ sein. Somit ist bewiesen:

Ist ein normaler 2-Kozyklus f_0 von $\mathbb{D}/0$ über $\overline{\mathbb{R}}_m$ der 2-Korand einer 1-Kokette g von $\mathbb{D}/0$ über $\overline{\mathbb{R}}_m$, so ist g normal.

Offenbar bildet die Gesamtheit $Z_{o,m}^{(2)}$ aller normalen 2-Kozyklen von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ einen $\overline{\mathfrak{D}}$ -Untermodul von $Z_m^{(2)}$, und ferner stimmt die Gesamtheit $B_{o,m}^{(2)}$ der 2-Koränder aller normalen 1-Koketten von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ mit $Z_{o,m}^{(2)} \cap B_m^{(2)}$ überein. Der Faktormodul $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ von $Z_{o,m}^{(2)}$ nach $B_{o,m}^{(2)}$ hei it die normale 2-Kohomologiegruppe von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ und ein Element aus $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ eine normale 2-Kohomologieklasse von $\mathfrak{D}/\mathfrak{o}$ über \mathfrak{R}_m .

Da jede 2-Kohomologieklasse \bar{C} von $\mathfrak{D}/\mathfrak{v}$ über $\overline{\mathfrak{R}}_m$ einen normalen 2-Kozyklus $f_{\mathfrak{o}}$ von $\mathfrak{D}/\mathfrak{v}$ über $\overline{\mathfrak{R}}^m$ enthält, so ordnen wir \bar{C} die $f_{\mathfrak{o}}$ enthaltende, normale 2-Kohomologieklasse $\bar{C}_{\mathfrak{o}}(f_{\mathfrak{o}})$ von $\mathfrak{D}/\mathfrak{v}$ über $\overline{\mathfrak{R}}_m$ zu. Nach dem oben Bewiesenen ist diese Zuordnung von der Wahl der normalen 2-Kozyklen aus \bar{C} unabhängig, also ist $\bar{C}_{\mathfrak{o}}(f_{\mathfrak{o}})$ durch \bar{C} eindeutig bestimmt. Hiernach beweist man ohne Schwierigkeit folgenden

Hilfssatz 1. Jede 2-Kohomologieklasse \overline{C} aus $H^{(2)}(\mathbb{D}/\mathfrak{o}; \overline{\mathbb{R}}_m)$ enthült mindestens einen normalen 2-Kozyklus f_0 von \mathbb{D}/\mathfrak{o} über $\overline{\mathbb{R}}_m$. Ordnet man dabei \overline{C} die f_0 enthaltende, normale 2-Kohomologieklasse \overline{C}_0 zu, so stellt diese Zuordnung einen $\overline{\mathbb{D}}$ -Isomorphismus von $H^{(2)}(\mathbb{D}/\mathfrak{o}; \overline{\mathbb{R}}_m)$ auf $H^{(2)}(\mathbb{D}/\mathfrak{o}; \overline{\mathbb{R}}_m)$ her.

3. D-Längen und D-Basen. Eine endliche absteigende Folge von

den $\overline{\mathbb{Q}}$ -Untermoduln aus $H^{(2)}(\mathbb{Q}/\mathfrak{o}; \overline{\mathbb{R}}_m)$

$$U_{\mathfrak{o}} = H^{(2)}(\mathfrak{O}/\mathfrak{o} \,;\, \overline{\mathfrak{R}}_{\mathfrak{m}}) \supseteq U_{\mathfrak{o}} \supseteq \cdots \supseteq U_{\mathfrak{o}} = B_{\mathfrak{m}}^{(2)}$$

heißt eine $\overline{\mathbb{D}}$ -Kompositionsreihe von $H^{(2)}(\overline{\mathbb{D}}/\mathfrak{o}\,;\,\overline{\mathbb{R}}_m)$, wenn die Faktormoduln $U_{i-1}/U_i(i=1,2,\cdots,s)$ einfacher $\overline{\mathbb{D}}$ -Modul sind. Wenn $H^{(2)}(\overline{\mathbb{D}}/\mathfrak{o}\,;\,\overline{\mathbb{R}}_m)$ überhaupt eine $\overline{\mathbb{D}}$ -Kompositionsreihe besitzt, so sind die Längen aller $\overline{\mathbb{D}}$ -Kompositionsreihen von $H^{(2)}(\overline{\mathbb{D}}/\mathfrak{o}\,;\,\overline{\mathbb{R}}_m)$ nach dem Satz von Jordan-Hölder einander gleich; d. h. die Länge irgendeiner $\overline{\mathbb{D}}$ -Kompositionsreihe von $H^{(2)}(\overline{\mathbb{D}}/\mathfrak{o}\,;\,\overline{\mathbb{R}}_m)$ ist eine Invariante von $H^{(2)}(\overline{\mathbb{D}}/\mathfrak{o}\,;\,\overline{\mathbb{R}}_m)$, sie heiße im folgenden die $\overline{\mathbb{D}}$ -Länge von $H^{(2)}(\overline{\mathbb{D}}/\mathfrak{o}\,;\,\overline{\mathbb{R}}_m)$. Ebenso kann man die $\overline{\mathbb{D}}$ -Länge der normalen 2-Kohomologiegruppe $H^{(2)}_{\mathfrak{o}}(\overline{\mathbb{D}}/\mathfrak{o}\,;\,\overline{\mathbb{R}}_m)$ definieren.

Es seien $\bar{C}_1, \bar{C}_2, \dots, \bar{C}_r$ 2-Kohomologieklassen von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$, welche alle von der Nullklasse aus $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}^m)$ verschieden sind. Dann heißen $\bar{C}_1, \bar{C}_2, \dots, \bar{C}_r$ $\overline{\mathfrak{D}}$ -unabhängig, wenn aus einer beliebigen Gleichnug

$$\bar{A}_1\bar{C}_1 + \bar{A}_2\bar{C}_2 + \dots + \bar{A}_r\bar{C}_r = 0$$
 (Nullklasse aus $H^{(2)}(\mathfrak{O}/\mathfrak{o}; \mathfrak{R}_m)$)

stets $\bar{A}_1\bar{C}_1 = \bar{A}_2\bar{C}_2 = \cdots = \bar{A}_r\bar{C}_r = 0$ folgen, wo die $\bar{A}_i(i=1, 2, \cdots, r)$ Elemente aus $\bar{\mathfrak{D}}$ bezeichnen. Ein System der \mathfrak{D} -unabhängigen 2-Kohomologieklassen $\bar{C}_1, \bar{C}_2, \cdots, \bar{C}_r$ von $\mathfrak{D}/\mathfrak{v}$ über $\bar{\mathfrak{R}}_m$ heißt eine $\bar{\mathfrak{D}}$ -Basis, wenn jede 2-Kohomologieklasse \bar{C} aus $H^{(2)}(\bar{\mathfrak{D}}/\mathfrak{v}; \bar{\mathfrak{R}}_m)$ von der Form

$$\bar{C} = \sum_{i=1}^r \bar{A}_i \bar{C}_i$$

ist, wo die $\bar{A}_i(i=1,2,\cdots,r)$ Elemente aus $\bar{\Sigma}$ bezeichnen. Ebenso kann man von einer $\bar{\Sigma}$ -Basis von $H_o^{(2)}(\bar{\Sigma}/v;\bar{\mathfrak{R}}_m)$ sprechen.

Nun sei $\{\bar{C}\}\$ der durch eine 2-Kohomologieklasse \bar{C} von \mathbb{D}/\mathfrak{o} über $\overline{\Re}_m$ erzeugte $\overline{\mathbb{D}}$ -Untermodul von $H^{(2)}(\mathbb{D}/\mathfrak{o}\,;\,\overline{\Re}_m)$. Besitzt dann $\{\bar{C}\}\$ eine $\overline{\mathbb{D}}$ -Kompositionsreihe, so heiße die Länge dieser $\overline{\mathbb{D}}$ -Kompositionsreihe die \mathbb{D} -Länge von \bar{C} . Ordnet man nun einem beliebigen Element \overline{X} aus $\overline{\mathbb{D}}$ $\overline{X}\bar{C}$ zu, so ist dadurch \mathbb{D} als Modul auf $\{\bar{C}\}$ $\overline{\mathbb{D}}$ -homomorph abgebildet. Dabei bildet der Kern dieses $\overline{\mathbb{D}}$ -Homomorphismus ein Ideal $\overline{\mathbb{C}}$ aus $\overline{\mathbb{D}}$, welches das annullierende Ideal von \bar{C} genannt ist; also ist $\{\bar{C}\}$ $\overline{\mathbb{D}}$ -isomorph zum Restklassenring $\overline{\mathbb{D}}/\overline{\mathbb{C}}$. Da $\overline{\mathbb{C}}$ eine Potenz $\overline{\mathbb{R}}^l$ von $\overline{\mathbb{R}}$ ist, so ist die $\overline{\mathbb{D}}$ -Länge von \bar{C} offenbar gleich dem \mathbb{R} -Exponenten l von $\overline{\mathbb{C}}$.

Es besitze $H^{(2)}(\mathbb{Q}/\mathfrak{o};\overline{\mathfrak{R}}_m)$ eine endliche $\overline{\mathbb{Q}}$ -Basis $\overline{C}_1,\overline{C}_2,\cdots,\overline{C}_r$ und jedes $\overline{C}_i(1\leq i\leq r)$ sei von der $\overline{\mathbb{Q}}$ -Länge \overline{l}_i . Dann bestätigt man leicht, daß die Summe $\sum_{i=1}^n \overline{l}_i$ die $\overline{\mathbb{Q}}$ -Länge von $H^{(2)}(\mathbb{Q}/\mathfrak{o};\overline{\mathfrak{R}}_m)$ ist.

§2. Zerfällung der 2-Kohomologieklassen.

In diesem Paragraphen bezeichnet $H_0^{(2)}(\mathfrak{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ die normale 2-Koho-

mologiegruppe, welche schon in § 1.2 definiert ist.

Nun sei $K^{(1)}$ ein Zwischenkörper zwischen K und k; ferner sei $\mathbb{O}^{(1)}$ die Hauptordnung von $K^{(1)}$. Ein normaler 2-Kozyklus f von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$ heißt dann "zerfällt in $\mathbb{O}^{(1)}$ ", wenn es eine 1-Kokette $g^{(1)}$ von $\mathbb{O}^{(1)}/\mathfrak{o}$ über $\overline{\mathbb{R}}_m$ gibt, so da \mathfrak{I} die Einschränkung von f auf $\mathbb{O}^{(1)}/\mathfrak{o}$ mod $\overline{\mathfrak{I}}$ gleich $\partial g^{(1)}$ ist. Für beliebige Elemente $x^{(1)}$, $y^{(1)}$ aus $\mathbb{O}^{(1)}$ gilt also

$$f(x^{(1)}, y^{(1)}) \equiv \partial g^{(1)}(x^{(1)}, y^{(1)}) \mod \overline{\mathbb{R}}^m$$

Nun legen wir eine Minimalbasis $W_1 = 1, W_2, \dots, W_n$ von $\mathbb O$ über $\mathbb O^{(1)}$ fest, und für ein Element $X = \sum_{i=1}^n x_i^{(i)} W_i(x_i^{(i)} \in \mathbb O^{(1)}, i=1, 2, \dots, n)$ aus $\mathbb O$ definieren wir eine 1-Kokette g von $\mathbb O/\mathfrak o$ über $\overline{\mathfrak{R}}_m$ durch die Gleichung

$$g(X) = g^{(1)}(x_1^{(1)}),$$

Ersichtlich ist g eine Fortsetzung von $g^{(1)}$ auf $\mathfrak{D}/\mathfrak{o}$. Nach Definition ist g(X) offenbar durch die Angabe der Minimalbasis W_1, W_2, \dots, W_n und durch X eindeutig bestimmt. Bildet man nun den 2-Kozyklus

$$f' = f - \partial g,$$

so gilt für beliebige Elemente $x^{(1)}$, $y^{(1)}$ aus $\mathbb{O}^{(1)}$:

$$f'(x^{(1)}, y^{(1)}) = f(x^{(1)}, y^{(1)}) - \partial g(x^{(1)}, y^{(1)})$$

= $f(x^{(1)}, y^{(1)}) - \partial g^{(1)}(x^{(1)}, y^{(1)}) \equiv 0 \mod \overline{\mathbb{R}}^m$.

Ferner definieren wir eine 1-Kokette g' von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ durch folgende Vorschrift:

$$g'(x_i^{(1)}W_i) = f'(x_i^{(1)}, W_i), \qquad g'(X) = \sum_{i=1}^n g'(x_i^{(1)}W_i),$$

wo wieder $X = \sum_{i=1}^{n} x_i^{(1)} W_i$ ($x_i^{(1)} \in \mathbb{O}^{(1)}$, $i = 1, 2, \dots, n$) gesetzt ist. Wie in § 1.2 kann man leicht verifizieren, da 3 für ein beliebiges Element $x^{(1)}$ aus $\mathbb{O}^{(1)}$ stets

$$(f' + \delta g')(x^{(1)}, X) \equiv 0 \quad \text{mod } \overline{\mathfrak{P}}^m$$

gilt; d. h. $f' + \partial g' = f - \partial (g - g')$ ist ein normaler 2-Kozyklus von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}_m$. Es ist klar, da3 alle 2-Kozyklen aus einer normalen 2-Kohomologieklasse von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$ in $\mathbb{O}^{(1)}$ zerfallen, wenn diese 2-Kohomologieklasse irgendeinen in $\mathbb{O}^{(1)}$ zerfallenden, normalen 2-Kozyklus enthält. Wir können also von einer in $\mathbb{O}^{(1)}$ zerfallenden, normalen 2-Kohomologieklasse von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$ sprechen. Aus dem oben Bewiesenen schlie3t man also folgenden

Hilfssatz 2. Jede in $\mathbb{O}^{(1)}$ zerfallende, normale 2-Kohomologie-klasse von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$ enthält sicher einen normalen 2-Kozyklus von

 $\mathfrak{O}/\mathfrak{O}^{(1)}$ über $\overline{\mathfrak{R}}_{m}$.

Nun sei f ein normaler 2-Kozyklus von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathfrak{R}}_m$ und g eine 1-Kokette von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ mit $f \equiv \delta g \mod \overline{\mathfrak{P}}^m$. Dann gilt für beliebige Elemente $x^{(1)}$, $y^{(1)}$ aus $\mathbb{O}^{(1)}$:

$$y^{(1)}g(x^{(1)}) + x^{(1)}g(y^{(1)}) - g(x^{(1)}y^{(1)}) = \delta g(x^{(1)}, y^{(1)})$$

$$\equiv f(x^{(1)}, y^{(1)}) \equiv 0 \mod \overline{\mathfrak{P}}^{m};$$

d. h. $g(\mathbf{x}^{(1)}\mathbf{y}^{(1)}) \equiv \mathbf{y}^{(1)}g(\mathbf{x}^{(1)}) + \mathbf{x}^{(1)}g(\mathbf{y}^{(1)}) \mod \overline{\mathfrak{P}}^m$. Dies bedeutet aber, daß g eine $Derivation\ D^{(1)}$ von $\mathbb{O}^{(1)}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ ist¹⁾. Wenn dabei der Exponent m hinreichend groß ist, so existiert eine Derivation D von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$, welche eine Fortsetzung von $D^{(1)}$ auf \mathbb{O}/\mathfrak{o} ist²⁾; es gilt also für beliebige Elemente X, Y aus \mathbb{O} :

$$\partial D(X, Y) \equiv YD(X) + XD(Y) - D(XY) \equiv 0 \mod \overline{\mathfrak{P}}^m$$

Also ist $f \equiv \delta(g-D) \mod \overline{\mathfrak{P}}^m$. Da aber für beliebige Element $x^{(1)}$ aus $\mathbb{O}^{(1)}$ stets

$$g(x^{(1)}) = D^{(1)}(x^{(1)}) = D(x^{(1)})$$

gilt, so ist g-D eine 1-Kokette von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}^m$. Nach dem in § 1.2 Gezeigten ist g-D eine normale 1-Kokette von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}_m$. Somit ist gezeigt:

Hilfssatz 3. Für jedes hinreickend große m wird ein normaler 2-Kozyklus f von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}_m$ dann und nur dann der 2-Korand einer normalen 1-Kokette von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}_m$, wenn f der 2-Korand einer 1-Kokette von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$ ist.

Bemerkung 1. Hilfssatz 3 gilt auch für $m=\infty$. Ist nämlich für eine 1-Kokette g von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{O}}/\overline{\mathfrak{P}}^{\infty}=\overline{\mathfrak{R}}_{\infty}$ $f=\delta g$ ein normaler 2-Kozyklus von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathfrak{R}}_{\infty}$, so gelten für ein beliebiges Element $x^{(1)}$ aus $\mathbb{O}^{(1)}$:

$$g(x^{(1)\nu}) = \nu x^{(1)\nu-1}g(x^{(1)})$$
 $(\nu = 1, 2, \cdots).$

Ist also $\varphi(\Xi)$ das Minimalpolynom von $x^{(1)}$ in 0, so gilt:

$$g(\varphi(x^{(1)})) = \varphi'(x^{(1)})g(x^{(1)}) = 0,$$

wo $\varphi'(\varXi)$ die Ableitung von $\varphi(\varXi)$ nach \varXi bezeichnet. Da $K^{(1)}$ über k

¹⁾ M II, S. 18.
2) Man soll etwa m so groß nehmen, daß m größer ist als der $\overline{\mathfrak{P}}$ -Exponent der Quasidifferente von K/k. Vgl. M. Moriya, Theorie der Derivationen und Körperdifferenten, Math. Journ., Okayama Univ., Vol. 2 (1953), S. 135, Satz 6. Diese Arbeit ist mit M I zitiert.

separabel ist, so ist $\varphi'(x^{(1)})$ sicher von Null verschieden; es muß also $g(x^{(1)})$ = 0 sein. Hieraus schließt man sofort, daß g eine normale 1-Kokette von $\mathfrak{D}/\mathfrak{D}^{(1)}$ über $\overline{\mathfrak{R}}_{\infty}$ ist.

