NOTES ON BLOCKS OF GROUP CHARACTERS

MASARU OSIMA

Introduction. We consider a group \mathfrak{G} of finite order $g = p^a g'$, where p is a prime number and (g', p) = 1. Let $\Gamma = \Gamma(\mathfrak{G})$ denote the corresponding group ring formed with regard to an algebraic number field \mathcal{Q} which contains the g-th roots of unity. Let K_1, K_2, \ldots, K_m be the classes of conjugate elements of \mathfrak{G} . Then Γ splits into a direct sum of m simple ideals Γ_i :

$$\Gamma = \Gamma_1 \oplus \Gamma_2 \oplus \cdots \oplus \Gamma_m.$$

Denote the center of Γ by $\Lambda = \Lambda(\mathfrak{G})$. Corresponding to the decomposition (1) we have

$$(2) \Lambda = \Lambda_1 \oplus \Lambda_2 \oplus \cdots \oplus \Lambda_m,$$

where each A_i is isomorphic to Q.

Let $\mathfrak o$ be the ring of all integers of $\mathfrak Q$ and let $\mathfrak p$ be a prime ideal of $\mathfrak o$ dividing $\mathfrak p$. We denote by $\mathfrak o^*$ the ring of all $\mathfrak p$ -integers of $\mathfrak Q$, i.e., of all a/b, where a,b lie in $\mathfrak o$ and $(b,\mathfrak p)=\mathfrak o$. The ideal $\mathfrak p$ generates an ideal of $\mathfrak o^*$ which will be denoted by $\mathfrak p^*$. We then have

$$Q^* = o^*/p^* \cong o/p$$

for the residue class field. Let $\Gamma^* = \Gamma^*(\S)$ be the modular group ring of \S over \mathcal{Q}^* and let $\Lambda^* = \Lambda^*(\S)$ be its center.

In the present paper we study the structure of the center Λ^* and derive some results [1], [2] stated by R. Brauer without proofs. Some new results are also obtained. In section 1 certain ideals of Λ^* are defined. We determine the primitive idempotent elements of Λ^* in section 2¹⁾. Let

$$\Lambda^* = \Lambda_1^* \oplus \Lambda_2^* \oplus \cdots \oplus \Lambda_k^*$$

be the decomposition of A^* into indecomposable ideals A_{σ}^* . The ordinary irreducible characters χ_i of $\mathfrak G$ and the modular irreducible characters φ_{κ} of $\mathfrak G$ (for p) are distributed into s blocks B_1, B_2, \dots, B_s , each χ_i and φ_{κ} belonging to exactly one block B_{σ} . In section 3 we investigate the properties of the defect group of a block B_{σ} .

¹⁾ The same result has been obtained by H. Nagao independently.

Section 4 deals with the elementary divisors of the Cartan matrix C_{σ} of B_{σ} .

1. The classes of conjugate elements K_1 , K_2 ,, K_m of \mathfrak{G} form a basis of Λ . Here each class K_{α} is interpreted as the sum of all elements in K_{α} . We then have

$$(3) K_{\alpha}K_{\beta} = \sum_{\gamma} a_{\alpha\beta\gamma}K_{\gamma},$$

where the $a_{\alpha\beta\gamma}$ are rational integers, $a_{\alpha\beta\gamma} \geq 0$. Evidently $a_{\alpha\beta\gamma} = a_{\beta\alpha\gamma}$. Further we see easily that $\sum_{\alpha} a_{\alpha\beta\gamma} = g_{\beta}$, where g_{β} denotes the number of elements in K_{β} . The order of the normalizer $\mathfrak{N}(G_{\alpha})$ of G_{α} in \mathfrak{S} is given by $n_{\alpha} = g/g_{\alpha}$ for every element G_{α} in K_{α} . Let K_{α^*} denote the class which contains the elements reciprocal to those of K_{α} .

Lemma 1. $a_{\alpha\beta\gamma} = a_{\alpha*\gamma\beta} n_{\gamma}/n_{\beta}$.

Proof. Let $G_{\alpha}^{(i)}$ $(i=1,2,\dots,g_{\alpha})$ be the elements in K_{α} and let G_{β} be a fixed element in K_{β} . The number of elements $G_{\alpha}^{(i)}G_{\beta}$ which lie in K_{γ} is equal to $a_{\alpha}*_{\gamma\beta}$. Hence

$$n_{\beta}K_{\alpha}K_{\beta} = K_{\alpha}(\sum_{G \text{ in } \mathfrak{G}} G^{-1}G_{\beta}G) = \sum_{G \text{ in } \mathfrak{G}} G^{-1}K_{\alpha}G_{\beta}G$$

$$= \sum_{G \text{ in } \mathfrak{G}} G^{-1}(\sum_{j=1}^{g_{\alpha}} G_{\alpha}^{(j)}G_{\beta})G = \sum_{\gamma} a_{\alpha}*_{\gamma\beta}n_{\gamma}K_{\gamma}.$$

On the other hand, it follows from (3) that

$$n_{\beta}K_{\alpha}K_{\beta} = \sum_{\gamma} a_{\alpha\beta\gamma}n_{\beta}K_{\gamma}$$
.

This proves our assertion.

We shall say that a group \mathfrak{S}_x of order p^{h_x} is the defect group [2] of a class K_x if \mathfrak{S}_x is a p-Sylow-subgroup of the normalizer of suitable elements in K_x . The exponent h_x is called the defect of K_x . If we consider conjugate subgroups of \mathfrak{S} as not essentially different, then \mathfrak{S}_x is uniquely determined by K_x .

Lemma 2. Let ρ be a fixed rational integer such that $0 \le \rho \le a$. The classes K_{β} with $h_{\beta} \le \rho$ form a basis of an ideal \mathfrak{Z}_{ρ} of the center Λ^* of the modular group ring Γ^* .

