A NOTE ON MATRIX RINGS

HISAO TOMINAGA

Let R be a ring with an identity. Often, R can be represented as the total matrix ring over an m-irreducible ring (Definition 1). For example, a ring with minimum condition and a homogeneous π -regular ring ([4, Theorem 4.2] or [5, Theorem 5.6])) possess this property. For such rings, it seems to be of interest to investigate the problem concerning the uniqueness of the representations as total matrix rings over m-irreducible rings. In this note, we shall examine this problem for a special kind of rings.

Throughout the note, R will be a ring with an identity, and the terms "radical", "primitive ideal" will be in Jacobson's sense ([3]).

We shall begin our course by setting the following definition:

Definition 1. A ring R is said to be *m-irreducible* if R is not representable as the total $n \times n$ matrix ring over any ring with n > 1.

A P-ring ([6, Definition 4.1]) is m-irreducible. In general, if a non-zero homomorphic image of R is m-irreducible, then so is R.

Definition 2. Let N be the radical of a ring R. If R/N is a (finite or infinite) complete direct sum of total matrix rings over division rings: $\sum_{\sigma} (\overline{D}_{\sigma})_{n_{\sigma}}$, then R is said to be weakly semi-primary.

Lemma 1. If R is a weakly semi-primary ring, then

- i) $(R)_n$ is weakly semi-primary,
- ii) eRe is also weakly semi-primary, where e is an idempotent.

Proof. i) As is well-known, the radical of $(R)_n$ is $(N)_n$. Hence $R/N = \sum_{\sigma}^{c} (\overline{D}_{\sigma})_{n_{\sigma}}$ implies that $(R)_n/(N)_n \cong \sum_{\sigma}^{c} (\overline{D}_{\sigma})_{nn_{\sigma}}$, that is, $(R)_n$ is weakly semi-primary.

ii) The radical of eRe is $eNe = eRe \cap N$ ([4, Theorem 3.1]). Hence, $eRe/eNe \cong \bar{e}R\bar{e} = \sum_{\sigma} \bar{e}(\bar{D}_{\sigma})_{n_{\sigma}}\bar{e} = \sum_{\sigma} \bar{e}_{\sigma}(\bar{D}_{\sigma})_{n_{\sigma}}\bar{e}_{\sigma}$, where \bar{e}_{σ} will mean the residue class modulo N, and where \bar{e}_{σ} will be the σ -component of \bar{e} . Clearly $\bar{e}_{\sigma}(\bar{D}_{\sigma})_{n_{\sigma}}\bar{e}_{\sigma}$ is simple and satisfies the minimum condition. These facts show that eRe is weakly semi-primary.

The following is an immediate consequence of Lemma 1: Corollary. The total $n \times n$ matrix ring $(R)_n$ is weakly semi-primary if and only if R is so.

¹⁾ Numbers in brackets refer to the references cited at the end of this note.

Lemma 2. Let
$$\mathfrak{M} = \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_n$$

= $\mathfrak{n}_1 \oplus \cdots \oplus \mathfrak{n}_n$

be two direct decompositions of a module $\mathfrak M$ with an operator domain $\mathfrak Q$ into n isomorphic submodules. If the $\mathfrak Q$ -endomorphism ring of $\mathfrak M_1$ is weakly semi-primary, then $\mathfrak M_1 \cong \mathfrak M_1$.

*Proof.*¹⁾ Let R be the \mathcal{Q} -endomorphism ring of \mathfrak{M} , and let e_i and f_j be the projections onto \mathfrak{M}_i and \mathfrak{N}_j respectively. Then $R = Re_1 \oplus \ldots \oplus Re_n$ ($\cong (e_1Re_1)_n$), whence R is weakly semi-primary by Corollary to Lemma 1. Here we set $R/N = \sum_{\sigma} (\overline{D}_{\sigma})_{n_{\sigma}}$, N the radical of R. Next \bar{e}_i and \bar{f}_j will denote the residue classes of e_i and f_j modulo N respectively. Then,

$$\bar{e}_1 \div \cdots \cdots + \bar{e}_n = \bar{f}_1 + \cdots \cdots + \bar{f}_n = \bar{1}.$$

To be easily seen, \bar{e}_1 is isomorphic to \bar{f}_1 modulo the primitive ideal $\sum_{\sigma \neq \tau}^{c} (\overline{D}_{\sigma})_{n_{\sigma}}$ for each τ . Hence \bar{e}_1 is isomorphic to \bar{f}_1 , whence e_1 is isomorphic to f_1 , that is, \mathfrak{m}_1 is isomorphic to \mathfrak{n}_1 .