Wir bezeichnen nun mit $H_o^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ die Gesamtheit aller in $\mathbb{O}^{(1)}$ zerfallenden, normalen 2-Kohomologieklassen von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$. Offenbar bildet $H_o^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ einen $\overline{\mathbb{O}}$ -Untermodul von $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{R}}_m)$, welche ich im folgenden die in $\mathbb{O}^{(1)}$ zerfallende Untergruppe von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{R}}_m)$ nennen will. Nach Hilfssatz 2 enthält jede 2-Kohomologieklasse \overline{C} aus $H_o^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ mindestens einen normalen 2-Kozyklus von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}_m$. Wenn außerdem m hinreichend groß ist, so gehören nach Hilfssatz 3 alle normalen 2-Kozyklen von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}_m$ aus \overline{C} zu ein und derselben normalen 2-Kohomologieklasse von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}_m$. Wenn man also aus einer beliebigen 2-Kohomologieklasse \overline{C} aus $H_o^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ einen normalen 2-Kozyklus f von $\mathbb{O}/\mathbb{O}^{(1)}$ über $\overline{\mathbb{R}}_m$ herausgreift und dann \overline{C} die f enthaltende 2-Kohomologieklasse aus $H_o^{(2)}(\mathbb{O}/\mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ zuordnet, so entsteht dadurch ein $\overline{\mathbb{O}}$ -Isomorphismus von $H_o^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ auf $H_o^{(2)}(\mathbb{O}/\mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$, falls m hinreichend groß ist. Daher ist folgender Satz bewiesen:

Satz 1. Es existiert eine natürliche Zahl N von der Art, daß für jedes m (einschließlich $m=\infty$) mit $m\geq N$ die in $\mathbb{O}^{(1)}$ zerfallende Untergruppe $H_0^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ von $H_0^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{R}}_m)$ stets auf $H_0^{(2)}(\mathbb{O}/\mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ $\overline{\mathbb{O}}$ -isomorph abgebildet wird.

Bemerkung 2. Durch geringe Modifikationen kann man Satz 1 auch für die 2-Kohomologiegruppe $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ beweisen.

§ 3. Erweiterung des Multiplikatorenbereiches einer 2-Kohomologiegruppe.

Wir betrachten über \overline{K} eine endlich-separable Erweiterung K^* mit \mathbb{O}^* als Hauptordnung und bezeichnen mit \mathfrak{P}^* das nicht-triviale Primideal aus \mathbb{O}^* . Ferner sei $W_1^*=1,W_2^*,\cdots,W_n^*$ eine Minimalbasis von \mathbb{O}^* über $\overline{\mathbb{O}}$ und e die Verzweigungsordnung von K^* über \overline{K} . Für ein Vielfaches m von e betrachten wir dann einen 2-Kozyklus f^* von \mathbb{O}/\mathbb{O} über \mathbb{R}_m^* , wo \mathbb{R}_m^* den Restklassenring von \mathbb{O}^* nach \mathbb{P}^{*m} bezeichnet. Dabei versteht man unter $m=\infty$ auch ein Vielfaches von e. Da für beliebige Elemente X, Y aus \mathbb{O} der Wert $f^*(X, Y)$ stets zu \mathbb{O}^* gehört, so kann man

(3.1)
$$f^*(X, Y) = \sum_{i=1}^n \bar{A}_i(X, Y) W_i^*$$

setzen, wo die $\bar{A}_i(X, Y)$ $(i = 1, 2, \dots, n)$ die durch X, Y eindeutig be-

stimmten Elemente aus $\overline{\mathbb{Q}}$ sind. Für beliebige Elemente $X,\,Y,\,Z$ aus \mathbb{Q} gilt dann :

$$\begin{array}{ll} Xf^*(Y,Z) + f^*(X,YZ) - f^*(XY,Z) - Zf^*(X,Y) \\ = \sum_{i=1}^{m} \{ X\bar{A}_i(Y,Z) + \bar{A}_i(X,YZ) - \bar{A}_i(XY,Z) - Z\bar{A}_i(X,Y) \} \ W_i^* \\ \equiv 0 \quad \mod \mathfrak{P}^{*m}. \end{array}$$

Berücksichtigt man hierbei, daß W_1^* , W_2^* , ..., W_n^* eine Minimalbasis von \mathfrak{D}^* über \mathfrak{D} ist, so schließt man ohne weiteres:

$$X\bar{A}_i(Y,Z) + \bar{A}_i(X,YZ) \equiv \bar{A}_i(XY,Z) + Z\bar{A}_i(X,Y) \mod \overline{\Psi}^{**o}$$

wo $m_o=m/e$ gesetzt ist. Bezeichnet man nun den Restklassenring von $\overline{\mathbb{D}}$ nach $\overline{\mathbb{R}}_{m_o}^m$ mit $\overline{\mathbb{R}}_{m_o}$, so verifiziert man ohne Schwierigkeit, daß die Koeffizienten $\overline{A}_i(X,Y)$ $(i=1,2,\cdots,n)$ 2-Kozyklen von \mathbb{D}/\mathfrak{v} über $\overline{\mathbb{R}}_{m_o}$ definieren, wenn X,Y unabhängig alle Elemente aus \mathbb{D} durchlaufen. Wenn man also die durch $\overline{A}_i(X,Y)$ $(i=1,2,\cdots,n)$ definierten 2-Kozyklen bzw. mit den \overline{A}_i $(i=1,2,\cdots,n)$ bezeichnet, so erhält man:

$$f^* = \sum_{i=1}^n W_i * \bar{A}_i.$$

Dies besagt aber, daß der \mathbb{O}^* -Modul $Z_m^{*(2)}$ aller 2-Kozyklen \mathbb{O}/\mathfrak{o} über \Re_m^* aus dem $\overline{\mathbb{O}}$ -Modul $\overline{Z}_{w_o}^{(2)}$ aller 2-Kozyklen von \mathbb{O}/\mathfrak{o} über $\overline{\Re}_{w_o}$ durch Erweiterung des Multiplikatorenbereiches $\overline{\mathbb{O}}$ zu \mathbb{O}^* entsteht. Man nennt also $Z_m^{*(2)}$ die Multiplikatorenbereicherweiterung von \overline{Z}_{w_o} zu \mathbb{O}^* .

Ist insbesondere f^* normaler 2-Kozyklus von \mathbb{D}/v über \mathfrak{R}_m^* , so sind die 2-Kozyklen \bar{A}_i ($i=1,2,\cdots,n$) auch normal. Also ist der \mathbb{D}^* -Modul $Z^{*(2)}_{o,m}$ aller normalen 2-Kozyklen von \mathbb{D}/v über \mathfrak{R}_m^* die Multiplikatorenbereicherweiterung von $\bar{Z}^{(2)}_{o,m_o}$ zu \mathbb{D}^* , wo \bar{Z}_{o,m_o} den $\bar{\mathbb{D}}$ -Modul aller normalen 2-Kozyklen von \mathbb{D}/v über $\bar{\mathfrak{R}}_{m_o}$ bezeichnet.

Nun sei in (3.2) f^* der 2-Korand einer 1-Kokette g^* von $\mathfrak{D}/\mathfrak{o}$ über \mathfrak{R}_m^* . Dann gilt für ein beliebiges Element X aus \mathfrak{D} :

(3.3)
$$g^*(X) = \sum_{i=1}^n \bar{B}_i(X) W_i^*$$
 $\bar{B}_i(X) \in \mathbb{Q}(i=1,2,\dots,n),$

wo die Koeffizienten $\bar{B}_i(X)$ $(i=1,2,\cdots,n)$ durch X eindeutig bestimmt sind. Wenn X alle Elemente aus $\mathbb Q$ durchläuft, so definieren die $\bar{B}_i(X)$ $(i=1,2,\cdots,n)$ bzw. die 1-Koketten \bar{B}_i $(i=1,2,\cdots,n)$ von $\mathbb Q/\mathfrak o$ über $\overline{\mathbb R}_{m_0}$. Da nach Voraussetzung

$$f^* \equiv \partial g^* \mod \mathfrak{P}^{*m}$$

ist, so erhält man aus (3.1);

$$f^*(X, Y) = \sum_{i=1}^n \bar{A}_i(X, Y) W_i^* \equiv \sum_{i=1}^n \{ Y \bar{B}_i(X) + X \bar{B}_i(Y) - \bar{B}_i(XY) \} W_i^* \mod \mathfrak{P}^{*m};$$

hieraus folgen sofort die Kongruenzen:

$$\bar{A}_i(X, Y) \equiv \partial \bar{B}_i(X, Y) \mod \overline{\Re}^{m_0} \quad (i = 1, 2, \dots, n).$$

Also gilt nach (3.1):

$$f^* = \sum_{i=1}^n W_i^* \partial \bar{B}_i \qquad \text{mod } \mathfrak{P}^{*n}.$$

Ferner ist $g^* = \sum_{i=1}^n W_i^* \bar{B}_i$.

Der \mathbb{O}^* -Modul $B_m^{*(2)}$ der 2-Koränder aller 1-Kokette von \mathbb{O}/\mathfrak{o} über \mathbb{R}_m^* ist also gleich der Multiplikatorenbereicherweiterung des $\overline{\mathbb{O}}$ -Moduls $\overline{B}_{m_o}^{(2)}$ zu \mathbb{O}^* , wo $\overline{B}_{m_o}^{(2)}$ die Gesamtheit der 2-Koränder aller 1-Koketten von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_{m_o}$ bezeichnet. Ebenso sieht man sofort ein, daß der \mathbb{O}^* -Modul $B_{n_o}^{*(2)}$ der 2-Koränder aller normalen 1-Koketten von \mathbb{O}/\mathfrak{o} über \mathbb{R}_m^* die Multiplikatorenbereicherweiterung von $\overline{B}_{\mathfrak{o},m_o}^{(2)}$ zu \mathbb{O}^* ist, wo $\overline{B}_{\mathfrak{o},m_o}^{(2)}$ die Gesamtheit der 2-Koränder aller normalen 1-Koketten von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_{m_o}$ bezeichnet.

Nun seien \bar{C}_1 , \bar{C}_2 , ..., \bar{C}_r beliebig endlich viele 2-Kohomologieklassen aus $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{M}}_{m_0}) = \bar{Z}_{m_0}^{(2)}/\bar{B}_{m_0}^{(2)}$. Dann greifen wir aus jedem \bar{C}_i $(1 \leq i \leq r)$ irgendeinen 2-Kozyklus \bar{f}_i heraus. Für ein beliebiges Elementsystem A_i^* , A_2^* , ..., A_r^* aus \mathbb{O}^* gehört $\sum_{i=1}^r A_i^* \bar{f}_i$ irgendeiner 2-Kohomologieklasse C^* aus $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathbb{M}_m^*)$ an. Dabei ist C^* durch die \bar{C}_i und A_i^* (i=1,2,...,r) eindeutig bestimmt, aber unabhängig von der Wahl der 2-Kozyklen \bar{f}_i aus den \bar{C}_i (i=1,2,...,r). Wir wollen daher einfach

$$C^* = \sum_{i=1}^r A_i^* \bar{C}_i$$

setzen und C^* die durch die A_i^* und \bar{C}_i ($i=1,2,\cdots,r$) erzeugte 2-Kohomologieklasse von \mathbb{O}/v über \mathbb{N}_m^* nennen. Offenbar bildet die Gesamtheit aller durch die Elemente aus \mathbb{O}^* und durch die 2-Kohomologieklassen aus $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{N}}_{m_0})$ erzeugten 2-Kohomologieklassen von \mathbb{O}/v über \mathbb{N}_m^* einen \mathbb{O}^* -Untermodul von $H^{(2)}(\mathbb{O}/v;\mathbb{N}_m^*)$; dieser \mathbb{O}^* -Untermodul heiße die Multiplikatorenbereicherweiterung von $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{N}}_{m_0})$ zu \mathbb{O}^* . Mit Rücksicht von (3. 2) und (3. 4) überzeugt man sich leicht, daß $H^{(2)}(\mathbb{O}/v;\mathbb{N}_m^*)$ mit der Multiplikatorenbereicherweiterung von $H^{(2)}(\mathbb{O}/v;\overline{\mathbb{N}}_{m_0})$ zu \mathbb{O}^* übereinstimmt. Ebenso kann man auch bestätigen, daß die normale 2-Kohomologiegruppe $H^{(2)}_o(\mathbb{O}/v;\mathbb{N}_m^*)$ mit der Multiplikatorenbereicherweiterung der normalen 2-Kohomologiegruppe $H^{(2)}_o(\mathbb{O}/v;\overline{\mathbb{N}}_{m_0})$ zu \mathbb{O}^* übereinstimmt.

Hilfssatz 4. Die 2-Kohomologiegruppe $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*)$ bzw. die

normale 2-Kohomologiegruppe $H_0^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\mathfrak{R}_m^*)$ ist die Multiplikatorenbereicherweiterung der 2-Kohomologiegruppe $H^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_{m_o})$ bzw. der normalen 2-Kohomologiegruppe $H_0^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_{m_o})$ von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_{m_o}$. Dabei ist $m=m_0$ e gesetzt.

Nun setzen wir voraus, daß die 2-Kohomologiegruppe $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*)$ eine endliche \mathbb{O}^* -Basis C_1^* , C_2^* , ..., C_r^* besitzt, wo wieder $m_0e = m$ gesetzt ist, und wir greifen aus jedem C_i^* $(1 \le i \le r)$ einen 2-Kozyklus f_i^* heraus. Nach (3. 2) existieren dann endlich viele 2-Kozyklen $\bar{f}_{i,1}$, $\bar{f}_{i,2}$, ..., $\bar{f}_{i,n}$ von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_{m_0}$, für welche die Gleichung

$$f_i^* = \sum_{\nu=1}^n W_{\nu}^* \bar{f}_{i,\nu}$$

gilt. Ist nun \bar{f} ein 2-Kozyklus von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_{m_o}$, so ist die \bar{f} enthaltende 2-Kohomologieklasse $C^*(\overline{f})$ von \mathbb{O}/\mathfrak{o} über \mathbb{R}_m^* sicher von der Form:

(3.5)
$$C^*(\bar{f}) = \sum_{i=1}^r A_i C_i^*,$$

wo die A_i^* ($i=1, 2, \dots, r$) Elemente aus \mathfrak{O}^* bezeichnen. Setzt man dabei

$$A_i^* = \sum_{\nu=1}^i \bar{B}_{i\nu} W_{\nu}^* \qquad (\bar{B}_{i\nu} \in \mathbb{Q}, i = 1, 2, \dots, r),$$

so folgt aus (3.5):

$$\bar{f} = \sum_{i=1}^{r} (\sum_{\nu=1}^{n} \bar{B}_{i\nu} W_{\nu}^{*}) f_{i}^{*} \sim 0$$
 (\$\Psi^{*n}\$);

d. h. es gilt:

$$\bar{f} - \sum_{i=1}^{r} (\sum_{\nu=1}^{n} \bar{B}_{\nu i} W_{\nu}^{*}) (\sum_{\mu=1}^{n} W_{\mu}^{*} \bar{f}_{i,\mu}) \sim 0$$
 (\$\Psi^{*m}\$).

Setzt man dabei $W_{\mu}^*W_{\nu}^* = \sum_{r=1}^n \bar{C}_{\mu\nu\tau} W_{\tau}^*$, so erhält man ohne weiteres:

$$\bar{f} - \sum_{i=1}^{n} \sum_{\mu,\nu=1}^{n} \bar{B}_{i\nu} \bar{C}_{\mu\nu 1} f_{i,\mu} \sim 0$$
 $(\overline{\mathfrak{P}}^{m_0}),$

weil \bar{f} ein 2-Kozyklus von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_{m_o}$ und $W_1^*=1$ ist. Wenn man also mit $\bar{C}(\bar{f}_{i,\nu})$ die $\bar{f}_{i,\nu}$ enthaltende 2-Kohomologieklasse von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_{m_o}$ bezeichnet, so ist die \bar{f} enthaltende 2-Kohomologieklasse $\bar{C}(\bar{f})$ von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_{m_o}$ von der Form :

$$\bar{C}(\bar{f}) = \sum_{i=1}^{r} \sum_{\nu=1}^{u} \bar{A}_{i\nu} \bar{C}(\bar{f}_{i,\nu}) \qquad (\bar{A}_{i\nu} \in \mathbb{O});$$

d. h. die 2-Kohomologieklassen $\bar{C}(\bar{f}_{i,\nu})$ $(i=1,2,\cdots,r; \nu=1,2,\cdots,n)$ sind ein Erzeugendsystem von $H^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{R}}_{m_0})$. Da $H^{(2)}(\mathbb{O}/\mathfrak{o};\mathbb{R}_m^*)$ kein Nullmodul und die Multiplikatorenbereicherweiterung von $H^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{R}}_{m_0})$ zu \mathbb{O}^* ist, so ist $H^{(2)}(\mathbb{O}/\mathfrak{o};\mathbb{R}_{m_0})$ auch kein Nullmodul. Also besitzt $H^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{R}}_{m_0})$ eine endliche $\overline{\mathbb{O}}$ -Basis $\overline{C}_1,\overline{C}_2,\cdots,\overline{C}_s$, weil $\overline{\mathbb{O}}$ euklidischer

Ring ist¹⁾. Es ist klar, das die \bar{C}_i ($i=1,2,\dots,s$) ein Erzeugendsystem von $H^{(2)}(\mathfrak{D}/\mathfrak{o};\mathfrak{R}_m^*)$ bilden.