Proof. If $h_{\beta} < h_{\gamma}$, then $a_{\alpha\beta\gamma} \equiv 0 \pmod{p}$ by Lemma 1, whence for any class K_{α}

¹⁾ See [7], §4.

$$K_{\alpha}K_{\beta} \equiv \sum_{\lambda} a_{\alpha\beta\gamma}K_{\gamma} \pmod{p},$$

where the sum extends over all K_{γ} with $h_{\gamma} \leq h_{\beta}$.

We have by Lemma 2 the following series:

$$(4) A^* = \beta_a = \beta_{a_0} \supset \beta_{a_1} \supset \cdots \supset \beta_{a_k} \supset 0 (0 \leq a_k).$$

Lemma 3. If no element of K_{β} lies in the centralizer $\mathbb{C}(\mathfrak{H}_{\gamma})$ of \mathfrak{H}_{γ} in \mathfrak{H} , then $a_{\alpha\beta\gamma} \equiv 0 \pmod{p}$.

Assume that $a_{\alpha\beta\gamma} = 0 \pmod{p}$ in (3). It follows from Lemma 3 that there exists an element in K_{β} which commutes with all elements of \mathfrak{D}_{γ} , and hence $\mathfrak{D}_{\gamma} \subseteq \mathfrak{D}_{\beta}$. We then have

$$K_{\alpha}K_{\beta} \equiv \sum_{\gamma} a_{\alpha\beta\gamma}K_{\gamma} \pmod{p},$$

where the sum extends over all K_{γ} with $\mathfrak{H}_{\gamma} \subseteq \mathfrak{H}_{\beta}$. Thus we obtain the

Lemma 4. Let K_{β} be a given class with the defect group \mathfrak{D}_{β} . The classes K_{γ} with $\mathfrak{D}_{\gamma} \subseteq \mathfrak{D}_{\beta}$ form a basis of an ideal $\mathfrak{Z}(\mathfrak{D}_{\beta})$ of Λ^* .

Let $\mathfrak{H}_1^{(a_i)}$, $\mathfrak{H}_2^{(a_i)}$,, $\mathfrak{H}_i^{(a_i)}$ be a system of defect groups of order p^{a_i} such that every defect group of order p^{a_i} is conjugate to exactly one $\mathfrak{H}_{\nu}^{(a_i)}$. We then see that

$$\beta_{a_i} = \beta(\delta_i^{(a_i)}) + \beta(\delta_2^{(a_i)}) + \cdots + \beta(\delta_i^{(a_i)}) + \beta_{a_{i+1}}.$$

If we set

$$\mathfrak{Z}_{a_{i}}^{(\nu)} = \mathfrak{Z}(\mathfrak{D}_{\nu+1}^{(a_{i})}) + \cdots + \mathfrak{Z}(\mathfrak{D}_{t}^{(a_{i})}) + \mathfrak{Z}_{a_{i+1}},$$

then every $\mathfrak{Z}_{a_i}^{(\nu)}$ is an ideal of Λ^* and

$$\mathfrak{Z}_{a_i} = \mathfrak{Z}_{a_i}^{(0)} \supset \mathfrak{Z}_{a_i}^{(1)} \supset \cdots \supset \mathfrak{Z}_{a_i}^{(t-1)} \supset \mathfrak{Z}_{a_{i+1}}.$$

Further if we set $(3(\mathfrak{D}_{\nu}^{(a_i)}) + 3_{a_{i+1}})/3_{a_{i+1}} = \mathfrak{M}_{\nu}$, then

$$\mathfrak{Z}_{a_t}/\mathfrak{Z}_{a_{t+1}} = \mathfrak{M}_{\tau} \oplus \mathfrak{M}_{2} \oplus \cdots \oplus \mathfrak{M}_{t}$$
.

2. Every ordinary irreducible character α_i of \mathfrak{G} determines a character ω_i of Λ which is given by

(6)
$$\omega_i(K_a) = g_a \chi_i(G_a)/z_i,$$

where G_{α} is an element in K_{α} and z_i is the degree of x_i . The

¹⁾ See [1], p. 112.

²⁾ Strictly speaking, \mathfrak{H}_{γ} is conjugate in \mathfrak{G} to a subgroup of \mathfrak{H}_{β} .

modular characters ω^* of Λ^* are obtained by considering the different ω_i (mod \mathfrak{p}). As was shown in [6], two characters χ_i and χ_j belong to the same block if and only if for every class K_{α}

$$\omega_i(K_\alpha) \equiv \omega_i(K_\alpha) \pmod{\mathfrak{p}}.$$

As is well known, the primitive idempotent element e_i of Λ corresponding to the character χ_i is expressed in the form

(7)
$$e_{i} = \frac{1}{g} \sum_{\alpha=1}^{m} z_{i} \chi_{i}(G_{\alpha}^{-1}) K_{\alpha}.$$

We set

$$E_{\sigma} = \sum_{i}' e_{i} = \frac{1}{\mathscr{E}} \sum_{\alpha=1}^{m} (\sum_{i}' z_{i} \chi_{i}(G_{\alpha}^{-1})) K_{\alpha}$$
,

where the sum extends over those i for which the x_i belong to a block B_{σ} . If we set

$$b_{\alpha} = \frac{1}{g} \sum_{i} z_{i} \chi_{i}(G_{\alpha}^{-1}),$$

then $b_{\alpha} = 0$ for any p-singular class K_{α} [5]. We may assume that K_1, K_2, \dots, K_{m^*} are the p-regular classes of \mathfrak{G} . We then have

