BANACH ALGEBRAS GENERATED BY A BOUNDED LINEAR OPERATOR

MINORU TOMITA

§1. Banach algebras with generators.

In this paper we shall characterize the spectrum and the semispectrums of a bounded linear operator on a Banach space by a ringtheoretical method. And we shall determine all the type of Banach algebras generated by a fixed bounded linear operator in connection with its corresponding semi-spectrums.

Let **M** be a Banach algebra which contains the identity I. **M** is called *normalized* if |I| = 1 and $|AB| \le |A||B|$. Put

$$||A|| = \sup_{|X| \leq 1} |AX|,$$

then the norm ||A|| is equivalent to the original norm |A|, and by this norm M is a normalized Banach algebra.

Hereafter we shall assume that \mathbf{M} is normalized and commutative. Given an element A of \mathbf{M} and given a complex rational function $\mathbf{r}(z) = (\sum\limits_i a_i z^i)/(\sum\limits_j b_j z^j)$. If $\sum\limits_j b_j A^j$ is inversible, the element $\mathbf{r}(A) = (\sum\limits_i a_i A^i) (\sum\limits_j b_j A^j)^{-1}$ is called a rational form. The spectrum $\mathfrak{S}(\mathbf{M})$ of A is the set of all complex numbers z so that A-zI fail to be inversible. The resolvent set of A is the complement of the spectrum in the complex Riemann sphere \Re_0 .

If **M** contains a fixed element A whose rational forms are contained everywhere densely in **M**, then A is called a *generator* of **M**. The *spectrum* of the algebra **M** is the space of all continuous linear functionals f on **M** such that f(I) = 1 and f(XY) = f(X) f(Y).

A fundamental relationship between spectrums of generators and the spectrum of a Banach algebra will be observed in the sequel.

Theorem 1. Let **M** be a normalized Banach algebra with the identity I and a generator A. Then the spectrum \mathfrak{S} of A is a bounded closed set in the complex number field. In order that a complex number z belong to \mathfrak{S} , it is necessary and sufficient that $|r(A)| \geq |r(z)|$ hold for every rational form r(A). Every rational form r(A) satisfies

$$\lim_{n\to\infty} | r^n(A) |^{\frac{1}{n}} = \sup_{z\in\mathfrak{S}} | r(z) |.$$

The spectrum & of M is homeomorphic to & by the mapping

$$x \in \mathfrak{G} \longrightarrow x(A) \in \mathfrak{S}.$$

Proof. The famous I. Gelfund's theorem states that:

If **M** is a commutative Banach algebra, the spectrum \mathfrak{G} of **M** is a compact space. For every fixed $f \in \mathbf{M}$, $x \in \mathfrak{G} \to x(f)$ is a continuous mapping of \mathfrak{G} in the complex field. And every $f \in \mathbf{M}$ satisfies $\lim |f^n|^{1/n} = \sup_{x \in \mathfrak{G}} |x(f)|$.

Now our Banach algebra **M** in question contains the generator A. Then especially $x \in \mathbb{S} \to x(A)$ is a continuous mapping of \mathbb{S} in the complex number field. So the range $\mathbb{S}(A)$ of this mapping is a bounded closed set. We show that this mapping $x \to x(A)$ is a homeomorphism between \mathbb{S} and $\mathbb{S}(A)$. Assume that u and v be two elements in \mathbb{S} which satisfy u(A) = v(A) = t. Then every rational form r(A) satisfies u(r(A)) = v(r(A)) = r(t). Since the set of all rational forms r(A) is everywhere dense in M, u coincides with v. Hence $x \to x(A)$ is a one-to-one continuous mapping of the compact set \mathbb{S} on $\mathbb{S}(A)$, i.e. a homeomorphism.

Next we show that $\Im(A)$ coincides with \Im . Let z be an element in \Im . Then A-zI fails to be inversible, and the monomial ideal (A-zI)M of M is a proper ideal of M. By the Gelfunds theorem there exists at least one element u in \Im which satisfies u(X)=0 for every $X \in (A-zI)M$. Especially u(A-zI)=0 and $z=u(A) \in \Im(A)$. Therefore $\Im(A)$ contains \Im .

Conversely let z be a complex number which does not belong to \mathfrak{S} . Then A-zI is inversible, and

$$\sup_{u \in \mathfrak{G}(A)} |(u-z)^{-1}| = \sup_{x \in \mathfrak{G}} |x((A-zI)^{-1})| \leq |(A-zI)^{-1}| = d.$$

That is,

$$\inf_{u \in \mathfrak{G}(A)} |(u-z)| \geq d^{-1} > 0.$$

And $\mathfrak{G}(A)$ does not contain z. Hence $\mathfrak{G}(A)$ coincides with \mathfrak{S} .

Now our theorem is clear. In fact, $x \to x(A)$ is a homeomorphism between \mathfrak{G} and \mathfrak{S} . Therefore we can determine \mathfrak{G} as follows: for every $z \in \mathfrak{S}$ there exists a uniquely determined bounded linear functional z on M defined by z(r(A)) = r(z) for every rational form r(A). \mathfrak{G} is the set of all such bounded linear functionals z. Thus $z \in \mathfrak{S}$ if

and only if $|r(A)| \ge |r(z)|$ for every rational form r(A). And by the Gelfund's theorem,

$$\lim_{n\to\infty} |r^n(A)|^{1/n} = \sup_{x\in\mathfrak{G}} |x(r(A))| = \sup_{z\in\mathfrak{G}} |r(z)|.$$

q.e.d.