Nun bestehe für Elemente $A_1^*, A_2^*, \dots, A_s^*$ aus \mathbb{O}^* die Gleichung

$$(3.6) A_1 * \bar{C}_1 + A_2 * \bar{C}_2 + \cdots + A_s * \bar{C}_s = 0$$

in $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \mathfrak{R}_m^*)$. Greift man dann aus jedem \bar{C}_i $(1 \le i \le s)$ einen beliebigen 2-Kozyklus \bar{f}_i heraus, so gilt nach (3.6)

$$\sum_{\nu=1}^{n} W_{\nu}^{*}(\sum_{i=1}^{n} \bar{A}_{i\nu} \bar{f}_{i}) \sim 0 \qquad (\mathfrak{P}^{*n}),$$

wo $A_i^* = \sum_{\nu=1}^n \bar{A}_{i\nu} W_{\nu}^*$ $(i=1,2,\cdots,s;\bar{A}_{i\nu} \in \overline{\mathbb{Q}})$ gesetzt sind. Hieraus schließt man ohne weiteres, daß für jedes ν mit $1 \leq \nu \leq n$

$$\sum_{i=1}^{n} \overline{A}_{i\nu} \overline{f}_{i} \sim 0 \qquad (\overline{\mathfrak{P}}^{m_0});$$

d. h. es gilt in $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_{m_a})$ die Gleichung:

$$\sum_{i=1}^s \bar{A}_{i\nu}\bar{C}_i = 0.$$

Da aber $\bar{C}_1, \bar{C}_2, \dots, \bar{C}_s$ eine O-Basis von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_{m_0})$ bilden, so müssen $\bar{A}_i, \bar{C}_i = 0$ $(i = 1, 2, \dots, s; \nu = 1, 2, \dots, n)$ sein; d. h. aus der Gleichung (3.6) ergeben sich

$$A_1 * \bar{C}_1 = A_2 * \bar{C}_2 = \cdots = A_s * \bar{C}_s = 0.$$

Daher bilden $\bar{C}_1, \bar{C}_2, \dots, \bar{C}_s$ auch eine \mathfrak{D}^* -Basis von $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \mathfrak{R}_m^*)$. Den bisher durchgeführten Beweis kann man auch auf die normalen 2-Kohomologiegruppen $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}; \mathfrak{R}_m^*)$ und $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_{m_o})$ anwenden. Somit ist bewiesen:

Satz 2. Wenn die (normale) 2-Kohomologiegruppe $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*)$ $(H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*))$ endliche \mathbb{O}^* -Basis besitzt, so besitzt $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_{m_0})$ $(H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_{m_0}))$ auch endliche $\overline{\mathbb{O}}$ -Basis. Ferner bildet eine endliche $\overline{\mathbb{O}}$ -Basis von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_{m_0})$ $(H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_{m_0}))$ stets eine \mathbb{O}^* -Basis von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*)$ $(H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*))$.

Bemerkung. Es sei \overline{C} eine 2-Kohomologieklasse aus $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{R}}_{m_o})$ mit \overline{l} als $\overline{\mathbb{O}}$ -Länge. Gilt dann für ein Element A^* aus \mathbb{O}^* die Gleichung

$$A*\bar{C} = 0$$

in $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_{m}^{*})$, so besteht für einen beliebigen 2-Kozyklus \overline{f} von \mathbb{O}/\mathfrak{o} über \mathfrak{R}_{m_0} aus \overline{C} :

$$A^*\bar{f} \sim 0 \qquad (\mathfrak{P}^{*m}).$$

¹⁾ Vgl. etwa Van der Waerden, Moderne Algebra, II. Teil, Berlin (1940), § 109, S. 112-117.

Setzt man dabei $A^* = \sum_{i=1}^n \bar{A}_i W_i^*$, so erhält man aus der obigen Kohomologierelation:

$$\bar{A}_1 \bar{f} \sim \bar{A}_2 \bar{f} \sim \cdots \sim \bar{A}_n \bar{f} \sim 0$$
 $(\overline{\mathfrak{P}}^{m_p}).$

Bezeichnet also $\overline{\mathbb{C}}$ das annullierende Ideal von \overline{C} aus $\overline{\mathbb{D}}$, so sind

$$\bar{A}_i \in \overline{\mathbb{G}}$$
 $(i = 1, 2, \cdots, n);$

hieraus folgt sofort: $A^* \in \mathbb{C}\mathfrak{D}^*$. Dies besagt aber, daß das annullierende Ideal von \bar{C} aus \mathfrak{D}^* eine Teilmenge von $\mathbb{C}\mathfrak{D}^*$ ist. Da das Ideal $\mathbb{C}\mathfrak{D}^*$ offenbar \bar{C} annulliert, so ist $\mathbb{C}\mathfrak{D}^*$ mit dem annullierenden Ideal von \bar{C} identisch, wenn man \bar{C} als 2-Kohomologieklasse aus $H^{(2)}(\mathbb{D}/\mathfrak{D}; \mathfrak{R}^*_m)$ auffaßt. Also ist die \mathbb{D}^* -Länge von \bar{C} gleich $\bar{l}e$.

Kapitel II. Struktur der 2-Kohomologiegruppen in diskret bewerteten perfekten Körpern.

Es sei k wieder ein diskret bewerteter perfekter Körper mit $\mathfrak o$ als Hauptordnung; ferner sei $k=K_0\subset K_1\subset\cdots\subset K_s=K$ eine Körperfolge, in der jedes K_i ($1\leq i\leq s$) über k endlich-separabel ist. Wir bezeichnen dann mit $\mathfrak O_i$ die Hauptordnung von K_i ; insbesondere sind $\mathfrak O_i=\mathfrak o$ und $\mathfrak O_s=\mathfrak O$ gesetzt. Dabei heißt die Folge der Hauptordnungen

$$\mathfrak{D}_0 \subset \mathfrak{D}_1 \subset \cdots \subset \mathfrak{D}_s$$

normal, wenn für jedes i $(1 \le i \le s)$ \mathbb{O}_i aus \mathbb{O}_{i-1} durch Ringadjunktion eines Elementes θ_i entsteht $\mathbb{O}_i = \mathbb{O}_{i-1}[\theta_i]$. Ist nun $\varphi_{i-1}(\Xi)$ das Minimalpolynom von θ_i in K_{i-1} , so gehören die Koeffizienten von $\varphi_{i-i}(\Xi)$ alle zu \mathbb{O}_{i-1} , weil θ_i in bezug auf \mathbb{O}_{i-1} ganz ist; der Grad n_i von $\varphi_{i-1}(\Xi)$ in bezug auf Ξ ist offenbar der Rang von \mathbb{O}_i über \mathbb{O}_{i-1} , und das Elementsystem 1, θ_i , ..., $\theta_i^{n_i-1}$ bildet eine Minimalbasis von \mathbb{O}_i über \mathbb{O}_{i-1} . Weil K_i über k separabel ist, so ist $\varphi_{i-1}(\Xi)$ ein separables Polynom aus $\mathbb{O}_{i-1}[\Xi]$. Wenn man also die Ableitung von $\varphi_{i-1}(\Xi)$ nach Ξ mit $\varphi'_{i-1}(\Xi)$ bezeichnet, so ist das Hauptideal $(\varphi'_{i-1}(\theta_i))$ aus \mathbb{O}_i gleich der Differente von K_i über $K_{i-1}^{(1)}$.

Die Hauptordnung $\mathfrak D$ einer endlich-separablen Erweiterung K über k heiße normal über $\mathfrak D$, wenn es eine normale Folge der Hauptordnungen mit $\mathfrak D$ bzw. $\mathfrak D$ als dem Anfangs- bzw. Endglied gibt. Wenn insbesondere $\mathfrak D = \mathfrak D[\theta]$ ist, so heiße $\mathfrak D$ einfach normal über $\mathfrak D$.

Wie im Kap. I bezeichnen wir in diesem Kapitel mit \$\overline{B}\$ durchweg das

¹⁾ Vgl. etwa E. Artin, Algebraic numbers and algebraic functions (1950), S. 92.

nicht-triviale Primideal aus dem Oberring $\overline{\mathbb{O}}^{1)}$ von \mathbb{O} , welcher die Hauptordnung einer endlich-separablen Erweiterung \overline{K} über K bildet. In diesem Kapitel wollen wir die Struktur der 2-Kohomologiegruppen $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{O}}/\overline{\mathfrak{F}}^m)$ und $H^{(2)}_{\mathfrak{o}}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{O}}/\overline{\mathfrak{F}}^m)$ bestimmen.

§ 4. Struktur der 2-Kohomologiegruppen mit einfach normaler Hauptordnung als Definitionsbereich.

 $\mathbb O$ sei eine einfach normale Hauptordnung über $\mathfrak o$ und θ ein primitives Element von $\mathbb O$ über $\mathfrak o: \mathbb O = \mathfrak o[\mathfrak o]$. Ferner sei $\varphi(\mathcal E)$ das Minimalpolynom von θ in $\mathfrak o$ und n der Rang von $\mathbb O$ über $\mathfrak o$. Dann betrachten wir die 2-Kohomologiegruppen $H^{(2)}(\mathbb O/\mathfrak o; \overline{\mathfrak R}_m)$ und $H^{(2)}_{\mathfrak o}(\mathbb O/\mathfrak o; \overline{\mathfrak R}_m)$, wo $\overline{\mathfrak R}_m$ den Restklassenring von $\overline{\mathbb O}$ nach $\overline{\mathfrak P}^m$ bezeichnet. Wie ich schon anderswo bewiesen habe, enthält jede 2-Kohomologieklasse von $\mathbb O/\mathfrak o$ über $\overline{\mathfrak R}_m$ sicher einen θ -normierten 2-Kozyklus f über $\mathfrak o$; d. h. f besitzt folgende Eigenschaft²⁾:

Für ein beliebiges Element x aus v gelten

i)
$$f(x, \theta^i) \equiv 0 \mod \overline{\mathfrak{P}}_m (i = 0, 1, \dots, n-1)$$
 and

ii)
$$f(x^{\eta}, \theta^i) \equiv 0 \mod \overline{\mathfrak{P}}^m$$
 $(i = 0, 1, \dots, n-2).$

Man verifiziert nach i) leicht, daß f über v normal ist. Ferner ist f durch den Wert $f(\theta, \theta^{n-1})$ mod $\overline{\mathfrak{P}}^m$ eindeutig bestimmt³⁾.

Nun sei außerdem vorausgestzt, daß der obige θ -normierte 2-Kozyklus f zur Null kohomolog ist. Dann existiert nach dem in §1.2 Gezeigten eine normale 1-Kokette g von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ mit $f \equiv \partial g \mod \overline{\mathfrak{P}}^m$; es folgen also aus ii) ohne weiteres:

$$g(x\theta^i) \equiv ix\theta^{i-1}g(\theta) \mod \overline{\mathfrak{P}}^m (x \in 0, i = 1, 2, \dots, n-1).$$

Setzt man dabei $f(\theta, \theta^{n-1}) = \mu$, so gilt offenbar folgende Kongruenz:

$$\varphi'(\theta)g(\theta) \equiv \delta g(\theta, \theta^{n-1}) \equiv f(\theta, \theta^{n-1}) = \mu \mod \overline{\mathfrak{P}}^m,$$

wo $\varphi'(\Xi)$ die Ableitung von $\varphi(\Xi)$ nach Ξ bezeichnet.

Umgekehrt sei für ein Element μ aus $\overline{\mathbb{O}}$ die Kongruenz

$$\varphi'(\theta) \vec{\Xi} \equiv \mu \qquad \mod \widehat{\mathfrak{P}}^m$$

in $\overline{\mathbb{Q}}$ lösbar. Ist dann λ eine Lösung der obigen Kongruenz aus $\overline{\mathbb{Q}}$, so setze man für ein beliebiges Element $\sum_{i=0}^{n-1} x_i \mathcal{I}^i$ $(x_i \in 0, i = 0, 1, \dots, n-1)$:

$$g(\sum_{i=0}^{n-1} x_i \theta^i) = \sum_{i=1}^{n-1} i x_i \theta^{i-1} \lambda.$$

^{1) 5} kann eventuell mit D übereinstimmen.

^{2), 3)} Vgl. M II, Satz 3.

Dann definiert g offenbar eine normale 1-Kokette von \mathbb{O}/\mathfrak{o} über $\overline{\Re}_m$ mit $g(\theta) = \lambda$. Wegen der Gleichung $\varphi(\theta) = 0$ beweist man ohne Schwierigkeit, daß ∂g ein θ -normierter 2-Kozyklus von \mathbb{O}/\mathfrak{o} über $\overline{\Re}_m$ mit $g(\mathfrak{o}, \theta^{n-1}) \equiv \mu$ mod $\overline{\mathfrak{P}}^m$ ist. Somit ist bewiesen:

Hilfssatz 5. Ein θ -normierter 2-Kozyklus f von \mathbb{Q}/\mathfrak{d} über $\overline{\mathbb{R}}_m$ ist dann und nur dann mod $\overline{\mathfrak{P}}^m$ zur Null kohomolog, wenn die Kongruenz

$$\varphi'(\theta)\bar{z} \equiv f(\theta, \theta^{n-1}) \mod \overline{\mathfrak{P}}^m$$

in $\overline{\mathbb{D}}$ lösbar ist. Ist ferner λ eine Lösung der obigen Kongruenz aus $\overline{\mathbb{D}}$, so existiert eine normale 1-Kokette g von \mathbb{D}/\mathfrak{o} über $\overline{\mathbb{M}}_m$ mit $g(\theta) = \lambda$, so $da\beta$

$$f \equiv \delta g \mod \overline{\mathfrak{P}}^m$$

ist.

Es ist bereits bewiesen worden, daß es einen θ -normierten 2-Kozyklus f_0 von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ mit $f_0(\theta,\theta^{n-1})=1$ gibt¹⁾. Dann läßt sich ein beliebiger θ -normierter 2-Kozyklus von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ mod $\overline{\mathfrak{P}}^m$ als das Produkt aus f_0 und einem geeigneten Element aus $\overline{\mathfrak{O}}$ darstellen. Da jede 2-Kohomologieklasse aus $H^{(\mathbb{O})}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$ mindestens einen θ -normierten 2-Kozyklus von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ enthält, so ist $H^{(\mathbb{O})}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$ sicher ein zyklischer $\overline{\mathfrak{O}}$ -Modul, welcher die f_0 enthaltende 2-Kohomologieklasse \overline{C}_0 als eine erzeugende Klasse besitzt. Dabei bestätigt man leicht, daß das annullierende Ideal von \overline{C}_0 nach Hilfssatz 5 gleich $(\overline{\mathfrak{P}}^m,(\varphi'(\theta)))$ ist. Es gilt also folgende $\overline{\mathfrak{O}}$ -Isomorphierelation:

$$\overline{\mathbb{Q}}/(\overline{\mathfrak{P}}^m, (\varphi'(\theta))) \cong H^{(2)}(\mathbb{Q}/\mathfrak{o}; \overline{\mathfrak{R}}_m).$$

Bezeichnet nun u den \mathfrak{P} -Exponenten von $(\overline{\mathfrak{P}}^m, (\varphi'(\theta)))$, so ist die $\overline{\mathfrak{D}}$ -Länge von $\overline{\mathfrak{D}}/(\overline{\mathfrak{P}}^m, (\varphi'(\theta)))$, also auch von $H^{(2)}(\mathfrak{D}/\mathfrak{v}; \overline{\mathfrak{R}}_m)$ gleich u. Somit ist bewiesen:

Satz 3. \square sei die Hauptordnung einer endlich-separablen Erweiterung K über k. Ferner sei \square einfach normal über \square . Dann ist die 2-Kohomologiegruppe $H^{(2)}(\mathbb{D}/\mathbb{O}; \overline{\mathbb{R}}_m)$ bzw. die normale 2-Kohomologiegruppe $H_0^{(2)}(\mathbb{D}/\mathbb{O}; \overline{\mathbb{R}}_m)$ von \mathbb{D}/\mathbb{O} über $\overline{\mathbb{R}}_m$ ein zyklischer $\overline{\mathbb{D}}$ -Modul. Ferner ist die $\overline{\mathbb{D}}$ -Länge von $H^{(2)}(\mathbb{D}/\mathbb{O}; \overline{\mathbb{R}}_m)$ bzw. $H_0^{(2)}(\mathbb{D}/\mathbb{O}; \overline{\mathbb{R}}_m)$ gleich dem $\overline{\mathbb{P}}$ -Exponenten von $(\overline{\mathbb{P}}^m, (\varphi'(\mathfrak{f})))$. Ist insbesondere $\overline{\mathbb{P}}^m$ durch $(\varphi'(\mathfrak{f}))$ teilbar, so ist $H^{(2)}(\mathbb{D}/\mathbb{O}; \overline{\mathbb{R}}_m)$ bzw. $H_0^{(2)}(\mathbb{D}/\mathbb{O}; \overline{\mathbb{R}}_m)$ ein zyklischer $\overline{\mathbb{D}}$ -Modul mit dem $\overline{\mathbb{P}}$ -Exponenten der $\overline{\mathbb{D}}$ -Ifferente von K/k als $\overline{\mathbb{D}}$ -Länge.