(8)
$$E_{\sigma} = \sum_{\alpha=1}^{m^*} b_{\alpha} K_{\alpha} = \frac{1}{g} \sum_{\alpha=1}^{m^*} (\sum_{i}' z_{i} \chi_{i}(V_{\alpha}^{-1})) K_{\alpha},$$

where V_{α} is an element in K_{α} ($\alpha=1,2,\dots,m^*$). Denote by η_{κ} the character of the indecomposable constituent of the regular representation of \mathfrak{G} corresponding to φ_{κ} and by u_{κ} its degree. Since

$$\sum_{i}' z_{i} \chi_{i}(V_{\alpha}^{-1}) = \sum_{\kappa}' u_{\kappa} \varphi_{\kappa}(V_{\alpha}^{-1}),$$

we see that the b_{α} ($\alpha=1,2,\dots,m^*$) are p-integers of Ω . Observe that $u_{\kappa}\equiv 0 \pmod{p^{\alpha}}$ for every κ . Since $\omega_i(E_{\sigma})=\sum\limits_{\alpha=1}^{m^*}b_{\alpha}\omega_i(K_{\alpha})=1$ for any character χ_i in B_{σ} , we have

$$\sum_{i=1}^{m^*} b_{\alpha}^* \omega_i^* (K_{\alpha}) = 1,$$

where $b_{\alpha}^* = b_{\alpha} \pmod{\mathfrak{p}}$. This implies that there exists a koefficient b_{α} such that $b_{\alpha}^* \neq 0$. If we set $E_{\sigma}^* = E_{\sigma} \pmod{\mathfrak{p}}$, then we see by the above discussion that $E_{\alpha}^* \neq 0$. Evidently

$$E_{\sigma}^* = (E_{\sigma}^*)^2, \qquad E_{\sigma}^* E_{\tau}^* = 0 \quad (\sigma \neq \tau)$$

and hence s primitive idempotent elements of Λ^* are given by E_{σ}^* ($\sigma = 1, 2, \dots, s$).

Theorem 1. Every block B_{σ} contains an indecomposable character η_{κ} of degree $u_{\kappa} = 0 \pmod{p^{\alpha+1}}$.

Proof. Suppose that $u_{\kappa} \equiv 0 \pmod{p^{\alpha+1}}$ for all η_{κ} in B_{σ} . Then $b_{\alpha} \equiv 0 \pmod{p}$ for $\alpha = 1, 2, \dots, m^{*}$. This gives a contradiction.

We have for any χ_j outside of B_{σ}

(10)
$$\omega_j(E_{\sigma}) = \sum_{\alpha=1}^{m^*} b_{\alpha} \omega_j(K_{\alpha}) \equiv 0 \quad (\text{mod } \mathfrak{p}).$$

We then obtain by (9)

Theorem 2. Two characters χ_i and χ_j belong to the same block if and only if $\omega_i(K_{\alpha}) \equiv \omega_j(K_{\alpha}) \pmod{\mathfrak{p}}$ for all p-regular classes K_{α} .

Lemma 5. Let V be a fixed p-regular element of \mathfrak{G} . If $\chi_i(V) \equiv 0 \pmod{\mathfrak{p}}$ for all χ_i in B_{σ} , then $\varphi_{\kappa}(V) \equiv 0 \pmod{\mathfrak{p}}$ for all φ_{κ} in B_{σ} .

Proof. Denote by y_{σ} the number of modular characters φ_{κ} in B_{σ} . Our assertion follows immediately from the fact that the decomposition matrix D_{σ} of B_{σ} has the rank y_{σ} when it is considered mod \mathfrak{p} [6].

Let p^a be the highest power of p dividing one of the number g/z_i with χ_i in B_σ . The exponent d is called the defect of B_σ . In the following we consider a block B_σ of defect d. Since $\omega_i(K_\alpha) = g_\alpha \chi_i(V_\alpha)/z_i = g\chi_i(V_\alpha)/n_\alpha z_i$ are algebraic integers, we have for all p-regular classes K_α with $h_\alpha > d$ and for all χ_i in B_σ

$$\chi_{\iota}(V_{\alpha}) \equiv 0 \qquad (\text{mod } \mathfrak{p}).$$

Hence it follows from Lemma 5 that $b_{\omega}^*=0$ for all p-regular classes K_{ω} with $h_{\omega}>d$. On the other hand, we have $\omega_i(K_{\omega})\equiv 0\pmod{\mathfrak{p}}$ for all p-regular classes K_{ω} with $h_{\omega}< d$ and for all χ_i in B_{σ} . Consequently we have for any χ_i in B_{σ}

$$\sum_{\alpha} b_{\alpha}^* \omega_i^* (K_{\alpha}) = 1,$$

where the sum extends over all p-regular classes K_{α} of defect d. This implies that two characters χ_i and χ_j belonging to blocks of defect d appear in the same block if and only if $\omega_i(K_{\alpha}) \equiv \omega_j(K_{\alpha})$ (mod \mathfrak{p}) for all p-regular classes of defect d.

It follows from (11) that there exists a p-regular class K_{γ} of defect d such that

$$(12) b_{\gamma}^* \neq 0, \omega_i^*(K_{\gamma}) \neq 0$$

for any χ_i in B_{σ} . We have by (12) the

Lemma 6. A character χ_i belongs to a block of defect d if and only if $\omega_i(K_\alpha) \equiv 0 \pmod{\mathfrak{p}}$ for all p-regular classes K_α with $h_\alpha < d$ and $\omega_i(K_\gamma) \not\equiv 0 \pmod{\mathfrak{p}}$ for at least one p-regular class K_γ of defect d.

We see further that if $\omega_i(K_a) \equiv \geq 0 \pmod{\mathfrak{p}}$ for a *p*-regular class K_a , then χ_i belongs to a block of defect $d \leq h_a$.

