SOME REMARKS ON 7-REGULAR RINGS OF
BOUNDED INDEX

Hisao TOMINAGA

Recently, G. Azumaya introduced the concepts of right, left, and
strong =z-regularities of elements in a ring and obtained a sufficient
condition that a right (left) =-regular element is strongly =-regular.
Previously, R. Arens and 1. Kaplansky ((1])” studied rings in which all
elements are right =-regular, and one of them continued his con-
sideration in [6]. In this note, we shall prove several additional pro-
perties of z-regular rings of bounded index. As is well-known, Neu-
mann’s regularity is preserved under the construction of the complete
matrix ring ([3, Lemma 2]). But the complete matrix ring over a
strongly regular ring is not strongly regular except trivial cases.
Qur principal aim is to show the following fact: The 7 x » complete
matrix ring over a =-regular ring of bounded index is also =-regular
and of bounded index.

§1 is preparations of subsequent sections and contains some de-
finitions and fundamental results without proofs. §2 deals with nil-
rings of bounded index, and in §3 our principal theorem will be
shown. In §4 we shall consider a ring of bounded index, and under
this assumption several properties of the unique maximal =z-regular
ideal which are similar to those of the unique maximal regular ideal
as in [3] will be investigated.

The author wishes to express his thanks to Prof. G. Azumaya
for much help and valuable advice in the course of this work.

1. Definitions and fundamental results. Let ¢ be an element of
a ring A. If there exists an element ¥ such that axe = @, we say
that a is regular. If there exists x¥ such that @&’x = a(xa®* = a), a is
said to be right (left) regular, and in case a is right as well as left
regular a is strongly regular. A regular (right regular, left regular,
strongly regular) ring will mean a ring in which all elements are
regular (right regular, left regular, strongly regular)®.

Now we introduce the following definitions. Let ¢ be an element
of a ring A. If some power of e is regular (right regular, left regular,

1) Numbers in brackets refer to the references cited at the end of this paper.
2) Cft. [10].
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strongly regular), then we say that e is =-regular (right =-regular,
left n-regular, strongly n-regular). And a n-regular (right n-regular,
left n-regular, strongly n-regular) ring will be defined in the obvious
way. A two-sided ideal in A is said to be a n-regular (strongly
n-regular) ideal if each element of the ideal is =z-regular (strongly =-
regular).

As is easily verified, ¢ is right (left) =-regular if and only if there
exist. an element ¥ and an integer »n such that @¢"*'x = a*(xa™*' = a®).
For any strongly =-regular element ¢ of a ring A, the least integer
n for which there holds ¢**'x = ¢* with some x is called the =-index
of a. - And the least upper bound of all z-indices of strongly =-regular
elements is denoted as the =#-index of A. On the other hand, the
least upper bound of all indices of nilpotent elements of A is called
the index of A. And in case the index of A is finite we say that
the.ring is of bounded index. Every nilpotent element is strongly
n-regular, and moreover the index coincides with the,z-index for such
element,

G. Azumaya proved the following theorem” :
~ Thoerem 1. Let A be a ring of bounded index. If a is right
(left) n-regular then it is strongly n-regular. And moreover, there exists
an- element x such that ax = xa and a**'x = a*, where n is the index
of A.

The proof was completed by making use of the elementary me-
thod; and as corollaries following results are obtained.

Corollary 1. For any ring A the n-index of A coincides with the
index of A.

Corollary 2. A 7ight (left) n-regular element in a ring without
nonzero nilpotent elements is strongly regular.®

In §§2-4, we shall restrict our attentions to the case of bounded
index. Hence, in this case, right =-regularity, left =-regularity, and
strong =-regularity are equivalent to each other. Further, the fol-
lowing theorem was given in [2] ([2, Theorem 5)):

Theorem 2. Under the assumption that A is of bounded index,
the following four conditions are equivalent to each other:

iy A is n-regular,

ily A is right n-regular,

ity A is left n-regular,

1) See [2]
2) Ct. [4] or [6, p. 7]
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iv) A is strongly =-regular.

The next theorem proved by R. Arens and I. Kaplansky is funda-
mental ([1, Theorem 3.1}):

Theorem 3. Let A be a ring in which for any a there exisis an
x such that o**'x = a® (with n independent of a). Then the radical®
of A is a nil-ideal with index of nilpotency at most n. If A is primi-
tive, it is @ matrix ring of degree at most n over a division ring.

An extremal example of =-regular rings of bounded index is a
nil-ring of bounded index, which will be considered in the next
section.

2. Nil-rings of bounded index. It is the well-known result of
Levitzki that a nil-ring of bounded index is semi-nilpotent, or equi-
valently, a finitely generated nil-ring of bounded index is nilpotent
(7, p. 1035]). From this fact we shall readily obtain the following
theorem:

Theorem 4. Let A be a nil-ring of bounded index generated by
Q, et ,a,. Then A9 = 0, where n is the index of A and f(n, g
is a positive integer depending solely on n and g.