Wir betrachten nun einen Spezialfall, da3 $\overline{\mathfrak{D}}$ mit \mathfrak{D} übereinstimmt:

¹⁾ Vgl. M II, Satz 3

Bezeichnet man dann mit $\mathfrak P$ das nicht-triviale Primideal aus $\mathfrak D$, so gilt folgender

Zusatz zu Satz 3. $H^{(2)}(\mathbb{O}/\mathfrak{v}; \mathbb{O}/\overline{\mathfrak{P}}^m)$ bzw. $H^{(2)}(\mathbb{O}/\mathfrak{v}; \mathbb{O}/\mathfrak{P}^m)$ ist zyklischer \mathbb{O} -Modul. Ist dabei \mathfrak{P}^m durch $(\varphi'(\theta))$ teilbar, so ist die \mathbb{O} -Länge von $H^{(2)}(\mathbb{O}/\mathfrak{v}; \mathbb{O}/\mathfrak{P}^m)$ bzw. $H^{(2)}(\mathbb{O}/\mathfrak{v}; \mathbb{O}/\mathfrak{P}^m)$ stets gleich dem \mathfrak{P} -Exponenten der Differente von K/k^1 .

§ 5. Struktur der 2-Kohomologiegruppen mit nomaler Hauptordnung als Definitionsbereich.

In diesem Paragraphen sei die Hauptordnung $\mathbb O$ einer endlich-separablen Erweiterung über k durchweg normal über $\mathfrak o$, und $\mathfrak o = \mathbb O_{\mathfrak o} \subset \mathbb O_{\mathfrak o} = \mathbb O$ sei eine normale Folge der Hauptordnungen, wo $\mathbb O_{\mathfrak o} = \mathbb O_{\mathfrak o-1}[\theta_{\mathfrak o}]$ ($\mathfrak i = 1, 2, \cdots, s$) gesetzt sind. Ferner bezeichne $\overline{\mathbb R}_{\mathfrak m}$ den Restklassenring von $\overline{\mathbb O}$ nach $\overline{\mathbb R}^{\mathfrak m}$. Zu einem beliebigen 2-Kozyklus $f^{(\mathfrak i-1)}$ von $\mathbb O_{\mathfrak o-1}/\mathfrak o$ ($\mathfrak i \geq 1$) über $\overline{\mathbb R}_{\mathfrak m}$ existiert dann ein über $\mathbb O_{\mathfrak o-1}$ $\theta_{\mathfrak o}$ -normierter 2-Kozyklus von $\mathbb O_{\mathfrak o}/\mathfrak o$ über $\overline{\mathbb R}_{\mathfrak m}$, welcher eine Fortsetzung von $f^{(\mathfrak o-1)}$ auf $\mathbb O_{\mathfrak o}/\mathfrak o$ ist $\mathfrak o$). Mit Hilfe der vollständigen Induktion beweist man ohne Schwierigkeit die Existenz einer Fortsetzung f von $f^{(\mathfrak o-1)}$ auf $\mathbb O/\mathfrak o$ mit folgender Eigenschaft:

Für jedes j mit $i \leq j \leq s$ gelten

i)
$$f(x^{(j-1)}, \theta_j^{\nu}) \equiv 0 \mod \overline{\mathfrak{P}}^m (\nu = 0, 1, \dots, n_j - 1)$$

und

ii)
$$f(x^{(j-1)}\theta_j, \theta_j^{\nu}) \equiv 0 \mod \overline{\mathfrak{P}}^m (\nu = 0, 1, \dots, n_j - 2)^3$$
,

wo $x^{(j-1)}$ ein beliebiges Element aus \mathbb{O}_{j-1} und n_j den Rang von \mathbb{O}_j über \mathbb{O}_{j-1} bezeichnet. Wie in §4 bemerkt ist, gibt es einen über \mathbb{O}_{t-1} θ_{t-1} normierten 2-Kozyklus $h_{t,t-1}$ von $\mathbb{O}_t/\mathbb{O}_{t-1}$ über $\overline{\mathbb{M}}_m$ mit $h_{t,t-1}(\theta_t, \theta_t^{n_t-1}) = 1$. Daher existiert eine Fortsetzung h_{t-1} von $h_{t,t-1}$ auf $\mathbb{O}/\mathbb{O}_{t-1}$ mit folgender Eigenschaft:

Für jedes j mit $i \leq j \leq s$ gelten

- i) $h_{i-1}(x^{(j-1)}, \theta_j^{\nu}) \equiv 0 \mod \mathfrak{P}^{n} (\nu = 0, 1, \dots, n_j 1),$
- ii) $h_{i-1}(x^{(j-1)}\theta_j, \theta_j^{\nu}) \equiv 0 \mod \mathfrak{P}^m (\nu = 0, 1, \dots, n_j 2)$

und

iii)
$$h_{i-1}(\theta_i, \theta_i^{n_i-1}) = 1, h_{i-1}(\theta_j, \theta_j^{n_j-1}) = 0 \quad (j > i).$$

Dabei bezeichnet $x^{(j-1)}$ ein beliebiges Element aus \mathfrak{O}_{j-1} und n_j den Rang von \mathfrak{O}_j über \mathfrak{O}_{j-1} .

¹⁾ Y. Kawada, On the derivations in number fields, Ann. Math., Vol. 54 (1952), S. 310-314.

²⁾ M II. Satz 3.

³⁾ Für jedes j mit $s \ge j \ge i$ kann man dem $f(\theta_j, \theta_j^{\alpha_j j^{-1}})$ einen beliebigen Wert aus $\bar{\mathfrak{D}}$ angeben.

Ein 2-Kozyklus f von $\mathbb{O}/\mathbb{O}_{i-1}$ über $\overline{\mathbb{R}}_m$, welcher die folgende Eigenschaft (5. 1) besitzt, heiße *ausgezeichnet über* \mathbb{O}_{i-1} :

$$(5.1) f(\mathbf{x}^{(j-1)}, \theta_j^{\nu}) \equiv 0 \quad \text{mod } \overline{\mathfrak{P}}^m \quad (\nu = 0, 1, \dots, n_j - 1),$$

$$f(\mathbf{x}^{(j-1)}\theta_j, \theta_j^{\nu}) \equiv 0 \quad \text{mod } \overline{\mathfrak{P}}^m \quad (\nu = 0, 1, \dots, n_j - 2),$$

wo $i \le j \le s$, $x^{(j-1)} \in \mathbb{O}_{j-1}$ und n_j der Rang von \mathbb{O}_j über \mathbb{O}_{j-1} ist.

Nach dem oben Gezeigten ist bewiesen:

Hilfssatz 6. Es existiert zu jedem Index i mit $1 \le i \le s$ ein über \mathbb{D}_{i-1} ausgezeichneter 2-Kozyklus h_{i-1} von $\mathbb{D}/\mathbb{D}_{i-1}$ über $\overline{\mathbb{R}}_m$ mit $h_{i-1}(\theta_i, \theta_i^{n_i-1}) = 1$ und $h_{i-1}(\theta_j, \theta_j^{n_j-1}) = 0$ $(i < j \le s)$. Dabei bezeichnet n_q den Rang von \mathbb{D}_q über \mathbb{D}_{q-1} $(i \le q \le s)$.

Ferner gilt folgender

Hilfssatz 7. Ist ein 2-Kozyklus f von $\mathbb{O}/\mathbb{O}_{i-1}$ $(1 \leq i \leq s)$ über $\overline{\mathbb{R}}_m$ ausgezeichnet über \mathbb{O}_{i-1} , so ist f normal über \mathbb{O}_{i-1} ; d.h. für ein beliebiges Element $x^{(i-1)}$ bzw. X aus \mathbb{O}_{i-1} bzw. \mathbb{O} gilt stets:

$$f(x^{(i-1)}, X) \equiv 0 \mod \overline{\mathfrak{P}}^m$$
.

Beweis. Es ist klar, daß die Elemente

$$\theta_i^{\nu_i}\theta_{i+1}^{\nu_{i+1}}\cdots\theta_s^{\nu_s}$$
 $(\nu_j=0,1,\cdots,n_j-1;\ j=i,i+1,\cdots,s)$

eine Minimalbasis von $\mathfrak O$ über $\mathfrak O_{i-1}$ bilden, wo für jedes j n_j den Rang von $\mathfrak O_j$ über $\mathfrak O_{j-1}$ bezeichnet. Dann ist ein Element X aus $\mathfrak O$ von der Form

$$X = \sum c(\nu_i, \nu_{i+1}, \cdots, \nu_s) j_i^{\nu_i} j_{i+1}^{\nu_{i+1}} \cdots \theta_s^{\nu_s}$$

mit den Koeffizienten $c(\nu_i, \nu_{i+1}, \dots, \nu_s)$ aus \mathfrak{D}_{i-1} . Um also die Kongruenz $f(x^{(i-1)}, X) \equiv 0 \mod \mathfrak{P}^m$ zu beweisen, genügt zu zeigen, daß für jedes Zahlensystem $(\nu_i, \nu_{i+1}, \dots, \nu_s)$ stets

$$f(\mathbf{x}^{(i-1)}, c(\nu_i, \nu_{i+1}, \dots, \nu_s)\theta_i^{\nu_i}\theta_{i+1}^{\nu_{i+1}}\dots\theta_s^{\nu_s}) \equiv 0 \mod \mathfrak{P}^m$$

erfüllt ist.

Weil die Einschränkung von f auf $\mathbb{O}_i/\mathbb{O}_{i-1}$ über \mathbb{O}_{i-1} θ_i -normiert ist, so ist die Einschränkung von f auf $\mathbb{O}_i/\mathbb{O}_{i-1}$ ein normaler 2-Kozyklus von $\mathbb{O}_i/\mathbb{O}_{i-1}$ über $\overline{\mathbb{M}}_m$. Wir nehmen also an, daß die Einschränkung von f auf $\mathbb{O}_{s-1}/\mathbb{O}_{i-1}$ ein normaler 2-Kozyklus von $\mathbb{O}_{s-1}/\mathbb{O}_{i-1}$ über $\overline{\mathbb{M}}_m$ ist; also gilt für ein beliebiges Element $x^{(i-1)}$ bzw. $x^{(s-1)}$ aus \mathbb{O}_{i-1} bzw. \mathbb{O}_{s-1} stets:

$$f(x^{(i-1)}, x^{(s-1)}) \equiv 0 \mod \overline{\mathfrak{P}}^m$$
.

Da das Element $c(\nu_i, \nu_{i+1}, \dots, \nu_s) \theta_i^{\gamma_i} \theta_{i+1}^{\gamma_{i+1}} \dots \theta_{s-1}^{\gamma_{s-1}}$ ersichtlich zu \mathbb{O}_{s-1} gehört,

so bezeichnen wir der Einfachheit halber dieses Element mit $x^{(s-1)}$. Dann gilt offenbar:

$$\begin{array}{l}
x^{(l-1)}f(x^{(s-1)}, \theta_s^{\nu_s}) + f(x^{(l-1)}, c(\nu_l, \nu_{l+1}, \dots, \nu_s)\theta_t^{\nu_l}\theta_{l+1}^{\nu_{l+1}} \dots \theta_s^{\nu_s}) \\
\equiv f(x^{(l-1)}x^{(s-1)}, \theta_s^{\nu_s}) + \theta_s^{\nu_s}f(x^{(l-1)}, x^{(s-1)}) \quad \text{mod } \overline{\mathfrak{A}}^m.
\end{array}$$

Da f über \mathfrak{O}_{s-1} θ_s -normiert ist, so sind

$$f(x^{(s-1)}, \theta_s^{y_s}) \equiv 0$$
 und $f(x^{(s-1)}, \theta_s^{y_s}) \equiv 0$ mod $\overline{\mathfrak{P}}^m$;

ferner gilt nach Annahme:

$$f(x^{(i-1)}, x^{(s-1)}) \equiv 0 \mod \overline{\mathfrak{P}}^m$$

Daher muß $f(x^{(l-1)}, c_{(1:l)}, v_{l+1}, \cdots, v_s) t_i^{\gamma_l} b_{i+1}^{\gamma_{i+1}} \cdots t_s^{\gamma_s}) \equiv 0 \mod \overline{\mathfrak{P}}^{\gamma_l}$ sein, w. z. b. w.

Wir betrachten fortdauernd die Minimalbasis

$$\theta_i^{\nu_i}\theta_{i+1}^{\nu_{i+1}}\cdots\theta_s^{\nu_s}$$
 $(\nu_j=0,1,\cdots,n_j-1;\ j=i,i+1,\cdots,s)$

von $\mathbb O$ über $\mathbb O_{i-1}$. Dann bezeichnen wir unter den Basiselementen dieser Minimalbasis die $\theta_i^{\gamma_i}$ ($\nu_i = 0, 1, \dots, n_i - 1$) bzw. mit $\mathcal Q_{\nu_i+1}^{(l)}$ und die übrigen Elemente, irgenwie numeriert, mit $\mathcal Q_{n_l+1}^{(l)}, \dots, \mathcal Q_{N_D}^{(l)}$ wo $N_i = n_i n_{l+1} \dots n_s$ gesetzt ist. Ein beliebiges Element X aus $\mathbb O$ ist also von der Form:

$$X = \sum_{\nu=1}^{N_t} x_{\nu}^{(t-1)} Q_{\nu}^{(t)} \qquad x_{\nu}^{(t-1)} \in \mathbb{Q}_{t-1} \ (\nu = 1, 2, \dots, N_t).$$

Nun definiere man für einen beliebigen normalen 2-Kozyklus f von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ eine eindeutige Abbildung g von \mathbb{O} in $\overline{\mathbb{O}}$ auf folgende Weise:

$$g(X) = \sum_{\nu=1}^{N_1} g(x_{\nu}^{(i-1)} \mathcal{Q}_{\nu}^{(i)})$$
 und $g(x_{\nu}^{(i-1)} \mathcal{Q}_{\nu}^{(i)}) = f(x_{\nu}^{(i-1)}, \mathcal{Q}_{\nu}^{(i)}).$

Dann sicht man sofort ein, da g eine lineare Abbildung mod $\overline{\mathfrak{P}}^m$ von \mathfrak{D} in $\overline{\mathfrak{D}}$ ist. Da f ein normaler 2-Kozyklus von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ ist, so folgt für ein beliebiges Element x aus \mathfrak{o} aus der Relation

$$\begin{split} \Sigma_{\nu=1}^{N_{t}} \{ x f(x_{\nu}^{(t-1)}, \mathcal{Q}_{\nu}^{(t)}) + f(x, x_{\nu}^{(t-1)} \mathcal{Q}_{\nu}^{(t)}) \} &\equiv \sum_{\nu=1}^{N_{t}} \{ f(x x_{\nu}^{(t-1)}, \mathcal{Q}_{\nu}^{(t)}) \\ &+ \mathcal{Q}_{\nu}^{(t)} f(x, x_{\nu}^{(t-1)}) \} \mod \overline{\mathfrak{P}}^{m} : \\ x g(X) &= x \sum_{\nu=1}^{N_{t}} f(x_{\nu}^{(t-1)}, \mathcal{Q}_{\nu}^{(t)}) \equiv \sum_{\nu=1}^{N_{t}} f(x x_{\nu}^{(t-1)}, \mathcal{Q}_{\nu}^{(t)}) \\ &\equiv g(x X) \mod \overline{\mathfrak{P}}^{m}, \end{split}$$

d. h. g ist eine normale 1-Kokette von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$. Ferner ist g wegen $g(x^{(t-1)}) = g(x^{(t-1)}\mathcal{Q}_1^{(t)}) = f(x^{(t-1)}, 1) \equiv 0 \mod \overline{\mathbb{B}}^m$ $(x^{(t-1)} \in \mathbb{O}_{t-1})$ eine 1-Kokette von $\mathbb{O}/\mathbb{O}_{t-1}$ über $\overline{\mathbb{R}}_m$; daher induziert der 2-Korand ∂g von g in \mathbb{O}_{t-1} offenbar einen ausgezeichneten 2-Kozyklus von $\mathbb{O}_{t-1}/\mathfrak{o}$ über $\overline{\mathbb{R}}_m$.

Wir setzen nun

$$f' = f + \partial g$$

Dann gelten für ein beliebiges Element $x^{(i-1)}$ aus \mathfrak{D}_{i-1} :

$$\begin{split} f'(x^{(i-1)}, \, \varrho_{\nu}^{(i)}) &= f(x^{(i-1)}, \, \varrho_{\nu}^{(i)}) + \delta g(x^{(i-1)}, \, \varrho_{\nu}^{(i)}) \\ &= f(x^{(i-1)}, \, \varrho_{\nu}^{(i)}) + \varrho_{\nu}^{(i)} g(x^{(i-1)}) + x^{(i-1)} g(\varrho_{\nu}^{(i)}) - g(x^{(i-1)} \varrho_{\nu}^{(i)}) \\ &\equiv f(x^{(i-1)}, \, \varrho_{\nu}^{(i)}) - f(x^{(i-1)}, \, \varrho_{\nu}^{(i)}) \equiv 0 \quad \text{mod } \overline{\mathbb{R}}^{n} \\ &\qquad \qquad (\nu = 1, \, 2, \, \cdots, \, N_{i}), \end{split}$$

weil $g(x^{(i-1)}) \equiv 0$ und $g(\Omega_{\nu}^{(i)}) = f(1, \Omega_{\nu}^{(i)}) \equiv 0 \mod \overline{\mathfrak{P}}^m$ sind. Hier soll bemerkt werden, daß die Einschränkung von f' auf $\mathbb{O}_{i-1}/\mathfrak{o}$ über \mathfrak{o} ausgezeichnet ist, soweit die Einschränkung von f von $\mathbb{O}_{i-1}/\mathfrak{o}$ auch so ist.