We consider a character x_i of degree $z_i \equiv 0 \pmod{p^a}$. We set

$$e_i = \frac{1}{g} \sum_{\alpha=1}^m z_i \chi_i(G_{\alpha}^{-1}) K_{\alpha} = \sum_{\alpha=1}^m a_{\alpha} K_{\alpha}.$$

Then $a_{\alpha} \equiv 0 \pmod{\mathfrak{p}}$ for all K_{α} with $h_{\alpha} > 0$ since $\chi_{i}(G_{\alpha}^{-1}) \equiv 0 \pmod{\mathfrak{p}}$ for G_{α} in these classes. Hence

$$\sum_{\alpha} a_{\alpha} \omega_{\ell}(K_{\alpha}) \equiv 1 \qquad (\text{mod } \mathfrak{p}),$$

where the sum extends over all K_{α} of defect 0. Thus we see that there exists a class K_{ρ} of defect 0 such that $\omega_{i}(K_{\rho}) \equiv 0 \pmod{\mathfrak{p}}$. Since any class of defect 0 is p-regular, we have by Lemma 6 the following

Lemma 7. A character χ_i of degree $z_i \equiv 0 \pmod{p^a}$ belongs to a block of defect 0.

Theorem 3. Let B be a set of ordinary characters of \mathfrak{G} such that $\sum_{\chi_i \text{ in } B} \chi_i(V) \chi_i(S) = 0$ for any p-regular element V and for any p-singular element S. Then B is a collection of blocks of $\mathfrak{G}^{(1)}$.

Proof. Denote by B'_{σ} the set of characters χ_i which lie in both B and B_{σ} . We then have [6, Theorem 6]

$$\sum_{i}' \chi_{i}(V) \chi_{i}(S) = 0,$$

where the sum extends over all χ_i in B'_{α} . We shall prove that if B'_{σ} is not empty, then $B'_{\sigma} = B$, namely, B contains all χ_i in B_{σ} . For a fixed p-regular element V, we consider a generalized character

$$\Theta_V(G) = \sum_{i}' \chi_i(V) \chi_i(G)$$
,

where the sum extends over all χ_i in B'_{σ} . Applying Theorem 17 [4] to $\Theta_{r}(G)$, we have $\Theta_{r}(G) = \sum_{\kappa} s_{\kappa}(V) \eta_{\kappa}(G)$. Since the $\chi_{i}(V)$ are algebraic integers, the $s_{\kappa}(V)$ are also algebraic integers.²⁾ This implies that

¹⁾ The converse of the theorem is also true. See Theorem VIII [5].

²⁾ Cf. the proof of second half of Theorem 17 [4].

$$\frac{1}{g}\Theta_{V}(1) = \frac{1}{g}\sum_{i} z_{i}\chi_{i}(V) = \frac{1}{g}\sum_{\kappa} u_{\kappa}s_{\kappa}(V)$$

is a p-integer for any p-regular element V and so

$$E'_{\sigma} = \frac{1}{g} \sum_{\alpha=1}^{m^*} (\sum' z_i \chi_i(V_{\alpha}^{-1})) K_{\alpha} \qquad (\text{mod } \mathfrak{p})$$

is an idempotent element of Λ^* . Since $\omega_j(E_a')=1$ for χ_j in B_σ' , $E_\sigma' \not\equiv 0$ (mod \mathfrak{p}). Suppose that a character χ_k in B_σ does not appear in B_σ' . Then $\omega_k(E_\sigma')=0$. On the other hand, we have $\omega_k(E_\sigma')\equiv 1 \pmod{\mathfrak{p}}$ since $\omega_k(K_a)\equiv \omega_j(K_a) \pmod{\mathfrak{p}}$. This gives a contradiction. Hence if B contains a character χ_l in B_σ , then all characters in B_σ appear in B.

3. Let \mathfrak{P} be any subgroup of \mathfrak{P} and let its order be p^h , $h \geq 0$. Denote by $\mathfrak{P}(\mathfrak{P})$ the centralizer of \mathfrak{P} in \mathfrak{P} and by $\mathfrak{N}(\mathfrak{P})$ the normalizer of \mathfrak{P} in \mathfrak{P} . Let \mathfrak{N} be a subgroup such that

$$\mathfrak{G}(\mathfrak{H}) \subseteq \mathfrak{N} \subseteq \mathfrak{N}(\mathfrak{H}).$$

If K_{α}^{0} is the part of K which lies in $\mathfrak{C}(\mathfrak{P})$, then either $K_{\alpha}^{0}=0$ or K_{α}^{0} is a sum of complete classes of \mathfrak{R} . As was shown in [2], we have from (3)

$$(15) K_{\alpha}^{0}K_{\beta}^{0} = \sum_{\gamma} a_{\alpha\beta\gamma}K_{\gamma}^{0} (\text{mod } p).$$

Hence the classes K_{α} with $K_{\alpha}^{0} = 0$ form a basis of an ideal T^{*} of Λ^{*} . On the other hand, the $K_{\alpha}^{0} \neq 0$ can be considered as the basis of a subring R^{*} of the center $\Lambda^{*}(\mathfrak{R})$ of the modular group ring $\Gamma^{*}(\mathfrak{R})$ of \mathfrak{R} . (15) implies

$$(16) R^* \cong \Lambda^*/T^*.$$

Let E_{σ}^* be a primitive idempotent element of Λ^* corresponding to B_{σ} . Suppose that $E_{\sigma}^* \notin T^*$ and let \tilde{E}_{σ}^* be the element of R^* corresponding to E_{σ}^* (mod T^*) in (16). Then \tilde{E}_{σ}^* is a sum of primitive idempotent elements of $\Lambda^*(\mathfrak{N})$. We denote by $\tilde{B}^{(\sigma)}$ the collection of blocks of $\Lambda^*(\mathfrak{N})$ determined by \tilde{E}_{σ}^* . If a block \tilde{B}_{τ} of $\Lambda^*(\mathfrak{N})$ is contained in $\tilde{B}^{(\sigma)}$, then we say that \tilde{B}_{τ} determines the block B_{σ} of Λ^* . We have for χ_t in B_{σ} and $\tilde{\chi}_{\rho}$ in \tilde{B}_{τ}

(17)
$$\omega_{\iota}(K_{\alpha}) \equiv \sum_{\mu} \widetilde{\omega}_{\rho}(\widetilde{K}_{\mu}) \qquad (\text{mod } \mathfrak{p}),$$

where \widetilde{K}_{μ} ranges over all classes of $\mathfrak R$ which lie in K_{α} and whose

elements belong to the centralizer $\mathfrak{T}(\mathfrak{Y})$ of \mathfrak{Y} . If K_{α} belongs to T^* , then

$$\omega_i(K_{\alpha}) \equiv 0 \qquad (\text{mod } \mathfrak{p}).$$

Lemma 8. If $E_{\sigma}^* \in T^*$, then there is a class K_{σ} in T^* such that $\omega_{\iota}(K_{\sigma}) \equiv 0 \pmod{\mathfrak{p}}$ for χ_{ι} in B_{σ} , and conversely.