Although the proof by making use of Levitzki’s result is easy
(see Remark below), we shall, for caution’s sake, give here a direct
proof.

Proof. As a* =0 for all a in A, there holds ( > Fye ¥ =0

¢ R S S &
for any x,, - , X, in A, where (i, -+---+ s 1) runs‘ overi' all permuta-
tions of 1, ------ , 12,

Let @ be an arbitrary element and let m be an integer greater
than [#/2]. We consider here the 2m + 1 subrings A, which are

defined as follows® :

A?J—l = a"‘"‘”Ra-"‘ (j = 1’ 2’ ...... ,m + 1)’
AZJ = gvINRa (] — ]_' 2’ ...... , m),
To be easily verified, if s > ¢ then A,A, £ Ra™*'R. Hence we obtain
AL Ay e A, € Ra™'R for each (i, - A X | IPRRI , #). Accord-
ingly, by the remark stated at the beginning of this proof, we have
A A - A, € Ra™'R, whence {(@™)}"**' s Ra™'R, where (@™ de-
1) The terms “radical”, “primitive ideals”, and *‘semi-simple” will be in the

sense of Jacobson [5].
2) Cf. [8, Lemma 3].
3) Ci. [8, Proof of Theorem 1].
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notes the two-sided ideal generated by a™. Hence if m = [1/2] + 1,
then {(@™}=+o™ = 0.

For # =1 our assertion is clear. For » =2, as xy = —yx for
any x,y in A, we can take g + 1 for f(2, g).

Let # > 2 and assume the validity of our assertion for m < .
Now we set m =[n/2] + 1. Let F be the ring freely generated by
£ non-commutative indeterminates x,, ------ , %,, and let I be the two-
sided ideal in F generated by all m-th powers of the elements of F.
As the quotient ring F/I. is a nil-ring of bounded index m(< #)
generated by g elements, by our induction hypothesis F™? < I,
We consider here the set G, = {x;l ------ Xt | 73 is some %, (k=1,
------ ,2)}, and denote by p(m, g) the least number of ideals of the
form (y™ such that the ideal sum of them contains G,. As A is
canonically homomorphic to F, the set G = {a{l ------ G o | a, is
some a, (k=1, ------, g)} is contained in some ideal B in A which
can be represented as the sum of at most p(m, g) ideals of the form
(™). Hence, we obtain B*m:2-+™ — (, whence @ - @G, =
where a, is some @, and f(n, g) = fim, g)-p(m, g)-(n + 1)™. This com-
pletes our induction.

Corollary. Let A be a nil-ring of bounded index. Then the r x r
complete matrix ring (A), over A is a nil-ring of bounded index too.

Proof. Let a* =0 for all ¢ in A. For any element a = [a;] in
(4),, we consider the subring B generated by a,; (4,7=1, - y 7).
Then, by Theorem 4, B’ ™ = (0. OQur assertion follows from this
fact at once.

Remark. In Theorem 4, A is a homomorphic image of F/I. (n
in place of m). Hence we can take, by Levitzki’s result, the nil-
potency index of F/I, for fin, g).

In case A is a nil-algebra of bounded index % over a field K of
characteristic 0 (not necessarily with a finite generating system), M.
Nagata proposed that A”™ =0 with some integer f(n) depending
solely on n. On the other hand, in case the characteristic of K is
D0, he presented a non-nilpotent, nil-algebra of bounded index ([9]).

3. Matrix rings over n-regular rings of bounded index. A =z-regu-
lar ring A is homogeneous if it is semi-simple and such that for every
primitive ideal P, A/P is an # x # complete matrix ring over a divi-
sion ring (n independent of P)V.

1) See [6, p.67] and [6, Theorem 2.3].
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In Theorem 4.2 of [6], I. Kaplansky announced that a homogene-
ous z-regular ring with an identity is a matrix ring over a strongly
regular ring. The converse of this fact is also true, but we have
more generally the following:

Lemma 1. Let A be regular and of bounded index. Then the
7 x 7 complete matrix ring (A), is also regular and of bounded index.

Proof. As (A), is regular (3, Lemma 2]), it only remains to prove
that (A), is of bounded index. Let P be an arbitrary primitive ideal
in A. By [6, Theorem 2.3] (or by Theorems 2 and 3), (4),/(P), = (D),
where D is a division ring and m < # = the index of A. (A4), is a
subdirect sum of complete matrix rings of degree at most nr over
division rings, for (A), = (4),/ N (P),, where P runs over all primitive
ideals in A. Hence (A), is of bounded index.

Lemma 2. If g is right n-regular modulo a =n-regular ideal I of
bounded index, them a is actually right n-regular. In particular, if
A/l is n-regular and of bounded index, then A is rn-regular and of
bounded index ioo.

Proof. Let m be the index of I. Then, for some element x, y
and for some integer #, we obtain (@™**'x —a")"*'y = (@"**' —a™)".
Hence ¢™*'z = g™ with some 2.