Nun sei vorausgesetzt, daß für ein q mit $1 \leq q < n_i - 1$ die Kongruenzen

$$f'(x^{(i-1)}\theta_i, \theta_i^j) \equiv 0 \mod \overline{\mathfrak{P}}^m (j=0, 1, \dots, q-1)$$

erfüllt sind, wo $x^{(i-1)}$ alle Elemente aus \mathfrak{D}_{i-1} durchläuft. Dann definiere man eine 1-Kokette g' von $\mathfrak{D}/\mathfrak{o}$ über \mathfrak{F}_m durch folgende Festsetzungen:

- i) $g'(x^{(i-1)}\Omega_1^{(i)}) = g'(x^{(i-1)}) \equiv 0 \mod \overline{\mathfrak{P}}^m$.
- ii) Für jedes ν mit $2 \le \nu \le n_i$ ist $g'(x^{(i-1)} \mathcal{Q}_{\nu}^{(i)}) = g'(x^{(i-1)} \theta_i^{\nu-1}) = f'(x^{(i-1)} \theta_i, \theta_i^{\nu-2}).$
- iii) Für jedes ν mit $n_i + 1 \leq \nu \leq N_i$ ist $g'(x^{(i-1)}\mathcal{Q}_{\nu}^{(i)}) = f'(x^{(i-1)}, \mathcal{Q}_{\nu}^{(i)}).$

Nach Definition gelten offenbar für alle ν mit $\nu > n_i$ stets:

$$g'(x^{(i-1)}\mathcal{Q}_{\nu}^{(i)}) \equiv 0 \mod \overline{\mathfrak{P}}^m;$$

für jedes ν mit $2 \leq \nu < n_i$ erhält man aus der Relation

$$x^{(i-1)}f'(\mathfrak{I}_i,\,\theta_i^{\nu-2})+f'(x^{(i-1)},\,\theta_i^{\nu-1})\equiv f'(x^{(i-1)}\theta_i,\,\theta_i^{\nu-2})+\theta_i^{\nu-2}f'(x^{(i-1)},\,\theta_i)$$

$$mod \; \overline{\mathfrak{P}}^m\colon$$

$$x^{(i-1)}g'(\mathcal{Q}_{\nu}^{(i)})\equiv g'(x^{(i-1)}\mathcal{Q}_{\nu}^{(i)}) \qquad mod \; \overline{\mathfrak{T}}^m.$$

Ferner verifiziert man wie bei g, daß g' auch eine normale 1-Kokette von $\mathfrak{D}/\mathfrak{D}$ über $\overline{\mathfrak{R}}_m$ und sogar eine 1-Kokette von $\mathfrak{D}/\mathfrak{D}_{t-1}$ über $\overline{\mathfrak{R}}_m$ ist.

Setzt man nun

$$f'' = f' + \partial g',$$

so verifiziert man für jedes ν mit $1 \le \nu \le N_i$ ohne Schwierigkeit folgende Kongruenz:

$$f''(\boldsymbol{x}^{(t-1)}, \mathcal{Q}_{\boldsymbol{v}}^{(t)}) = f'(\boldsymbol{x}^{(t-1)}, \mathcal{Q}_{\boldsymbol{v}}^{(t)}) + \partial g'(\boldsymbol{x}^{(t-1)}, \mathcal{Q}_{\boldsymbol{v}}^{(t)})$$

$$\equiv f'(\boldsymbol{x}^{(t-1)}, \mathcal{Q}_{\boldsymbol{v}}^{(t)}) + \boldsymbol{x}^{(t-1)}g'(\mathcal{Q}_{\boldsymbol{v}}^{(t)}) - g'(\boldsymbol{x}^{(t-1)}\mathcal{Q}_{\boldsymbol{v}}^{(t)})$$

$$\equiv 0 \quad \text{mod } \overline{\mathfrak{P}}^{m}.$$

Aus der Relation $f''(x^{(i-1)}\theta_i, \theta_i^j) = f'(x^{(i-1)}\theta_i, \theta_i^j) + \partial g'(x^{(i-1)}\theta_i, \theta_i^j) = f'(x^{(i-1)}\theta_i, \theta_i^j) + \partial_i^j f'(x^{(i-1)}\theta_i, \theta_i^j) = f'(x^{(i-1)}\theta_i, \theta_i^j) + \partial_i^j f'(x^{(i-1)}\theta_i, \theta_i^j) = f'(x^{(i-1$

$$f''(x^{(i-1)}\theta_i, \theta_i^j) \equiv 0 \mod \overline{\mathfrak{P}}^m$$

gelten. Ferner ist klar, daß die Einschränkung von f'' auf $\mathbb{O}_{i-1}/\mathfrak{o}$ über \mathfrak{o} ausgezeichnet ist, soweit f' auch so ist. Man kann daher durch vollständige Induktion einen zu f kohomologen, normalen 2-Kozyklus f^* so konstruieren, daß die Einschränkung von f^* auf $\mathbb{O}_i/\mathfrak{o}$ über \mathbb{O}_{i-1} θ_i -normiert ist und infolgedessen diese Einschränkung von f^* auf $\mathbb{O}_i/\mathfrak{o}$ über \mathfrak{o} ausgezeichnet ist, soweit die Einschränkung von f auf $\mathbb{O}_{i-1}/\mathfrak{o}$ über \mathfrak{o} ausgezeichnet ist.

Nach dem eben Bewiesenen existiert zunächst ein normaler 2-Kozyklus f_1 von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$ mit $f_1 \sim f(\overline{\mathbb{R}}^m)$ von der Art, daß die Einschränkung von f_1 auf $\mathbb{O}_1/\mathfrak{o}$ über \mathfrak{o} θ_1 -normiert ist. Nun existiert nach dem oben Bewiesenenen ein normaler 2-Kozyklus f_2 von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$ mit $f_2 \sim f_1(\overline{\mathbb{R}}^m)$ von der Art, daß die Einschränkung von f_2 auf $\mathbb{O}_2/\mathfrak{o}$ über \mathfrak{o} ausgezeichnet ist. Mit Hilfe der vollständigen Induktion kann man also folgenden Hilfssatz beweisen:

Hilfssatz 8. Jede normale 2-Kohomologieklasse von $\mathfrak{D}/\mathfrak{v}$ über $\overline{\mathfrak{R}}_m$ enthält mindestens einen über \mathfrak{v} ausgezeichneten 2-Kozyklus.

Hilfssatz 9. Es seien h_{i-1} ($i=1,2,\cdots,s$) ausgezeichnete 2-Kozyklen von \mathbb{Q}/\mathfrak{v} über $\overline{\mathbb{R}}_m$, welche in Hilfssatz 6 angegeben sind. Ferner sei f ein beliebiger, über \mathfrak{v} ausgezeichneter 2-Kozyklus von \mathbb{Q}/\mathfrak{v} über $\overline{\mathbb{R}}_m$ mit $f(\theta_i, \theta_i^{n_i-1}) = u_i$ ($i=1,2,\cdots,s$). Dann gilt:

$$f \equiv \sum_{i=1}^s \mu_i h_{i-1} \mod \overline{\mathfrak{P}}^m$$
.

Die normale 2-Kohomologiegruppe $H_0^{(2)}(\mathbb{D}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$ besitzt also endlich viele Erzeugende.

Beweis. Wenn s=1, also $\mathfrak D$ über $\mathfrak v$ einfach normal ist, so ist sicher:

$$f \equiv \mu_1 h_0 \mod \overline{\mathfrak{P}}^{m(1)}$$
.

¹⁾ Vgl. M II, Satz 3.

Ist nun $f^{(1)}$ ein über \mathbb{O}_1 ausgezeichneter 2-Kozyklus von \mathbb{O}/\mathbb{O}_1 über $\overline{\mathbb{R}}_m$ mit den $f^{(1)}(\theta_i, \theta_i^{m-1}) = \mu_i$ $(i = 2, 3, \dots, s)$ so nehmen wir an, daß

$$f^{(i)} \equiv \sum_{i=2}^{s} \mu_i h_{i-1} \mod \overline{\mathfrak{P}}^n$$

ist. Nun ist $f - \mu_1 h_0$ ein über 0 ausgezeichneter 2-Kozyklus von $\mathbb{O}/0$ über $\overline{\mathbb{R}}_m$, dessen Einschränkung auf $\mathbb{O}_1/0$ mod $\overline{\mathbb{P}}^m$ zu 0 kongruent ist; d. h. $f - \mu_1 h_0$ ist ein über \mathbb{O}_1 ausgezeichneter 2-Kozyklus von \mathbb{O}/\mathbb{O}_1 über $\overline{\mathbb{R}}_m$ mit $(f - \mu_1 h_0)(\theta_1, \theta_1^{n_1-1}) = \mu_1$ $(i = 2, 3, \dots, s)$. Nach Annahme gilt also:

$$f - \mu_1 h_0 \equiv \sum_{i=2}^s \mu_i h_{i-1} \mod \mathfrak{P}^m$$
,

woraus

$$f \equiv \sum_{i=1}^{s} \mu_i h_{i-1} \quad \mod \overline{\mathfrak{P}}^m$$

folgt.

Es sei \overline{C} eine 2-Kohomologieklasse aus $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$. Dann besitzt \overline{C} einen über \mathfrak{o} ausgezeichneten 2-Kozyklus f. Da nach dem oben Bewiesenen

$$f \equiv \sum_{i=1}^{s} \mu_i h_{i-1} \mod \overline{\mathfrak{P}}^m \qquad (\mu_i \in \overline{\mathfrak{D}}, i = 1, 2, \dots, s)$$

gilt, so erhält man:

$$\bar{C} = \sum_{i=1}^{t} \mu_i \bar{C}(h_{i-1}),$$

wo $\overline{C}(h_{t-1})$ $(i=1,2,\cdots,s)$ die h_{t-1} enthaltenden 2-Kohomologieklassen aus $H_0^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$ bezeichnen. Daher bilden $\overline{C}(h_0),\,\overline{C}(h_1),\,\cdots,\,\overline{C}(h_{s-1})$ ein Erzeugendsystem von $H_0^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$.

Wir bezeichnen nun mit $K_j(1 \leq j \leq s)$ den Quotientenkörper von \mathfrak{D}_j . Da das Hauptideal $(\varphi'_{j-1}(\vartheta_j))$ aus \mathfrak{D} gleich ist der Differente von K_j/K_{j-1} , so ist das Ideal $\mathfrak{D}_{i-1} = (\iint\limits_{j=i}^s \varphi'_{j-1}(\theta_j))$ $(1 \leq i \leq s)$ nach dem Schachtelungssatz über Differenten gleich der Differente von K/K_{i-1}^{-1} . Dann gilt folgender

Hilfssatz 10. f_{i-1} sei ein über \mathfrak{D}_{i-1} ausgezeichneter 2-Kozyklus von $\mathfrak{D}/\mathfrak{D}_{i-1}$ über \mathfrak{F}_m und $\mathfrak{D}_{i-1} = (\iint_{j=i}^s \varphi'_{j-1}(\theta_j))$ die Differente von K/K_{i-1} . Dann gilt:

¹⁾ Vgl. etwa H. Hasse, Zahlentheorie, Berlin (1950), S. 316.

$$\left[\iint_{j=1}^{s} \varphi'_{j-1}(\theta_{j}) \right] f_{i-1} \sim 0 \qquad (\overline{\mathfrak{P}}^{n});$$

folglich annulliert die Differente von K/K_{i-1} jede normale 2-Kohomologieklasse aus $H_{\sigma}^{(2)}(\mathbb{O}/\mathbb{O}_{i-1};\overline{\mathbb{R}}_m)$

Beweis. Ist $\mathfrak{O} = \mathfrak{O}_i$, so gilt nach Hilfssatz 5:

$$\varphi'_{i-1}(\theta_i)f_{i-1} \sim 0 \qquad (\overline{\mathfrak{P}}^m).$$

Wir wollen also annehmen, daß für jeden über \mathfrak{D}_i ausgezeichneten 2-Kozyklus f_i von $\mathfrak{D}/\mathfrak{D}_i$ über $\overline{\mathfrak{R}}_m$ stets

$$\left[\iint_{j=j+1}^{s} \varphi'_{j-1} (\theta_{j}) \right] f_{i} \sim 0 \qquad (\overline{\mathfrak{P}}^{m})$$

gilt. Offenbar besitzt die Kongruenz

$$\varphi'_{i-1}(\theta_i)\mathcal{Z} \equiv \varphi'_{i-1}(\theta_i)f_{i-1}(\theta_i,\theta_i^{n_i-1}) \mod \overline{\mathfrak{P}}^m$$

 $\Xi = f_{i-1}(\theta_i, \theta_i^{n_i-1})$ als eine Lösung. Also existiert nach Hilfssatz 5 eine normale 1-Kokette $g_{i,i-1}$ von $\mathbb{O}_i/\mathbb{O}_{i-1}$ über $\overline{\mathbb{R}}_m$ von der Art, daß für die Einschränkung $f_{i,i-1}$ von f_{i-1} auf $\mathbb{O}_i/\mathbb{O}_{i-1}$ $\varphi'_{i-1}(\theta_i)f_{i,i-1} \equiv \partial g_{i,i-1} \mod \overline{\mathbb{R}}^m$ gilt. Nun sei $g_{j,i-1}$ $(j \geq i)$ eine solche Fortsetzung von $g_{i,i-1}$ auf $\mathbb{O}_j/\mathbb{O}_{i-1}$, daß $\partial g_{j,i-1}$ über \mathfrak{o} ausgezeichnet ist. Ist dann $\varphi_j(\Xi) = \Xi^{n_{j+1}} + \sum_{\nu=1}^{n_{j+1}-1} c_{\nu}^{(j)} \Xi^{\nu}$ das Minimalpolynom von θ_{j+1} in \mathbb{O}_j , so setze man:

$$\varphi_{i}^{(j,i-1)}(\theta_{i+1}) = \sum_{\nu=1}^{\nu_{j+1}-1} \theta_{i+1}^{\nu} q_{j,i-1}(c_{\nu}^{(j)}),$$

Da $\Xi = 0$ eine Lösung der Kongruenz

$$\varphi'_{j}(\theta_{j+1})\Xi + \varphi_{j}^{(j,t-1)}(\theta_{j+1}) \equiv \varphi_{j}^{(j,t-1)}(\theta_{j+1}) \quad \mod \overline{\mathfrak{P}}^{n}$$

ist, so existiert eine normale 1-Kokette $g_{j+1,i-1}$ von $\mathbb{O}_{j+1}/\mathfrak{o}$ über $\overline{\mathbb{M}}_m$ derart, daß $g_{j+1,i-1}$ eine Fortsetzung von $g_{j,i-1}$ auf $\mathbb{O}_{i+1}/\mathfrak{o}$ mit $g_{j+1,i-1}(\vartheta_{j+1})=0$ und $\partial g_{j+1,i-1}$ über \mathbb{O}_j θ_{i+1} -normiert ist¹⁾. Durch vollständige Induktion beweist man die Existenz einer solchen Fortsetzung g_{i-1} von $g_{i,i-1}$ auf $\mathbb{O}/\mathbb{O}_{i-1}$, daß $g_{i-1}(\theta_j)\equiv 0$ mod $\overline{\mathbb{W}}^m$ $(i< j\leq s)$ sind und ∂g_{i-1} über \mathbb{O}_{i-1} ausgezeichnet ist. Offenbar ist $f_i=\varphi'_{i-1}(\theta_i)f_{i-1}-\partial g_{i-1}$ ein normaler 2-Kozyklus von \mathbb{O}/\mathbb{O}_i über $\overline{\mathbb{M}}_m$ und sogar nach Konstruktion über \mathbb{O}_i ausgezeichnet. Nach Induktionsannahme gilt also:

$$\left[\iint\limits_{j=i+1}^s \varphi'_{j-1}(\theta_j) \right] f_i = \left[\iint\limits_{j=i}^s \varphi'_{j-1}(\theta_j) \right] f_{i-1} - \left[\iint\limits_{j=i+1}^s \varphi'_{j-1}(\theta_j) \right] \partial g_{i-1} \sim 0 \ (\overline{\mathfrak{P}}^m);$$

¹⁾ Vgl. M II, Satz 4.

d. h. es ist
$$\left[\iint_{j=i}^{s} \varphi'_{j-1}(\theta_j) \right] f_{i-1} \sim 0$$
 $(\overline{\mathfrak{P}}^m)$

Da jede 2-Kohomologieklasse \overline{C} aus $H_{\sigma}^{(2)}(\mathbb{O}/\mathbb{O}_{t-1}; \overline{\mathfrak{N}}_m)$ nach Hilfssatz 8 einen über \mathbb{O}_{t-1} ausgezeichneten 2-Kozyklus enthält, so gilt nach dem eben Bewiesenen stets:

$$\left[\int_{j=1}^{s} \varphi'_{j-1}(\theta_{j}) \right] \bar{C} = 0;$$

also ist die Klasse \bar{C} durch die Differente \mathfrak{D}_{t-1} von K/K_{t-1} annulliert, weil \mathfrak{D}_{t-1} das durch $\iint_{j=1}^s \varphi'_{j-1}(\theta_j)$ erzeugte Hauptideal ist.