As was shown in section 2, there is a p-regular class K_{γ} of defect d such that $b_{\gamma}^* \neq 0$ and $\omega_i^*(K_{\gamma}) \neq 0$ for χ_i in B_{σ} of defect d. Let $\mathfrak D$ be a subgroup of $\mathfrak D$ which is not conjugate to a subgroup of the defect group $\mathfrak D_{\gamma}$ of K_{γ} and let p^* be its order. Choose $\mathfrak D$ in (14) as the normalizer $\mathfrak D(\mathfrak D)$ of $\mathfrak D$. Our assumption implies that $K_{\gamma}^0 = 0$ and hence K_{γ} lies in T^* . Since $\omega_i(K_{\gamma}) \equiv 0 \pmod{\mathfrak p}$, it follows from Lemma 8 that $E_{\sigma}^* \in T^*$. Consequently $b_{\sigma}^* = 0$ for any class K_{σ} outside of T^* . We then have

Theorem 4. Let $E_{\sigma}^* = \sum_{\alpha=1}^{m^*} b_{\alpha}^* K_{\alpha}$ be a primitive idempotent element of Λ^* corresponding to a block B_{σ} and let $b_{\gamma}^* \neq 0$, $\omega_i^*(K_{\gamma}) \neq 0$ for χ_i in B_{σ} . If $b_{\alpha}^* \neq 0$, then $\mathfrak{D}_{\alpha} \subseteq \mathfrak{D}_{\gamma}$.

The defect group \mathfrak{D}_{γ} of K_{γ} in Theorem 4 is called the defect group of the block B_{σ} . Theorem 4 implies that the defect group of B_{σ} is uniquely determined by B_{σ} if we consider conjugate subgroups of \mathfrak{B} as not essentially different. The defect group of B_{σ} will be denoted by \mathfrak{D}_{σ} . It follows that $A_{\sigma}^* = A^* E_{\sigma}^* \subseteq \mathfrak{F}(\mathfrak{D}_{\sigma})$.

Corollary 1. Let B_{σ} be a block of defect d with the defect group \mathfrak{D} . Then $\sum_{\alpha} b_{\alpha} \omega_i(K_{\alpha}) \equiv 1 \pmod{\mathfrak{p}}$ for χ_i in B_{α} , where the sum extends over all p-regular classes K_{α} with $\mathfrak{P}_{\alpha} = \mathfrak{D}$.

Corollary 2. Two characters χ_i and χ_j belonging to blocks with the defect group \mathfrak{D} appear in the same block if and only if $\omega_i(K_a)$ $\equiv \omega_j(K_a) \pmod{\mathfrak{p}}$ for all p-regular classes K_a with $\mathfrak{D}_a = \mathfrak{D}$.

It follows from (18) that if $\omega_i(K_a) \not\equiv 0 \pmod{\mathfrak{p}}$ for χ_i in B_{σ} with the defect group \mathfrak{D} , then $\mathfrak{D} \subseteq \mathfrak{D}_{\sigma}$.

Lemma 9. If \mathfrak{G} contains a normal subgroup \mathfrak{S} of order p^a , d > 0, then all blocks of \mathfrak{G} have at least the defect d.

Proof. Since every block B_{σ} of \mathfrak{G} contains at least one character of $\mathfrak{G}/\mathfrak{H}$, our assertion is proved readily.

Theorem 5. The defect group $\mathfrak D$ of a block B_a is a maximal normal p-subgroup of the normalizer $\mathfrak N(\mathfrak D)$ of $\mathfrak D$ in $\mathfrak G$.

Proof. Choose \mathfrak{N} in (14) as the normalizer $\mathfrak{N}(\mathfrak{D})$. Since there exists a p-regular class K_{γ} with the defect group $\mathfrak{D}_{\gamma} = \mathfrak{D}$ such that

 $\omega_i(K_\gamma) \equiv 0 \pmod{\mathfrak{p}}$ for χ_i in B_σ and since K_γ contains only one class \widetilde{K}_μ of $\mathfrak{N}(\mathfrak{D})$ which consists of elements of $\mathfrak{C}(\mathfrak{D})$, we have by (17)

$$\omega_i(K_{\gamma}) \equiv \tilde{\omega}_o(\widetilde{K}_u) \not\equiv 0 \qquad (\text{mod } \mathfrak{p})$$

for any $\tilde{\chi}_{\rho}$ in a block \tilde{B}_{τ} of $\mathfrak{N}(\mathfrak{D})$ corresponding to B_{σ} . Hence it follows from Lemmas 6 and 9 that the defect group of \tilde{B}_{τ} is \mathfrak{D} . We then see by Lemma 9 that \mathfrak{D} is a maximal normal p-subgroup of $\mathfrak{N}(\mathfrak{D})$.