Considering R itself and the totality of left-multiplications of elements of R as $\mathfrak M$ and $\mathcal Q$ in Lemma 2 respectively, we obtain the next:

Corollary. Let $R = (R_1)_n = (R_2)_n$. If R is weakly semi-primary, then $R_1 \cong R_2$.

Definition 3. A weakly semi-primary ring is called a *semi-primary* ring if the radical of the ring is nil.

Now we are going to establish our principal theorem which can be considered as a generalization of the familiar structure theorem of Wedderburn.

Theorem. Let R be a semi-primary ring: $R/N = \sum_{\sigma}^{\sigma} (\overline{D}_{\sigma})_{n_{\sigma}}$, N the radical, and let n be the greatest common divisor of n_{σ} 's. Then,

- i) R is the total $n \times n$ matrix ring over an m-irreducible ring,
- ii) $R = (R_1)_n = (R_2)_n$ implies that $n_1 = n_2$ and $R_1 \cong R_2$, where R_1 and R_2 are m-irreducible.

¹⁾ The present proof is essentially same with that of [7, Theorem 46.3].

²⁾ Let S be a ring and M be its radical. Two idempotents e and f are called isomorphic (in S) if there exist two elements e and e such that e is and e and e are isomorphic if and only if the left [right] ideals e [eS] and e if e are operator isomorphic ([2, pp. 527 - 528] or [7, Theorem 10.2]). If e and e are isomorphic modulo e isomorphic isomorphic ([7, Theorem 18.12]). In case e is the endomorphism ring of a module e, the isomorphism of e with e incomplism of e with e isomorphism of e with e is e in e is e in e

Proof. It is almost trivial that $R/N = (T)_n$ with a ring T. Moreover, as N is nil, we obtain that $R = (T_0)_n$ with some T_0 ([1, Theorem 1.21]). Clearly T_n is m-irreducible. For, if not, n would not be the greatest common divisor of n_0 's. If $R = (R_1)_{n_1}$, R_1 m-irreducible, then n_1 divides n. If $n_1 < n$, then $(R_1)_{n_1} \cong ((T_0)_{n/n_1})_{n_1}$ implies that $(T_0)_{n/n_1} \cong R_1$ by Corollary to Lemma 2. But it contradicts with the m-irreducibility of R_1 . Hence, $n_1 = n$ and $R_1 \cong T_0$.

Remark. Let R be an FI₁-ring of which all the primitive images have the equal degree n. Then R is a total $n \times n$ matrix ring over a P-ring. If $R = (B)_m$, B m-irreducible, then m = n.

REFERENCES

- [1] K. Asano, Theory of rings and ideals, Tokyo, Kyóritsu-sha (1949), (in Japanese).
- [2] G. AZUMAYA, On generalized semi-primary rings and Krull-Remak-Schmidt's theorem, Jap. Journ. Math., 19 (1948), 525 547.
- [3] N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. Journ. Math., 67 (1945), 300 - 320.
- [4] I. KAPLANSKY, Topological representation of algebras, Trans. Amer. Math. Soc., 68 (1950), 62 - 75.
- [5] J. Levitzki, On the structure of algebraic algebras and related rings, Trans. Amer. Math. Soc., 74 (1953), 384 - 409.
- [6] ——, On P-soluble rings, Trans. Amer. Math. Soc., 77 (1954), 216 237.
- [7] T. NAKAYAMA and G. AZUMAYA, Algebra II. (Theory of rings), Tokyo, Iwanami (1954), (in Japanese).

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received February 10, 1955)

¹⁾ Cf. [5, Theorem 3.2] and [5, Theorem 5.6].