Zusatz 1 zu Hilfssatz 10. Die Differente $\mathfrak{D}(K/k)$ von K/k annulliert jede 2-Kohomologieklasse aus $H^{(2)}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ bzw. $H^{(2)}_{\mathfrak{o}}(\mathfrak{D}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$.

Aus dem Beweis von Hilfssatz 10 erhält man folgenden

Zusatz 2 zu Hilfssatz 10. Zu einer normalen 1-Kokette $g_{i,i-1}$ von $\mathbb{O}_i/\mathbb{O}_{i-1}$ über \mathbb{M}_m existiert stets eine Fortsetzung g_{i-1} von $g_{i,i-1}$ auf $\mathbb{O}/\mathbb{O}_{i-1}$ derart, $da\beta \ g_{i-1}(^{\alpha}{}_{j}) \equiv 0 \mod \overline{\mathfrak{P}}^m \ (j=i+1,\,\cdots,\,s)$ sind und ∂g_{i-1} über \mathbb{O}_{i-1} ausgezeichnet ist.

Nun nehmen wir an, daß $H_o^{(2)}(\mathbb{O}/v; \overline{\mathfrak{R}}_m)$ kein Nullmodul ist. Da $H_o^{(2)}(\mathbb{O}/v; \overline{\mathfrak{R}}_m)$ nach Hilfssatz 9 endlich viele Erzeugende besitzt, so besitzt $H_o^{(2)}(\mathbb{O}/v; \overline{\mathfrak{R}}_m)$ eine endliche $\overline{\mathbb{O}}$ -Basis $\overline{C}_1, \overline{C}_2, \cdots, \overline{C}_r$, weil $\overline{\mathbb{O}}$ ein euklidischer Ring ist. Dabei ist jedes \overline{C}_i $(1 \leq i \leq r)$ nach Zusatz 1 zu Hilfssatz 10 durch die Differente von K/k annulliert; also ist die $\overline{\mathbb{O}}$ -Länge von \overline{C}_i in $H_o^{(2)}(\mathbb{O}/v; \overline{\mathfrak{R}}_m)$ endlich. Hieraus schließt man, daß für jede natürliche Zahl m $H_o^{(2)}(\mathbb{O}/v; \overline{\mathfrak{R}}_m)$ stets endliche $\overline{\mathbb{O}}$ -Länge besitzt.

Nun wollen wir für ein hinreichend großes m die $\overline{\mathbb{D}}$ -Länge von $H_o^{(2)}(\mathbb{D}/v\,;\,\overline{\mathbb{R}}_m)$ bestimmen. Da nach Satz 3 für $(\varphi'_0(\theta_1))\mid \overline{\mathbb{P}}^m$ die $\overline{\mathbb{D}}$ -Länge von $H_o^{(2)}(\mathbb{D}_1/v\,;\,\overline{\mathbb{R}}_m)$ gleich ist dem $\overline{\mathbb{P}}$ -Exponenten der Differente von K_1/k , so wollen wir annehmen, daß für jedes hinreichend große m die $\overline{\mathbb{D}}$ -Länge von $H_o^{(2)}(\mathbb{D}_{s-1}/v\,;\,\overline{\mathbb{R}}_m)$ gleich ist dem $\overline{\mathbb{P}}$ -Exponenten $\overline{d}(K_{s-1}/k)$ der Differente von K_{s-1}/k . Wir ordnen jetzt einem normalen 2-Kozyklus f von \mathbb{D}/v über $\overline{\mathbb{R}}_m$ die Einschränkung $f^{(s-1)}$ von f auf \mathbb{D}_{s-1}/v zu. Dadurch gehen offenbar alle zu f kohomologen, normalen 2-Kozyklen von \mathbb{D}/v über $\overline{\mathbb{R}}_m$ in ein und dieselbe normale 2-Kohomologieklasse von \mathbb{D}_{s-1}/v über $\overline{\mathbb{R}}_m$ über. Die so definierte Zuordnung stellt also einen $\overline{\mathbb{D}}$ -Homomorphismus Φ von $H_o^{(2)}(\mathbb{D}/v\,;\,\overline{\mathbb{R}}_m)$ in $H_o^{(2)}(\mathbb{D}_{s-1}/v\,;\,\overline{\mathbb{R}}_m)$ her. Ist aber $f^{(s-1)}$ ein beliebiger normaler 2-Kozyklus von \mathbb{D}_{s-1}/v über $\overline{\mathbb{R}}_m$, so besitzt $f^{(s-1)}$ eine solche

Fortsetzung f auf \mathfrak{D}/v , daß f über \mathfrak{D}_{s-1} θ_s -normiert ist¹⁾. Für ein beliebiges Element $\sum_{i=1}^{n} x_i^{(s-1)} \theta_s^i$ ($x_i^{(s-1)} \in \mathfrak{D}_{s-1}$) aus \mathfrak{D} und ein beliebiges Element x aus v gilt also:

$$\begin{array}{l} \sum_{i=0}^{n_s-1} [x f(x_i^{(s-1)}, b_s^i) + f(x, x_i^{(s-1)} \theta_s^i)] \equiv \sum_{i=0}^{n_s-1} [f(x x_i^{(s-1)}, \theta_s^i) \\ + \theta_s^i f(x, x_i^{(s-1)})] \mod \overline{\mathfrak{P}}^m; \end{array}$$

weil f über \mathbb{O}_{s-1} θ_s -normiert und $f(x, x_i^{(s-1)}) = f^{(s-1)}(x, x_i^{(s-1)}) \equiv 0 \mod \overline{\mathfrak{P}}^m$ ist, so erhält man aus der obigen Kongruenz:

$$f(x, \sum_{i=0}^{n_s-1} x_i^{(s-1)} \theta_s^i) \equiv \sum_{i=0}^{n_s-1} f(x, x_i^{(s-1)} \theta_s^i) \equiv 0 \quad \text{mod } \overline{\mathfrak{P}}^m.$$

Daher ist f ein normaler 2-Kozyklus von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{N}}_m$. Somit ist gezeigt, daß jeder normale 2-Kozyklus von $\mathbb{O}_{s-1}/\mathfrak{o}$ über $\overline{\mathbb{N}}_m$ stets einen normalen 2-Kozyklus von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{N}}_m$ als eine Fortsetzung besitzt. Der oben definierte \mathbb{O} -Homomorphismus Φ bildet also $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{N}}_m)$ auf $H_o^{(2)}(\mathbb{O}_{s-1}/\mathfrak{o}; \overline{\mathbb{N}}_m)$ ab. Dabei ist der Kern von Φ mit der in \mathbb{O}_{s-1} zerfallenden Untergruppe $H_o^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}_{s-1}; \overline{\mathbb{N}}_m)$ von $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{N}}_m)$ identisch. Daher gilt folgende $\overline{\mathbb{O}}$ -Isomorphierelation:

$$(5.2) H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)/H_o^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}_{s-1}; \overline{\mathfrak{R}}_m) \cong H_o^{(2)}(\mathbb{O}_{s-1}/\mathfrak{o}; \overline{\mathfrak{R}}_m).$$

Für jedes hinreichend große m gilt aber nach Satz 1 folgende $\overline{\mathbb{Q}}$ -Isomorphierelation:

$$(5.3) H_{\theta}^{(2)}(\mathfrak{D}/\mathfrak{o}, \mathfrak{D}_{s-1}; \overline{\mathfrak{R}}^m) \cong H_{\theta}^{(2)}(\mathfrak{D}/\mathfrak{D}_{s-1}; \overline{\mathfrak{R}}_m).$$

Aus (5. 2) und (5. 3) schließt man ohne weiteres:

$$\overline{\mathbb{Q}}$$
-Länge von $H_o^{(2)}(\mathbb{Q}/\mathfrak{o}; \overline{\mathbb{R}}_m) = \overline{\mathbb{Q}}$ -Länge von $H_o^{(2)}(\mathbb{Q}/\mathbb{Q}_{s-1}; \overline{\mathbb{R}}_m) + \overline{\mathbb{Q}}$ -Länge von $H_o^{(2)}(\mathbb{Q}_{s-1}/\mathfrak{o}; \overline{\mathbb{R}}_m)$.

Da $\mathfrak O$ über $\mathfrak O_{s-1}$ einfach normal ist, so gilt für jedes hinreichend gro?e m:

$$\overline{\mathbb{Q}}$$
-Länge von $H_{\sigma}^{(2)}(\mathbb{Q}/\mathbb{Q}_{s-1}; \overline{\mathfrak{R}}_m) \doteq \overline{d}(K/K_{s-1})$ ($\overline{\mathfrak{P}}$ -Exponent der Differente von K/K_{s-1});

daher ist

$$\overline{\mathfrak{D}}$$
-Länge von $H_0^{(1)}(\mathfrak{D}/\mathfrak{v}; \overline{\mathfrak{R}}_m) = \overline{d}(K/K_{s-1}) + \overline{d}(K_{s-1}/k)$.

Wegen des Schachtelungssatzes über Differenten ist dabei $\bar{d}(K/K_{s-1})$ + $\bar{d}(K_{s-1}/k)$ gleich dem $\bar{\mathfrak{P}}$ -Exponenten der Differente von K/k. Da nach

¹⁾ Vgl. M II, Satz 3.

Hilfssatz 1 $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ zu $H^{(2)}_{\mathfrak{o}}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ $\overline{\mathbb{O}}$ -ismorph ist, so schlicken wir aus dem bisher Gezeigten folgenden

Satz 4. Es sei K endlich-separabel über k und $\mathbb O$ die Hauptordnung von K. Ist dann $\mathbb O$ über $\mathbb O$ normal, so besitzt jede (normale) 2-Kohomologiegruppe $H^{(2)}(\mathbb O/\mathbb O;\overline{\mathbb R}_m)$ ($H_o^{(2)}(\mathbb O/\mathbb O;\overline{\mathbb R}_m)$) endliche $\overline{\mathbb O}$ -Länge, und sogar endliche $\overline{\mathbb O}$ -Basis, wenn sie kein Nullmodul ist. Ferner existiert eine natürliche Zahl N von der Art, da β für jedes m mit $m \geq N$ die $\overline{\mathbb O}$ -Länge von $H^{(2)}(\mathbb O/\mathbb O;\overline{\mathbb R}_m)$ ($H_o^{(2)}(\mathbb O/\mathbb O;\overline{\mathbb R}_m)$) gleich ist dem $\overline{\mathbb R}$ -Exponenten der Differente von K/k.

§ 6. Struktur der 2-Kohomologiegruppen mit allgemeiner Hauptordnung als Definitionsbereich

Wenn die Hauptordnung $\mathfrak D$ einer endlich-separablen Erweiterung K über k nicht notwendig normal über $\mathfrak D$ ist, dann betrachten wir eine \overline{K} enthaltende, endlich-separable galoissche Erweiterung K^* über k; die Hauptordnung von K^* bezeichnen wir mit $\mathfrak D^*$. Da K^* über k bzw. K galoissch ist, so ist $\mathfrak D^*$ über $\mathfrak D$ bzw. $\mathfrak D$ normal¹). Ferner bezeichnen wir mit $\mathfrak B^*$ das nicht-triviale Primideal aus $\mathfrak D^*$ und mit $d^*(K^*/k)$ bzw. $d^*(K^*/K)$ den $\mathfrak B^*$ -Exponenten der Differente von K^*/k bzw. K^*/K . Nach Satz 4 existiert eine natürliche Zahl N derart, daß für jedes m mit $m \geq N$ $d^*(K^*/k)$ bzw. $d^*(K^*/K)$ gleich ist der $\mathfrak D^*$ -Länge der normalen 2-Kohomologiegruppe $H_0^{(2)}(\mathfrak D^*/\mathfrak D; \mathfrak R^*_m)$ bzw. $H_0^{(2)}(\mathfrak D^*/\mathfrak D; \mathfrak R^*_m)$, wo $\mathfrak R^*_m$ den Restklassenring von $\mathfrak D^*$ nach $\mathfrak P^{*m}$ bezeichnet.

Nach dem am Anfang von § 5 Bemerkten beweist man leicht, daß jeder normale 2-Kozyklus von \mathbb{O}/\mathfrak{o} über \mathfrak{R}_m^* stets als normaler 2-Kozyklus auf $\mathbb{O}^*/\mathfrak{o}$ fortgesetzt werden kann. Wir ordnen nun einem normalen 2-Kozyklus f^* von $\mathbb{O}^*/\mathfrak{o}$ über \mathfrak{R}_m^* die Einschränkung f von f^* auf \mathbb{O}/\mathfrak{o} zu; durch diese Zuordnug entsteht offenbar ein \mathbb{O}^* -Homomorphismus Φ von $H_o^{(2)}(\mathbb{O}^*/\mathfrak{o}; \mathfrak{R}_m^*)$ auf $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*)$. Dabei ist der Kern von Φ die in \mathbb{O} zerfallende Untergruppe $H_o^{(2)}(\mathbb{O}^*/\mathfrak{o}; \mathfrak{R}_m^*)$ von $H_o^{(2)}(\mathbb{O}^*/\mathfrak{o}; \mathfrak{R}_m^*)$. Für eine beliebige natürliche Zahl m gilt also folgende \mathbb{O}^* -Isomorphicrelation:

$$(6.1) H_o^{(2)}(\mathfrak{D}^*/\mathfrak{o}; \mathfrak{R}_m^*)/H_o^{(2)}(\mathfrak{D}^*/\mathfrak{o}, \mathfrak{D}; \mathfrak{R}_m^*) \cong H_o^{(2)}(\mathfrak{D}/\mathfrak{o}; \mathfrak{R}_m^*).$$

Da nach Satz 4 $H_o^{(2)}(\mathbb{O}^*/\hat{\mathfrak{o}}; \mathfrak{R}_m^*)$ endliche \mathbb{O}^* -Länge besitzt, so ist die \mathbb{O}^* -Länge von $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*)$ auch endlich. Somit ist bewiesen:

Hilfssatz 11. Die O*-Länge einer beliebigen (normalen) 2-Koho-

¹⁾ M I, S. 128-129, Hilfssatz 4.

mologiegruppe $H^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*)$ $(H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*))$ ist endlich.

Nun wollen wir annehmen, daß die oben bestimmte nätürlich Zahl N von vornherein so groß gewählt ist, daß $H_o^{(2)}(\mathbb{O}^*/\mathfrak{o},\mathbb{O};\mathbb{R}_m^*)$ nach Satz 1 zu $H_o^{(2)}(\mathbb{O}^*/\mathbb{O};\mathbb{R}_m^*)$ \mathbb{O}^* -isomorph ist; also ist für $m \geq N$ die \mathbb{O}^* -Länge von $H_o^{(2)}(\mathbb{O}^*/\mathfrak{o},\mathbb{O};\mathbb{R}_m^*)$ gleich $d^*(K^*/K)$. Für jedes m mit $m \geq N$ schließt man also aus (6.1):

(6.2)
$$\mathbb{O}^*$$
-Länge von $H_0^{(2)}(\mathbb{O}/\mathfrak{o}; \mathfrak{R}_m^*) = d^*(K^*/k) - d^*(K^*/K)$.

Wegen des Schachtelungssatzes über Differenten ist $d^*(K^*/k) - d^*(K^*/K)$ offenbar gleich dem \mathfrak{P}^* -Exponenten der Differente von K/k.

Im folgenden bezeichnen wir mit \overline{e} die Verzweigungsordnung von K^* über \overline{K} , und wir betrachten den Restklassenring $\overline{\mathfrak{R}}_{m_o}$ bzw. \mathfrak{R}_m^* von $\overline{\mathfrak{D}}$ nach $\overline{\mathfrak{R}}^{m_o}$ bzw. \mathfrak{D}^* nach \mathfrak{R}^{*m} , wo $m=m_o e$ gesetzt ist. Ist dann $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\mathfrak{R}_m^*)$ kein Nullmodul, so ist nach (6.1) $H_o^{(2)}(\mathfrak{D}^*/\mathfrak{o}\,;\,\mathfrak{R}_m^*)$ auch kein Nullmodul, also besitzt $H_o^{(2)}(\mathfrak{D}^*/\mathfrak{o}\,;\,\mathfrak{R}_m^*)$ nach Satz 4 eine \mathfrak{D}^* -Basis. Wegen der Relation (6.1) besitzt $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\mathfrak{R}_m^*)$ auch endliche \mathfrak{D}^* -Basis. Nach Satz 2 besitzt dann $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\mathfrak{R}_m^*)$ eine $\overline{\mathfrak{D}}$ -Basis $\overline{C}_1,\,\overline{C}_2,\,\cdots,\,\overline{C}_r$; ferner bilden die \overline{C}_i $(i=1,2,\cdots,r)$ auch eine \mathfrak{D}^* -Basis von $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\mathfrak{R}_m^*)$. Bezeichnet nun \overline{l}_i die $\overline{\mathfrak{D}}$ -Länge von \overline{C}_i , so ist $\overline{l}_i \overline{e}$ nach der Bemerkung von § 3 gleich der \mathfrak{D}^* -Länge von \overline{C}_i . Also ist \mathfrak{D}_i^* - \mathfrak{g} -gleich der \mathfrak{D}^* -Länge von $H_o^{(2)}(\mathfrak{D}/\mathfrak{o}\,;\,\mathfrak{R}_m^*)$.