Let $\mathfrak D$ be a normal subgroup of $\mathfrak D$ and let its order be p^h , h>0. We choose $\mathfrak N$ in (14) now as the normalizer $\mathfrak N(\mathfrak D)=\mathfrak D$. Since $\mathfrak D(\mathfrak D)$ is a normal subgroup of $\mathfrak D$, if $K_\alpha^0 \neq 0$, then $K_\alpha^0 = K_\alpha$. The classes K_α such that $K_\alpha^0 \neq 0$ form a basis of a subring R^* of A^* . We then have

(19)
$$\Lambda^* = R^* + T^*, \qquad R^* \cong \Lambda^* / T^*.$$

Since the defect group of every block B_{σ} of \mathfrak{G} contains $\mathfrak{H}^{,0}$ no E_{σ}^{*} lies in T^{*} and hence $E_{\sigma}^{*} \in R^{*}$. Consequently T^{*} is contained in the radical of A^{*} . This, combined with Theorem 4, yields the

Lemma 10. Let \mathfrak{H} be a normal p-subgroup of \mathfrak{G} and let B_{σ} be a block of \mathfrak{G} with the defect group \mathfrak{H} . Then

$$E_{\alpha}^* = \sum_{\alpha} b_{\alpha}^* K_{\alpha}$$
,

where the sum extends over the p-regular classes K_{α} with $\mathfrak{H}_{\alpha} = \mathfrak{H}$. Now we can prove the following

Theorem 6. § possesses r blocks of defect d with the defect group \mathfrak{D} if and only if $\mathfrak{N}(\mathfrak{D})$ possesses r blocks of defect d (with the defect group \mathfrak{D}).

Theorem 7. If \mathfrak{G} contains a normal p-subgroup \mathfrak{F} and if the centralizer $\mathfrak{C}(\mathfrak{F})$ of \mathfrak{F} in \mathfrak{G} is also a p-group, then \mathfrak{G} possesses only one block.²⁾

Proof. The subring R^* of Λ^* in (19) can be considered as the subring of the center $\Lambda^*(\mathbb{C}(\mathfrak{P}))$ of $\Gamma^*(\mathbb{C}(\mathfrak{P}))$. Hence, by our hypothesis, R^* contains only one primitive idempotent element. Since any primitive idempotent element of Λ^* is contained in R^* , we see that Λ^* is completely primary.

4. We arrange $\varphi_{\kappa}(V_{\alpha})$, $\eta_{\kappa}(V_{\alpha})$ in matrix form

¹⁾ See Lemma 1 [3].

²⁾ This is an improvement of Lemma 2 [3].

$$\emptyset = (\varphi_{\kappa}(V_{\alpha})), \qquad H = (\eta_{\kappa}(V_{\alpha}))$$

(κ row index, α column index; κ , $\alpha = 1, 2, \dots, m^*$). We have by [6]

$$(20) | \boldsymbol{\varrho} | \equiv 0 (\text{mod } \mathfrak{p}).$$

We denote by $\overline{\Phi}'$ the transepose of $\overline{\Phi} = (\varphi_{\kappa}(V_{\alpha}^{-1}))$. Then

$$\bar{\Phi}'H = (n_{\alpha}\delta_{\alpha\beta}) = T.$$

We set $Y = HT^{-1} = (\eta_{\kappa}(V_{\alpha})/n_{\alpha})$, where the $\eta_{\kappa}(V_{\alpha})/n_{\alpha}$ are p-integers [5, Theorem V]. Since $\overline{\theta}'Y = I$, we have by (20)

$$(21) |Y| \neq 0 (mod \mathfrak{p}).$$

If the block B_{σ} contains y_{σ} modular characters φ_{κ} , then we can choose a minor $| \mathscr{O}_{\sigma} |$ of degree y_{σ} containing y_{σ} rows of \mathscr{O} corresponding to B_{σ} such that $| \mathscr{O}_{\sigma} | \equiv 0 \pmod{\mathfrak{p}}$. It can be shown that it is possible to make this selection of y_{σ} columns for each block B_{σ} in such a manner that every column appears for one and only one block. Hence we may assume without restriction that

In what follows we shall denote by $K_{\sigma,1}$, $K_{\sigma,2}$,, $K_{\sigma,\nu_{\sigma}}$ the *p*-regular classes of $\mathfrak B$ associated with B_{σ} by the preceding construction. We set

$$Y_{\sigma} = (\eta_{\sigma}(V_{\sigma,\sigma})/n_{\sigma,\sigma}).$$

We then have

$$|Y_{\sigma}| = |\mathscr{O}_{\sigma}||C_{\sigma}|/\prod_{\sigma=1}^{y_{\sigma}} n_{\alpha,\sigma},$$

where C_{σ} is the Cartan matrix of B_{σ} . Since $|Y_{\sigma}|$ is p-integer and $|C_{\sigma}|$ is a power of p, it follows from (22) and (23) that $|C_{\sigma}| \geq \prod_{\alpha=1}^{y_{\sigma}} p^{h_{\alpha}, \sigma}$. On the other hand, we have

$$|C| = \prod_{\sigma} |C_{\sigma}| = \prod_{\sigma} (\prod_{\alpha=1}^{y_{\sigma}} p^{h_{\sigma}, \alpha}).$$

Hence $|C_{\sigma}| = \prod_{\alpha=1}^{y_{\sigma}} p^{h_{\sigma,\alpha}}$. This implies $|Y_{\sigma}| \equiv |0 \pmod{p}$. If we set $\emptyset_{\sigma}' Y_{\sigma} = Q_{\sigma}$, then $|Q_{\sigma}| \equiv |0 \pmod{p}$ and

$$\varrho_{\sigma}^{\prime} C_{\sigma} \varrho_{\sigma} = Q_{\sigma} T_{\sigma},$$

where $T_{\sigma} = (n_{\sigma,\alpha} \delta_{\sigma\beta})$. If we work in the ring σ^* of p-integers of Ω , we obtain by (24) the following

Theorem 8. Let $K_{\sigma,1}$, $K_{\sigma,2}$,, $K_{\sigma,\nu_{\sigma}}$ be the p-regular classes of \mathfrak{G} associated with the block B_{σ} . Then the elementary divisors of C_{σ} are the powers of p with the exponents $h_{\sigma,\infty}$ ($\alpha=1,2,\ldots,\nu_{\sigma}$).