Lemma 3. If A is a homogeneous =n-regular ring of bounded
index, then sc is the r x r complete matrix ring (A)..

Proof. Let Z be the center of A. Then AZ is regular (and is of
bounded index) and A/AZ is a nil-ring of bounded index ([6, Theorem
4.3)). Hence (AZ), and (A[AZ), are =-regular and of bounded index
by Lemma 1 and Corollary to Theorem 4 respectively. As (4),./(AZ),
=~ (A/AZ),, our assertion is an immediate consequence of Lemma 2.

Corollary. If A is a semi-simple n-regular ring of bounded index,
then so is (A),.

Proof. Let I, = nP, where P runs over all primitive ideals such
that A/P is isomorphic to some 7 x m complete matrix ring over a
division ring with m < a. If the index of A is #, then it is clear
that I, =0. We may prove our assertion by making use of the
induction with respect to the number 7 such that 7, & 0 and I,,, = 0.

If £ =0, A is strongly regular. Hence our assertion is true. We
assume now that it is true for j<i. As, to be easily seen, [, is
homogeneous?, by Lemma 3, ([)), is n-regular and of bounded index.

1) See [6, Theorem 3.1 and p. 67).
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On the other hand, by the induction hypothesis, (A/l), is also =z-
regular and of bounded index. Hence our induction is completed by
means of Lemma 2.

Now we can prove readily the following principal theorem:

Theorem 5. The r x r complete matrix ring (A), over a n-regular
ring of bounded index is n-regular and of bounded index loo.

Proof. Let N be the radical of A. Since (A4),/(N), = (A/N),,
our theorem is an immediate consequence of Theorem 3, Corollary to

Theorem 4, and Corollary to Lemma 3.

4. n-regular ideals in a ring of bounded index. We begin this
section with the following lemma.

Lemma 4. Let A be a ring of bounded index. Then there exists
the unique maximal (strongly) n-regular ideal.

Proof. We set IT(A) = {a€ A (@) is n-regular}. Clearly, T(A)
is closed under the right as well as left multiplications by the ele-
ments of A. Now, if a,,a, are in T (A), then (a,—a) € (@) + (@).
Hence, for any element @€ (a, —a,), we have a = u, + u,, where
€@ ¢(=1,2). As u?'r=u} with some re€ 4 and some integer
n, it follows that a7 —a® = (4, + w)""'r — (%, + u,)" = w*'r —u} + uf
= uf¥ with some #¥ € (a,). By Lemma 2, @ is n-regular. Thus 7(4)
defined above is a two-sided ideal.

The next properties of 7(A) are similar to those of M(A) in
Theorems 2, 3, and 4 of [3].

Theorem 6. Let A be a ring of bounded index. Then

iy MA/TA)=0.

iiy If I is a two-sided ideal in A, then I (I) = InII(A).

iiiy Let (A), be the r x r complete malrix ring over A, then
(T (A)), is the unique maximal strongly n-regular ideal.

Proof. i) It is easy to see that A/IT(A) is of bounded index
(Corollary 1 to Theorem 1 and Lemma 2). Let be 7 (A/T(A)), where
b denotes the residue class modulo 77(A) containing d. For each
element @ in (b), there holds that @"*'%¥ = ¢* with some x and =n.
Hence a"*'x —a*€ T(A). By Lemma 2, ¢ is =-regular, whence b is
contained in 7 (A).

ii) Let ae m(I) and be (a). As is easily verified by a brief com-
putation, 5*€ (g)’, where (@) is the two-sided ideal generated by a
in I. Hence b is =-regular, accordingly & is so. Thus we have
proved that 7 (I) € I'n 1(A). The converse relation is clear.
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ili) We consider here the ring A* = (1) + A, which consists of
all pairs (n, @) with integers # and @ in A, and in which the addi-
tion and the multiplication are defined as follows: (#, @) + (#, @)
=Mm+n,a+a), (naxn,ad)=nn,na +na+aa’). Let ¢, be a
matrix in (A*), with an identity in the (7, j) position and zeros else-
where. If a = [a,] is a matrix in (A),, then a,, = ¢, ae, is a matrix
with a; in the (1, 1) position and zeros elsewhere, and it is in (a)*,
where (a)* denotes the two-sided ideal generated by « in (A*)0.
For any element a’€ (@), let a’ be a matrix with @' in the (1, 1)
position and zeros elsewhere. Then a’ also belongs to («)*. As is
easily seen, a’? is in (a). If (a) is a strongly =-regular ideal, then
there exists an matrix 8 = [b,;]€ (4), such that a’*"*?.8 = &'**, But
this implies that a’***3*-b, = a’*", and hence &' is =a-regular, that is,
(a,y) is a =-regular ideal. Hence, (A), possesses the unique maximal
strongly =-regular ideal, which coincides with (/7(4)), by Theorem 5.
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1) We consider here A as a subring of A*.