Wenn insbesondere $m_0 e \ge N$ ist, so gilt nach (6.2):

(6.3)
$$\sum_{i=1}^{r} \bar{l}_{i} \bar{e} = d^{*}(K^{*}/k) - d^{*}(K^{*}/K);$$

also ist $(d^*(K^*/k) - d^*(K^*/K))/\overline{e}$ offenbar gleich dem $\overline{\mathfrak{P}}$ -Exponenten $\overline{d}(K/k)$ der Differente von K/k. Daher folgt aus (6.3):

$$\sum_{i=1}^{r} \overline{l}_i = \overline{d}(K/k).$$

Da $\sum_{i=1}^n \overline{l}_i$ die $\overline{\mathbb{Q}}$ -Länge von $H_o^{(2)}(\overline{\mathbb{Q}}/v; \overline{\mathbb{M}}_{m_o})$ ist, so ist gezeigt, daß die $\overline{\mathbb{Q}}$ -Länge von $H_o^{(2)}(\overline{\mathbb{Q}}/v; \overline{\mathbb{M}}_{m_o})$ gleich $\overline{d}(K/k)$ ist.

Alles zusammenfassend haben wir bewiesen:

Satz 5. Es sei $\overline{\mathbb{R}}_m$ der Restklassenring von $\overline{\mathbb{Q}}$ nach $\overline{\mathbb{R}}^m$. Dann besitzt die (normale) 2-Kohomologiegruppe $H^{(2)}(\mathbb{Q}/\mathfrak{Q}; \overline{\mathbb{R}}_m)(H_o^{(2)}(\mathbb{Q}/\mathfrak{Q}; \overline{\mathbb{R}}_m))$ endliche $\overline{\mathbb{Q}}$ -Basis, wenn sie kein Nullmodul ist. Ferner existiert eine solche natürliche Zahl N, daß für jedes $m \geq N$ (einschließlich $m = \infty$) die $\overline{\mathbb{Q}}$ -Länge von $H^{(2)}(\mathbb{Q}/\mathfrak{Q}; \overline{\mathbb{R}}_m)$ ($H_o^{(2)}(\mathbb{Q}/\mathfrak{Q}; \overline{\mathbb{R}}_m)$) gleich ist dem $\overline{\mathbb{Q}}$ -Exponenten der Differente $\mathfrak{D}(K/k)$ von K/k; also ist jede normale 2-Kohomologieklasse aus $H^{(2)}(\mathbb{Q}/\mathfrak{Q}; \overline{\mathbb{R}}_m)$ ($H_o^{(2)}(\mathbb{Q}/\mathfrak{Q}; \overline{\mathbb{R}}_m)$) durch $\mathfrak{D}(K/k)$ an-

nulliert.

Nach Satz 5 besitzt $H_o^{(2)}(\mathbb{D}/\mathfrak{o};\overline{\mathbb{D}}/\overline{\mathbb{R}}^\infty)$ offenbar die $\overline{\mathbb{D}}$ -Länge $\overline{d}(K/k)$. Da nach Verabredung $\overline{\mathbb{D}}=\overline{\mathbb{D}}/\overline{\mathbb{R}}^\infty$ gesetzt ist, so bezeichnen wir im folgenden $H_o^{(2)}(\mathbb{D}/\mathfrak{o};\overline{\mathbb{D}})/\overline{\mathbb{R}}^\infty)$ mit $H_o^{(2)}(\mathbb{D}/\mathfrak{o};\overline{\mathbb{D}})$. Es sei f ein normaler 2-Kozyklus von \mathbb{D}/\mathfrak{o} über $\overline{\mathbb{D}}$. Dann heiße die $\overline{\mathbb{D}}$ -Länge der f enthaltenden, normalen 2-Kohomologieklasse von \mathbb{D}/\mathfrak{o} über $\overline{\mathbb{D}}$ die $\overline{\mathbb{D}}$ -Länge von f in $H_o^{(2)}(\mathbb{D}/\mathfrak{o};\overline{\mathbb{D}})$. Für jede natürliche Zahl m induziert f offenbar einen normalen 2-Kozyklus von \mathbb{D}/\mathfrak{o} über $\overline{\mathbb{M}}_m$, wo $\overline{\mathbb{D}}/\overline{\mathbb{R}}^m = \overline{\mathbb{M}}_m$ gesetzt ist. Ist nun a_m die $\overline{\mathbb{D}}$ -Länge von f in $H_o^{(2)}(\mathbb{D}/\mathfrak{o};\overline{\mathbb{M}}_m)$, so ist nach Satz 5

$$a_m \leq \overline{d}(K/k)$$
.

Ferner gilt für $m_1 < m_2$:

$$a_{m_1} \leq a_{m_n}$$

Denn für ein Primelement II von Baus Dgilt offenbar

$$\overline{H}^{a_{m_2}} f \equiv \partial g_{m_0} \mod \overline{\mathfrak{P}}^{m_2},$$

wo g_{m_2} eine normale 1-Kokette von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_{m_2}$ bezeichnet; weil g_{m_2} offenbar eine normale 1-Kokette von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_{m_1}$ ist, so gilt

$$\overline{II}^{a_{m_2}} f \equiv \partial g_{m_q} \mod \overline{\mathfrak{P}}^{m_1}$$

also ist $a_{m_1} \leq a_{m_2}$. Daher existieren eine natürliche Zahl N und eine nicht-negative ganze rationale Zahl a von der Art, da3 für jedes m mit $m \geq N$ stets $a_m = a$ ist. Offenbar gilt dabei die Ungleichung:

(6.4)
$$a \leq \overline{\mathbb{D}}$$
-Länge von f in $H_o^{(2)}(\mathbb{D}/\mathfrak{o}; \overline{\mathbb{D}})$.

Ferner existicrt eine normale 1-Kokette g_m mit $\overline{II}^n f \equiv \partial g_m \mod \overline{\mathfrak{P}}^m$, wenn $m \geq N$ ist. Für beliebige Elemente X, Y aus \mathfrak{O} gilt dann:

$$\partial(g_{m+1}-g_m)(X,Y)=\overline{II}^af(X,Y)-\overline{II}^af(X,Y)\equiv 0 \mod \overline{\mathfrak{P}}^m;$$

d. h. $D_m = g_{m+1} - g_m$ ist eine *Derivation* von \mathbb{O}/\mathfrak{v} über $\overline{\mathfrak{R}}_m$. Nun bezeichnen wir mit W_i , W_2 , \cdots , W_n eine Minimalbasis von \mathbb{O} über \mathfrak{v} und mit $\varphi_i(\Xi)$ $(1 \le i \le n)$ das Minimalpolynom von W_i in \mathfrak{v} . Wegen $\varphi_i(W_i) = 0$ gilt dann:

$$\varphi'_i(W_i)D_m(W_i) \equiv 0 \mod \overline{\mathfrak{R}}^m$$

wo $\varphi'_i(\Xi)$ die Ableitung von $\varphi_i(\Xi)$ nach Ξ bezeichnet. Weil offenbar

 $\varphi'_i(W_i) \neq 0$ ist, so besitzt $\varphi'_i(W_i)$ den $\overline{\mathfrak{P}}$ -Exponenten $w_i(w_i < \infty)$; daher ist $D_m(W_i) \equiv 0 \mod \overline{\mathfrak{P}}^{m-w_i}$. Hieraus schließt man ohne Schwierigkeit, daß $\lim_{m \to \infty} D_m(W_i) = 0$ ist. Da ein beliebiges Element X aus \mathfrak{D} von der Form

$$X = \sum_{i=1}^{n} x_i W_i \qquad (x_i \in \mathfrak{o})$$

ist, so gilt:

$$D_m(X) - \sum_{i=1}^n x_i D_m(W_i) \equiv 0 \mod \overline{\mathfrak{P}}^m$$
;

hieraus schließt man:

$$\lim_{m\to\infty} D_m(X) = \lim_{m\to\infty} \sum_{i=1}^n x_i D_m(W_i) = 0.$$

Dies besagt aber, daß die Folge $\{D_m(X), m=N, N+1, \cdots\}$ gleichmäßig zur Null konvergiert; d. h. zu einer beliebigen natürlichen Zahl ν existiert eine solche natürliche Zahl $N(\nu) \ge \nu$, daß für ein beliebiges Element X aus $\mathbb O$ und für jedes m mit $m \ge N(\nu)$ stets

$$D_m(X) \equiv 0 \mod \overline{\mathfrak{P}}^{\nu}$$

gilt.

Betrachtet man also $g_m(X)$ als eine Funktion von X, so konvergiert die Funktionenfolge $\{g_m(X): m=N, N+1, \cdots\}$ gleichmßig zu einem Element g(X) aus $\overline{\mathbb{O}}$. Nach Definition gilt für ein beliebiges Element x aus \mathfrak{o} :

$$\lim_{m\to\infty} g_m(xX) = g(xX);$$

weil aber $g_m(xX) \equiv x g_m(X) \mod \overline{\mathfrak{P}}^m$ ist, so ist

$$\lim_{m\to\infty} g_m(xX) = \lim_{m\to\infty} xg_m(X) = xg(X),$$

also ist:

$$g(xX) = xg(X)$$
.

Ferner gelten für ein beliebiges Element Y aus \mathbb{O} :

$$\lim_{m\to\infty} g_m(X) = g(X), \lim_{m\to\infty} g_m(Y) = g(Y) \text{ und } \lim_{m\to\infty} g_m(X+Y) = g(X+Y);$$

da $g_m(X+Y) \equiv g_m(X) + g_m(Y) \mod \overline{\mathfrak{P}}^m$ ist, so schließt man ohne Schwierigkeit:

$$g(X + Y) = g(X) + g(Y)$$
.

Somit ist gezeigt, daß g eine normale 1-Kokette von \mathbb{O}/\mathfrak{o} über \mathbb{O} ist. Wegen der Kongruenz $\overline{II}^a f(X,Y) \equiv \delta g_m(X,Y) \equiv Y g_m(X) + X g_m(Y) - g_m(XY)$ mod $\overline{\mathfrak{P}}^m$ ergibt sich:

$$\overline{II}^{n}f(X, Y) = \lim_{m \to \infty} (Yg_{m}(X) + Xg_{m}(Y) - g_{m}(XY))$$

$$= Yg(X) + Xg(Y) - g(XY) = \partial g(X, Y);$$

die $\overline{\mathbb{O}}$ -Länge von f in $H_o^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{O}})$ ist also nicht größer als a. Hieraus schließt man nach (6,4):

$$a = \overline{\mathbb{Q}}$$
-Länge von f in $H_0^{(2)}(\mathbb{Q}/\mathfrak{o}; \overline{\mathbb{Q}})$.

Mithin ist bewiesen:

Hilfssatz 12. Es sei f ein normaler 2-Kozyklus von \mathbb{O}/\mathfrak{o} über \mathbb{O} mit der \mathbb{O} -Länge a in $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \mathbb{O})$. Dann existiert eine natürliche Zahl N, so daß für jedes m mit $m \geq N$ die \mathbb{O} -Länge von f in $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \mathbb{R}_m)$ gleich a ist. Insbesondere ist dann und nur dann $f \sim 0$ (\mathbb{R}^m) , wenn für jedes hinreichend große m stets $f \sim 0$ (\mathbb{R}^m) ist.

Nun seien $f_1, f_2, \dots, f_r \, \overline{\mathbb{O}}$ -unabhängige, normale 2-Kozyklen von \mathbb{O}/v über $\overline{\mathfrak{D}}$; d. h. aus $\overline{A}_1 f_1 + \overline{A}_2 f_2 + \cdots \overline{A}_r f_r \sim 0$ ($\overline{\mathfrak{P}}^{\infty}$) mit den Koeffizienten \bar{A}_i $(i=1,2,\cdots,r)$ aus $\bar{\mathbb{Q}}$ folgen $\bar{A}_1 f_1 \sim \bar{A}_2 f_2 \sim \cdots \sim \bar{A}_r f_r \sim 0$ $(\bar{\mathfrak{P}}^{\infty})$. Ferner seien a_1, a_2, \dots, a_r bzw. die $\overline{\mathbb{Q}}$ -Längen von f_1, f_2, \dots, f_r in $H_o^{(2)}(\overline{\mathbb{Q}}/\mathfrak{o}; \overline{\mathbb{Q}})^{(1)}$. Dann existiert eine natürliche Zahl N derart, daß für jedes m mit $m \ge N$ f_1, f_2, \dots, f_r als normale 2-Kozyklen von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{R}}_m$ auch $\overline{\mathfrak{D}}$ unabhängig sind. Da nämlich die Behauptung nach Hilfssatz 12 für r=1 richtig ist, so wollen wir annehmen, daß die Behauptung für f_1 , f_1, \dots, f_{r-1} richtig ist. Existiert aber zu f_1, f_2, \dots, f_r keine solche Zahl N, so gibt es eine aufsteigende unendliche Folge der natürlichen Zahlen $m_1 < m_2 < \cdots < m_j < \cdots$ derart, daß für jedes $m_{\nu} (1 \le \nu < \infty) f_1, f_2, \cdots, f_r$ als 2-Kozyklen von $\mathfrak{D}/\mathfrak{o}$ über $\overline{\mathfrak{N}}_{m_q}$ nicht $\overline{\mathfrak{D}}$ -unabhängig sind. Dabei kann man ohne Einschränkung der Allgemeinheit annehmen, daß nach Hilfssatz 12 die $\mathbb O$ -Längen von den f_i $(i=1,\cdots,r)$ in den $H^{(2)}_o(\mathbb O/\mathfrak o;\overline{\mathfrak R}_{m_p})$ $(\nu=$ $1, 2, \cdots$) bzw. gleich a_i sind, und daß $f_1, f_2, \cdots, f_{r-1}$ als 2-Kozyklen von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ $\overline{\mathbb{O}}$ -unabhängig sind. Nach Voraussetzung gilt also zu jedem m_{ν} folgende Kohomologierelation:

¹⁾ Weil f_1, f_2, \cdots, f_r $\overline{\mathbb{E}}$ -unabhängig sind, so sind die $a_i(i=1,2,\cdots r)$ alle größer als 0.

(6.5)
$$\bar{A}_{\nu,1}f_1 + \bar{A}_{\nu,2}f_2 + \cdots + \bar{A}_{\nu,r}f_r \sim 0$$
 $(\overline{\mathfrak{P}}^{m_{\nu}}),$

wo mindestens ein $\bar{A}_{\nu,\iota}f_{\iota}$ mod $\bar{\mathfrak{P}}^{m_{\nu}}$ zur Null nicht kohomolog ist. Ist dabei $\bar{A}_{\nu,r}f_{r} \sim 0$ ($\bar{\mathfrak{P}}^{m_{\nu}}$), so müssen wegen $\bar{A}_{\nu,1}f_{1} + \cdots + \bar{A}_{\nu,-1}f_{r-1} \sim 0$ ($\bar{\mathfrak{P}}^{m_{\nu}}$) und folglich nach Voraussetzung

$$\bar{A}_{\nu,1}f_1 \sim \bar{A}_{\nu,2}f_2 \sim \cdots \sim \bar{A}_{\nu,r-1}f_{r-1} \sim 0$$
 $(\bar{\mathfrak{P}}^{m_{\nu}})$

sein, was aber ein Widerspruch ist. Es ist also für jedes m_{ν}

$$\bar{A}_{\nu,r}f_r \nsim 0 \qquad (\bar{\mathfrak{P}}^{m_{\nu}})$$
.

Bezeichnet man nun mit b_{ν} den $\overline{\mathfrak{P}}$ -Exponenten von $\overline{A}_{\nu,r}$ und mit \overline{H} ein Primelement von $\overline{\mathfrak{P}}$, so ist $\overline{H}^{b_{\nu}} \overline{A}_{\nu,r}^{-1}$ eine Einheit aus $\overline{\mathfrak{Q}}$. Durch Multiplikation mit $\overline{H}^{b_{\nu}} \overline{A}_{\nu,r}^{-1}$ erhält man aus (6.5):

(6.6)
$$\bar{B}_{\nu,1}f_1 + \bar{B}_{\nu,2}f_2 + \cdots + \bar{B}_{\nu,r-1}f_{r-1} + \bar{I}_{r}^{b_{\nu}}f_r \sim 0$$
 $(\bar{\mathfrak{P}}^{m_{\nu}}),$

wo $\overline{B}_{\nu,i} = \overline{A}_{\nu,i} \overline{A}_{\nu,r}^{-1} \overline{\Pi}^{b_{\nu}} (i=1,2,\cdots,r-1)$ gesetzt sind. Offenbar ist dabei $0 < b_{\nu} < a_r$. Es existiert also eine unendliche Teilfolge von $\{b_{\nu}; \nu=1,2,\cdots\}$, deren Glieder alle gleich sind. Daher kann man ohne Einschränkung der Allgemeinheit annehmen, daß von vornherein

$$b_1 = b_2 = \cdots = b_n = \cdots = b$$

sind. Da aus (6.6) stets

$$\bar{B}_{\nu,1}f_1 + \bar{B}_{\nu,2}f_2 + \dots + \bar{B}_{\nu,r-1}f_{r-1} + \bar{I}\bar{I}^b f_r \sim 0$$
 $(\bar{\mathbb{F}}^{m_{\nu}-1})$

folgt, so kann man annehmen, daß für jedes m mit $m \ge m_1$ stets

(6.7)
$$\bar{B}_{m,1}f_1 + \bar{B}_{m,2}f_2 + \cdots + \bar{B}_{m,r-1}f_{r-1} + \bar{f}_{r}b_r \sim 0$$
 $(\overline{\mathfrak{P}}^m)$

gilt, wo die $\bar{B}_{m,i}$ $(i=1,2,\cdots,r-1)$ Elemente aus $\bar{\mathfrak{D}}$ bezeichnen. Dann schließt man aus (6,7):

$$(\bar{B}_{m+1,1} - \bar{B}_{m,1})f_1 + \cdots + (\bar{B}_{m+1,r-1} - \bar{B}_{m,r-1})f_{r-1} \sim 0 \qquad (\overline{\mathfrak{P}}^m).$$

Weil nach Voraussetzung f_1, f_2, \dots, f_{r-1} als 2-Kozyklen von \mathbb{O}/\mathfrak{o} über $\overline{\mathfrak{R}}_m$ $\overline{\mathbb{O}}$ -unabhängig sind, so müssen

$$(\bar{B}_{m+1,1} - \bar{B}_{m,1}) f_1 \sim \cdots \sim (\bar{B}_{m+1,r-1} - \bar{B}_{m,r-1}) f_{r-1} \sim 0$$
 $(\bar{\mathfrak{P}}^m)$

sein; hieraus folgt für jedes i mit $1 \le i \le r - 1$:

$$ar{B}_{m+1,i} \equiv ar{B}_{m,i} \mod \widehat{\mathfrak{P}}^{a_i}$$
.