We see easily that our theorem is identical with [1, Theorem 2]. Now we set

$$M = \begin{pmatrix} Y_1 & 0 \\ Y_2 & \\ 0 & Y_2 \end{pmatrix}.$$

Then

$$\begin{split} S &= \bar{\theta}' M = \left(\frac{1}{n_{\sigma,\alpha}} \sum_{\varphi_{\kappa} \text{ in } B_{\sigma}} \varphi_{\kappa}(V_{\tau,\beta}^{-1}) \, \eta_{\kappa}(V_{\sigma,\alpha})\right) \\ &= \left(\frac{1}{n_{\sigma,\alpha}} \sum_{\chi_{i} \text{ in } B_{\sigma}} \chi_{i}(V_{\tau,\beta}^{-1}) \, \chi_{i}(V_{\sigma,\alpha})\right) = (s(\tau,\beta; \sigma,\alpha)), \end{split}$$

where each row is characterized by a pair of indices τ , β and each column is characterized by a pair of indices σ , α . Since $|Y_{\sigma}| \equiv |\pi| = 0$ (mod \mathfrak{p}), we have

$$|S| \equiv 0 \pmod{\mathfrak{p}}.$$

By the simple computation we see that

(26)
$$K_{\sigma,\alpha}E_{\sigma} = \sum_{\tau,\beta} \left(\frac{1}{n_{\sigma,\alpha}} \sum_{\chi_{i} \text{ in } B_{\sigma}} \chi_{i}(V_{\sigma,\alpha}) \chi_{i}(V_{\tau,\beta}^{-1}) \right) K_{\tau,\beta}$$
$$= \sum_{\tau,\beta} s(\tau,\beta; \sigma,\alpha) K_{\tau,\beta}.$$

Let \mathfrak{D} be the defect group of B_{σ} . Since $E_{\sigma}^* \in \mathfrak{Z}(\mathfrak{D})$, if $\mathfrak{D}_{\tau,\beta} \not\equiv \mathfrak{D}$, then $s(\tau,\beta;\ \sigma,\alpha) \equiv 0 \pmod{\mathfrak{p}}$. We see also that $s(\tau,\beta;\ \sigma,\alpha) \equiv 0 \pmod{\mathfrak{p}}$ if $\mathfrak{D}_{\tau,\beta} \not\equiv \mathfrak{D}_{\sigma,\alpha}$. It follows from (26) that

$$(27) (K_{1,1}E_1, K_{1,2}E_1, \dots, K_{s,y_s}E_s) = (K_{1,1}, K_{1,2}, \dots, K_{s,y_s})S.$$

(25) implies that $\{K_{\sigma,\alpha}E_{\sigma}^*\}$ are linearly independent. If

$$K_{1,1}E_1$$
; $K_{1,2}E_1$,, $K_{1,y_1}E_1$, $K_{2,1}E_2$,, $K_{s,y_2}E_s$

are taken in a suitable order corresponding to (4), we have by the above argument

$$P^{-1}SP \equiv \begin{pmatrix} W_a & 0 \\ W_{a_1} & \\ & \ddots & \\ & & W_{a_k} \end{pmatrix}$$
 (mod \mathfrak{p}),

where P denotes a suitable permutation matrix. $K_{\tau,\beta}$ and $K_{\sigma,\alpha}$ range over only the p-regular classes of defect a_i in $W_{a_i} = (s^*(\tau, \beta; \sigma, \alpha))$, where $s^*(\tau, \beta; \sigma, \alpha) = s(\tau, \beta; \sigma, \alpha) \pmod{\mathfrak{p}}$. (25) yields

$$|W_{a_s}| \neq 0.$$

Moreover we may assume by (5) that

$$W_{a_1} = \begin{pmatrix} \Delta_1 & 0 \\ \Delta_2 & \\ 0 & \Delta_t \end{pmatrix},$$

where $K_{\tau,\beta}$ and $K_{\sigma,\alpha}$ range over only the *p*-regular classes with the defect group $\mathfrak{H}_{\nu}^{(a_i)}$ in $\mathcal{A}_{\nu} = (s^*(\tau,\beta;\sigma,\alpha))$. Hence

$$(29) | \Delta_{\nu} | \neq 0.$$

Consequently we have the

Lemma 11. There exists at least one class $K_{\tau,\beta}$ with $\mathfrak{D}_{\tau,\beta} = \mathfrak{D}_{\sigma,\alpha}$ such that $s^*(\tau,\beta)$; $\sigma,\alpha \neq 0$ in (26).

Theorem 9. Let $K_{\sigma,\alpha}$ ($\alpha=1,2,\dots,y_{\sigma}$) be the p-regular classes of \mathfrak{G} associated with a block B_{σ} of defect d with the defect group \mathfrak{D} . Then $\mathfrak{D}_{\sigma,\alpha}\subseteq\mathfrak{D}$ ($\alpha=1,2,\dots,y_{\sigma}$) and there exists exactly one class $K_{\sigma,\alpha}$ with $\mathfrak{D}_{\sigma,\alpha}=\mathfrak{D}$.