Da aber m beliebig sein kann, soweit $m \ge m_1$ ist, so erhält man:

$$\bar{B}_{m,i} \equiv \bar{B}_{m,+1,i} \equiv \cdots \equiv \bar{B}_{m,i} \equiv \cdots \mod \overline{\mathfrak{P}}^{a_i}.$$

Setzt man dabei $\bar{B}_{m_i,i} = \bar{B}_i$, so ist

$$\bar{B}_{m,i} - \bar{B}_i \equiv 0 \mod \overline{\mathfrak{P}}^{a_i};$$

also gilt $(\bar{B}_{m,i} - \bar{B}_i) f_i \sim 0$ $(\bar{\mathfrak{P}}^{\infty})$ und infolgedessen ist

$$\bar{B}_{m,i}f_i = \bar{B}_i f_i + (\bar{B}_{m,i} - \bar{B}_i) f_i \sim \bar{B}_i f_i \qquad (\bar{\mathfrak{P}}^{\infty}).$$

Man erhält also aus (6.7);

(6.8)
$$\bar{B}_1 f_1 + \bar{B}_2 f_2 + \cdots + \bar{B}_{r-1} f_{r-1} + \bar{I} l^b f_r \sim 0$$
 $(\bar{\mathfrak{P}}^m),$

woraus nach Hilfssatz 12

$$\bar{B}_1 f_1 + \bar{B}_2 f_2 + \cdots + \bar{B}_{r-1} f_{r-1} + \overline{II}^b f_r \sim 0 \qquad (\overline{\mathfrak{P}}^{\infty})$$

folgt, was aber ein Widerspruch ist. Somit ist bewiesen:

Hilfssatz 13. Es seien f_1, f_2, \dots, f_r \overline{\nabla}-unabhängige, normale 2-Kozyklen von \overline{\nabla}\sqrt{0} \cdot \vertile{\nabla} \text{ und } a_1, a_2, \dots, a_r \text{ bzw. die } \overline{\nabla}-L\vertile{a}ngen von } f_1, f_2, \dots, f_r \text{ in } H_0^{(2)}(\overline{\nabla}\sigma) \vertile{\nabla}\text{.} Dann existiert eine nat\vertile{u}rliche Zahl N von der Art, da\beta f\vertile{u}r \text{ jedes } m \text{ mit } m \geq N \ifti f_1, f_2, \dots, f_r \text{ in } H_0^{(2)}(\overline{\nabla}\sigma) \vertile{\nabla}\vertile{\mathbar{m}}_m\text{ bzw. die } \overline{\nabla}-L\vertile{a}ngen \, a_1, a_2, \dots, a_r \text{ besitzen und sogar als } 2-Kozyklen von \overline{\nabla}\sigma \overline{\nabla}\vertile{u} \overline{\mathbar{u}}\vertile{\nabla}

Nun kann man folgenden Satz beweisen:

Satz 6. Es existiert eine natürliche Zahl N derart, daß für jedes m mit $m \ge N$ die (normale) 2-Kohomologiegruppe $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{R}}_m)$ $(H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{R}}_m))$ zu $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{O}})$ $(H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{O}}))$ $\overline{\mathbb{O}}$ -isomorph ist.

Beweis. Nach Hilfssatz 1 braucht man den Satz nur für die normalen 2-Kohomologiegruppen zu beweisen. Nach Satz 5 existiert eine natürliche Zahl N_1 von der Art, daß für jedes m mit $m \geq N_1$ die $\overline{\mathbb{Q}}$ -Länge von $H_0^{(2)}(\mathbb{Q}/\mathfrak{Q};\overline{\mathbb{M}}_m)$ gleich $\overline{d}(K/k)$ ist, wo $\overline{d}(K/k)$ den $\overline{\mathbb{Q}}$ -Exponenten der Differente von K/k bezeichnet. Wenn also $H_0^{(2)}(\mathbb{Q}/\mathfrak{Q};\overline{\mathbb{Q}})$ der Nullmodul ist, so ist $\overline{d}(K/k)=0$ und infolgedessen ist $H_0^{(2)}(\mathbb{Q}/\mathfrak{Q};\overline{\mathbb{M}}_m)$ auch Nullmodul. Ist aber $H_0^{(2)}(\mathbb{Q}/\mathfrak{Q};\overline{\mathbb{Q}})$ kein Nullmodul, so besitzt $H_0^{(2)}(\mathbb{Q}/\mathfrak{Q};\overline{\mathbb{Q}})$ nach Satz 5 eine endlich $\overline{\mathbb{Q}}$ -Basis $\overline{C}_1,\overline{C}_2,\cdots,\overline{C}_r$. Wir bezeichnen mit den \overline{l}_i $(i=1,2,\cdots,r)$ bzw. die $\overline{\mathbb{Q}}$ -Längen von den \overline{C}_i $(i=1,2,\cdots,r)$ und mit den f_i $(i=1,2,\cdots,r)$ bzw. die Vertreterkozyklen aus den \overline{C}_i . Nach Hilfssatz 13 existiert dann eine natürliche Zahl N_2 von der Art, daß für jedes m

mit $m \geq N_2 f_1, f_2, \cdots, f_r$ als 2-Kozyklen aus $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ $\overline{\mathbb{O}}$ -unabhängig sind und bzw. die $\overline{\mathbb{O}}$ -Längen $\overline{l}_1, \overline{l}_2, \cdots, \overline{l}_r$ besitzen. Für jedes m mit $m \geq M$ ax (N_1, N_2) bezeichnen wir mit $\overline{C}_m(f_t)$ $(1 \leq i \leq r)$ die f_i enthaltende 2-Kohomologieklasse aus $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$; offenbar ist die $\overline{\mathbb{O}}$ -Länge von $\overline{C}_m(f_t)$ in $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ gleich \overline{l}_i . Ferner sind $\overline{C}_m(f_1), \overline{C}_m(f_2), \cdots, \overline{C}_m(f_r)$ in $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ $\overline{\mathbb{O}}$ -unabhängig. Daher besitzt der durch die $\overline{C}_m(f_i)$ $(i=1,2,\cdots,r)$ erzeugte $\overline{\mathbb{O}}$ -Untermodul von $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$ die $\overline{\mathbb{O}}$ -Länge $\Sigma_{i=1}^r \overline{l}_i = \overline{d}(K/k)$ $(=\overline{\mathbb{O}}$ -Länge von $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$); d. h. die $\overline{C}_m(f_i)$ $(i=1,2,\cdots,r)$ bilden eine $\overline{\mathbb{O}}$ -Basis von $H_o^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)$.

Eine beliebige 2-Kohomologieklasse \bar{C} aus $H_o^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{O}})$ ist von Form $\bar{C}=\sum_{i=1}^r \bar{A}_i\bar{C}_i$ mit den Koeffizienten \bar{A}_i ($i=1,2,\cdots,r$) aus $\overline{\mathbb{O}}$. Ordnet man nun \bar{C} die 2-Kohomologieklasse $\bar{C}_m=\sum_{i=1}^r \bar{A}_i\bar{C}_m(f_i)$ zu, so ergibt sich durch diese Zuordung ein $\overline{\mathbb{O}}$ -Homomorphismus ψ_m von $H_o^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{O}})$ auf $H_o^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{O}}_m)$, weil die $\bar{C}_m(f_i)$ ($i=1,2,\cdots,r$) eine $\overline{\mathbb{O}}$ -Basis von $H_o^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{O}}_m)$ bilden. Da die $\overline{\mathbb{O}}$ -Längen von $H_o^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{O}})$ und $H_o^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathbb{O}}_m)$ einander gleich sind, so muß ψ_m sicher ein Isomorphismus sein, w. z. b. w.

Es sei $K^{(1)}$ ein Zwischenkörper zwischen k und K und $\mathbb{O}^{(1)}$ die Hauptordnung von $K^{(1)}$. Ordnet man dann einem beliebigen 2-Kozyklus f von \mathbb{O}/\mathfrak{o} über $\overline{\mathbb{R}}_m$ die Einschränkung $f^{(1)}$ von f auf $\mathbb{O}^{(1)}/\mathfrak{o}$ zu, so induziert diese Zuordnung einen $\overline{\mathbb{O}}$ -Homomorphismus Φ von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{R}}_m)$ in $H^{(2)}(\mathbb{O}^{(1)}/\mathfrak{o}; \overline{\mathbb{R}}_m)$. Dabei bezeichnet $\overline{\mathbb{R}}_m$ wieder den Restklassenring von $\overline{\mathbb{O}}$ nach $\overline{\mathbb{R}}^m$. Nach Satz 5 existiert eine natürliche Zahl N derart, daß für jedes m mit $m \geq N$ die $\overline{\mathbb{O}}$ -Längen von $H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathbb{R}}_m)$, $H^{(2)}(\mathbb{O}/\mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ und $H^{(2)}(\mathbb{O}^{(1)}/\mathfrak{o}; \overline{\mathbb{R}}_m)$ bzw. $\overline{d}(K/k)$, $\overline{d}(K/K^{(1)})$ und $\overline{d}(K^{(1)}/k)$ sind, wo $\overline{d}(K/k)$, $\overline{d}(K/K^{(1)})$ und $\overline{d}(K^{(1)}/k)$ bzw. die $\overline{\mathbb{R}}$ -Exponenten der Differenten von K/k, $K/K^{(1)}$ und $K^{(1)}/k$ bezeichnen. Ferner kann man nach Satz 1 ohne Einschränkung der Allgemeinheit annehmen, daß für jedes m ($\geq N$) die in $\mathbb{O}^{(1)}$ zerfallende Untergruppe $H^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ zu $H^{(2)}(\mathbb{O}/\mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ $\overline{\mathbb{O}}$ -isomorph ist. Da offenbar $H^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathbb{R}}_m)$ den Kern des \mathbb{O} -Homomorphismus Φ bildet, so schließt man ohne Schwierigkeit:

$$\overline{d}(K/k) \leq \overline{d}(K^{(1)}/k) + \overline{\mathbb{Q}}\text{-Länge von } H^{(2)}(\mathbb{Q}/\mathfrak{o}, \mathbb{Q}^{(1)}; \overline{\Re}_m)$$

$$\leq \overline{d}(K^{(1)}/k) + \overline{d}(K/K^{(1)}).$$

Wegen des Schachtelungssatzes über Differenten muß dabei Gleichheit $\overline{d}(K/k) = \overline{d}(K^{(1)}/k) + \overline{d}(K/K^{(1)})$ bestehen; d. h. durch Φ ergibt sich folgende $\overline{\mathbb{Q}}$ -Isomorphierelation;

$$(6.9) H^{(2)}(\mathbb{O}/\mathfrak{o}; \overline{\mathfrak{R}}_m)/H^{(2)}(\mathbb{O}/\mathfrak{o}, \mathbb{O}^{(1)}; \overline{\mathfrak{R}}_m) \cong H^{(2)}(\mathbb{O}^{(2)}/\mathfrak{o}; \overline{\mathfrak{R}}_m).$$

Satz 7. Es sei O(1) die Hauptordnung eines beliebigen Zwischen-

körpers $K^{(i)}$ zwischen k und K. Dann existiert eine natürliche Zahl N von der Art, daß für jedes m mit $m \ge N$ stets die \mathbb{D} -Isomorphierelation

$$H^{(2)}(\mathbb{O}/\mathfrak{o};\overline{\mathfrak{R}}_m)/H^{(2)}(\mathbb{O}/\mathfrak{o},\mathbb{O}^{(1)};\overline{\mathfrak{R}}_m)\cong H^{(2)}(\mathbb{O}^{(1)}/\mathfrak{o};\overline{\mathfrak{R}}_m)$$

gilt, wo $\overline{\mathbb{R}}_m$ den Restklassenring von $\overline{\mathbb{Q}}$ nach $\overline{\mathbb{R}}_m$ und $H^{(2)}(\mathbb{Q}/\mathfrak{d}, \mathbb{Q}^{(1)}; \overline{\mathbb{R}}_m)$ die in $\mathbb{Q}^{(1)}$ zerfallende Untergruppe von $H^{(2)}(\mathbb{Q}/\mathfrak{d}; \overline{\mathbb{R}}_m)$ bezeichnet.

Nun sei $f^{(1)}$ ein 2-Kozyklus von $\mathfrak{D}^{(1)}/\mathfrak{v}$ über $\overline{\mathfrak{R}}_m$. Dann besagt die Relation (6.9), daß es einen 2-Kozyklus f von $\mathfrak{D}/\mathfrak{v}$ über $\overline{\mathfrak{R}}_m$ gibt, dessen Einschränkung auf $\mathfrak{D}^{(1)}/\mathfrak{v}$ mod $\overline{\mathfrak{P}}_m$ zu $f^{(1)}$ kohomolog ist; d.h. als 2-Kozyklus von $\mathfrak{D}^{(1)}/\mathfrak{v}$ über $\overline{\mathfrak{R}}_m$ gilt:

$$f \sim f^{(1)}$$
 $(\overline{\mathfrak{P}}^m).$

Es existiert also eine 1-Kokette $g^{(1)}$ von $\mathfrak{D}^{(1)}/\mathfrak{v}$ über $\overline{\mathfrak{R}}_m$, für die in $H^{(2)}(\mathfrak{D}^{(1)}/\mathfrak{v}; \overline{\mathfrak{R}}_m)$

$$f \equiv f^{(1)} + \partial g^{(1)} \mod \overline{\mathfrak{P}}_m$$

gilt. Wie schon am Anfang von §2 gezeigt ist, besitzt $g^{(1)}$ eine Fortsetzung g auf $\mathfrak{D}/\mathfrak{v}$. Der 2-Kozyklus $f-\partial g$ ist also eine Fortsetzung von $f^{(1)}$ auf $\mathfrak{D}/\mathfrak{v}$. Somit ist bewiesen:

Zusatz 1 zn Satz 7. Es existiert eine natürliche Zahl N derart, daß für jedes m mit $m \ge N$ ein beliebiger 2-Kozyklus $f^{(1)}$ von $\mathbb{C}^{(1)}/\mathfrak{o}$ über \mathfrak{R}_m stets auf \mathbb{C}/\mathfrak{o} fortsetzbar ist.

Stimmt nun $K^{(1)}$ mit seinem $Tr\"{a}gheitsk\"{o}rper$ über k überein, so ist $\mathbb{O}^{(1)}$ einfach normal über \mathfrak{o} , und der $\overline{\mathfrak{P}}$ -Exponent der Differente von $K^{(1)}/k$ ist gleich $\mathfrak{0}^{(1)}$. Also ist $H^{(2)}(\mathbb{O}^{(1)}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$ nach Satz 3 stets Nullmodul. Weil aber für jedes m $H^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)/H^{(2)}(\mathbb{O}/\mathfrak{o}\,,\,\mathbb{O}^{(1)}\,;\,\overline{\mathfrak{R}}_m)$ $\overline{\mathbb{O}}$ -isomorph in $H^{(2)}(\mathbb{O}^{(1)}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)$ abgebildet ist, so muß $H^{(2)}(\mathbb{O}/\mathfrak{o}\,;\,\overline{\mathfrak{R}}_m)=H^{(2)}(\mathbb{O}/\mathfrak{o}\,,\,\mathbb{O}^{(1)}\,;\,\overline{\mathfrak{R}}_m)$ sein; d. h. jeder 2-Kozyklus von \mathbb{O}/\mathfrak{o} über \mathfrak{R}_m zerfällt stets in $\mathbb{O}^{(1)}$.

Zusatz 2 zu Satz 7. Es sei $K^{(1)}$ ein Zwischenkörper zwischen k und K, und $\mathbb{O}^{(1)}$ sei die Hauptordnung von $K^{(1)}$. Ist dann $K^{(1)}$ mit seinem Trägheitskörper über k identisch, so zerfällt jeder 2-Kozyklus von \mathbb{O}/\mathfrak{o} über \Re_m stets in $\mathbb{O}^{(1)}$.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received June 28, 1955)

¹⁾ Vgl. etwa E. Artin, a. a. O., S. 91-92.