Proof. Lemma 11 implies $\mathfrak{D}_{\sigma,\alpha}\subseteq\mathfrak{D}$. It follows from (27) that E_{σ}^* is expressed as a linear combination of $K_{\sigma,\alpha}E_{\sigma}^*$ ($\alpha=1,2,\cdots,y_{\sigma}$). Hence there exists at least one class, say, $K_{\sigma,1}$ with $\mathfrak{D}_{\sigma,1}=\mathfrak{D}$. Suppose that $\mathfrak{D}_{\sigma,2}=\mathfrak{D}$. Then $\chi_l(V_{\sigma,1})\equiv\chi_l(V_{\sigma,2})\equiv 0\pmod{\mathfrak{p}}$ for χ_l in B_{σ} whose degree z_l is divisible by p^{a-a+1} . Let χ_j and χ_l be two characters in B_{σ} such that $z_j\equiv 0$, $z_l\equiv 0\pmod{p^{a-a+1}}$. Since $\omega_j(V_{\sigma,1})\equiv\omega_l(V_{\sigma,1})\pmod{\mathfrak{p}}$, we have $\chi_j(V_{\sigma,1})\equiv\frac{z_j}{z_l}\chi_l(V_{\sigma,1})\pmod{\mathfrak{p}}$. Similarly, $\chi_j(V_{\sigma,2})\equiv$

 $\frac{z_j}{z_l}\chi_l(V_{\sigma,2})$ (mod \mathfrak{p}). We set $Z_{\sigma}=(\chi_l(V_{\sigma,\alpha}))$, where row index i ranges over all χ_l in B_{σ} . It follows by the above argument that Z_{σ} has the rank $r < y_{\sigma}$ when it is considered mod \mathfrak{p} . But this gives a contradiction and hence the theorem is proved.

Corollary 1. Let C_{σ} be the Cartan matrix of a block B_{σ} of defect d. C_{σ} has one elementary divisor p^a while all other elementary divisors of C_{σ} are powers of p with exponents smaller than d.

Corollary 2. If there exist k p-regular classes K_{α} in \mathfrak{G} with \mathfrak{H}_{α} = \mathfrak{D} , then \mathfrak{G} possesses at most k blocks with the defect group \mathfrak{D} .

If B_{σ} is a block of defect 0, then B_{σ} consists of exactly one ordinary character χ_{ι} and one modular character φ_{κ} . Moreover $\chi_{\iota}(V) = \varphi_{\kappa}(V)$ for any p-regular element V. Since χ_{ι} with $z_{\iota} \equiv 0 \pmod{p^{\alpha}}$ belongs to a block of defect 0, χ_{ι} forms a block B_{σ} of its own.

Theorem 10. Let $K_{\sigma,\alpha}$ ($\alpha=1,2,\dots,y_{\sigma}$) be the p-regular classes of $\mathfrak S$ associated with a block B_{σ} with the defect group $\mathfrak D$ and let $r_{\sigma,\rho\nu}$ be the number of classes $K_{\sigma,\alpha}$ with $\mathfrak S_{\sigma,\alpha}=\mathfrak S_{\nu}^{(\rho)}$ ($\rho=a_i$). Then $r_{\sigma,\rho\nu}$ depends only the subgroup $\mathfrak S_{\nu}^{(\rho)}$ and the block B_{σ} .

Proof. Let $K'_{\sigma,\alpha}$ ($\alpha=1,2,\dots,y_{\sigma}$) be a second set of *p*-regular classes of \mathfrak{G} associated with B_{σ} and let $r'_{\sigma,\rho}$ be the number of classes $K'_{\sigma,\alpha}$ with $\mathfrak{H}'_{\sigma,\alpha}=\mathfrak{H}_{\nu}^{(\rho)}$. We have for $K_{\sigma,\alpha}$ with $\mathfrak{H}_{\sigma,\alpha}=\mathfrak{H}_{\nu}^{(\rho)}$

(30)
$$K_{\sigma,\alpha}E_{\sigma}^* = \sum_{\alpha} t_{\alpha\beta}K_{\sigma,\beta}'E_{\sigma}^*.$$

Here the sum extends over only those $K'_{\sigma,\beta}E_{\sigma}^*$ with $\mathfrak{D}'_{\sigma,\beta}\subseteq\mathfrak{D}_{\nu}^{(\rho)}$, since $K_{\sigma,\alpha}E_{\sigma}^*\in\mathfrak{F}(\mathfrak{D}_{\nu}^{(\rho)})$. Moreover there exists at least one $K'_{\sigma,\beta}$ with the defect group $\mathfrak{D}_{\nu}^{(\rho)}$ such that $t_{\alpha\beta}\neq 0$. Suppose that $r_{\sigma,\rho,\nu}>r'_{\sigma,\rho,\nu}$. Then we can conclude that the $r_{\sigma,\rho,\nu}$ $K_{\sigma,\alpha}E_{\sigma}^*$ are linearly dependent (mod $\mathfrak{F}_{\rho-1}$) and hence $|\mathfrak{F}_{\sigma,\rho,\nu}|=0$. This contradicts (29), so that $r_{\sigma,\rho,\nu}\leq r'_{\sigma,\rho,\nu}$. Similarly, we have $r_{\sigma,\rho,\nu}\geq r'_{\sigma,\rho,\nu}$ and hence $r_{\sigma,\rho,\nu}=r'_{\sigma,\rho,\nu}$.

References

- [1] R. Brauer, On the arithmetic in a group ring, Proc. Nat. Acad. Sci. U.S.A., 30 (1944), 109 114.
- [2] ———, On blocks of characters of groups of finite order, I, Proc. Nat. Acad. Sci. U.S.A., 32 (1946), 182 186.
- [3] ———, On a conjecture by Nakayama, Trans. Royal Soc. Canada, Series III, Sec. III, 40 (1947), 11 19.
- [4] ——, A characterization of the characters of groups of finite order, Ann. of Math., 57 (1953), 357 377.

- [5] R. Brauer and C. Nesbitt, On the modular representations of groups of finite order, Univ. Toronto Studies, Math. Series, 4 (1937), 1 20.
- [6] ———, On the modular characters of groups, Ann. of Math., 42 (1941), 556-590.
- [7] G. Shimura, On a certain ideal of the center of a Frobeneusean algebra, Sci. Papers coll. Gen. Ed. Univ. Tokyo, 2 (1952), 117 124.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received December 16, 1954)