§2. The classification of congenetic subalgebras.

Let M be a normalized Banach algebra with the identity I and a fixed generator A. We shall now classify all the sub-algebras of M generated by the same A.

Theorem 2. Let M be a normalized Banach algebra with the identity I and a fixed generator A. If N is a Banach sub-algebra of M which is also generated by A, then the spectrum $\mathfrak{S}(N)$ of A which corresponds with N contains the spectrum \mathfrak{S} of A (which corresponds with M). And $\mathfrak{S}(N) - \mathfrak{S}$ is an open set.

Conversely let \mathfrak{T} be a bounded closed set in the complex field containing \mathfrak{S} such that $\mathfrak{T}-\mathfrak{S}$ is open, then there exists a uniquely determined Banach sub-algebra \mathbf{N} of \mathbf{M} such that its corresponding spectrum $\mathfrak{S}(\mathbf{N})$ of A coincides with \mathfrak{T} .

Proof. Let **N** be a Banach sub-algebra of **M** which is also generated by A. Then the resolvent set $\Re(\mathbf{N})$ of A which corresponds with **N** is contained in the resolvent set $\Re(\mathbf{M})$ of A which corresponds with **M**. We show that $\Re(\mathbf{M}) - \Re(\mathbf{N})$ is open.

Let $\{z_n\}$ be a sequence in $\Re(\mathbf{N})$ which converges to a number z in $\Re(\mathbf{M})$. Then $(A-z_nI)^{-1}$ belongs to \mathbf{N} , and $(A-zI)^{-1}$ belongs to \mathbf{M} . In a suitable neighbourhood of z, $(A-wI)^{-1}$ is developped to the power series

$$(A-wI)^{-1} = \sum_{n=0}^{\infty} (w-z)^n (A-zI)^{-(n+1)}.$$

Therefore $(A-z_nI)^{-1}$ converges uniformly to $(A-zI)^{-1}$. This means $(A-zI)^{-1} \in \mathbb{N}$, and $z \in \Re(\mathbb{N})$. Thus $\Re(\mathbb{N})$ is relatively closed in $\Re(\mathbb{M})$, so that $\Re(\mathbb{M}) - \Re(\mathbb{N})$ is an open set. Hence $\Im(\mathbb{N}) = \Re_0 - \Re(\mathbb{N})$ is a bounded closed set which contains $\Im(\mathbb{N}) = \Re_0 - \Re(\mathbb{N})$. And $\Im(\mathbb{N}) = \Re(\mathbb{N}) = \Re(\mathbb{N})$ is open. The former half of Theorem 2 is thus proved.

To prove the latter half of the Theorem, we shall prepare the next Lemma.

Lemma 1. Let N be a Banach sub-algebra generated by A. In order that a rational form r(A) exist and belong to N, it is necessary

and sufficient that r(z) have no pole on the spectrum $\mathfrak{S}(\mathbf{N})$ of A corresponding with \mathbf{N} .

In fact, if r(z) is a rational function which has no pole on $\mathfrak{T} = \mathfrak{S}(\mathbf{N})$, then $r(z) = p(z) \prod_{i=1}^{n} (z - a_i)^{-1}$, where p(z) is a polynomial, and every a_i is not contained in \mathfrak{T} . Then $r(A) = p(A) \prod_{i=1}^{n} (A - a_i I)^{-1}$ exists and belongs to \mathbf{N} . Conversely if a rational form r(A) belongs to \mathbf{N} , then $|r(A)| \geq \sup_{z \in \mathfrak{T}} |r(z)|$. Therefore r(z) is bounded on $\mathfrak{S}(\mathbf{N})$, and has no pole on it. This concludes the Lemma.

We now turn to the proof of our Theorem. Let \mathfrak{T} be a bounded closed set of complex numbers which contains \mathfrak{S} and satisfies that $\mathfrak{T}-\mathfrak{S}$ is open. We denote by \mathbf{N} the smallest Banach sub-algebra of \mathbf{M} which contains all rational forms r(A) for which corresponding rational functions r(z) have no pole on \mathfrak{T} . \mathbf{N} is clearly generated by A, and contains the identity. We show that the spectrum $\mathfrak{S}(\mathbf{N})$ of A which corresponds with \mathbf{N} coincides with \mathfrak{T} . Let z be any complex number which does not belong to \mathfrak{T} . Then $(A-zI)^{-1}$ exists and belongs to \mathbf{N} . Therefore z does not belong to $\mathfrak{S}(\mathbf{N})$, so \mathfrak{T} contains $\mathfrak{S}(\mathbf{N})$.

Next we show the converse. Let r(z) be a rational function which has no pole on \mathfrak{T} . r(z) is regular and one-valued in the interior of \mathfrak{T} . Then by the well-known maximal modulous theorem for analitic functions, the maximal value of |r(z)| in \mathfrak{T} is taken on the boundary \mathfrak{B} of \mathfrak{T} . Since $\mathfrak{B} = \mathfrak{T} - \operatorname{int} \mathfrak{T}$ is contained in \mathfrak{S} (because $\mathfrak{T} - \mathfrak{S}$ is open by the assumption), we have

$$\sup_{z \in \mathfrak{T}} |r(z)| = \sup_{z \in \mathfrak{B}} |r(z)| = \sup_{z \in \mathfrak{S}} |r(z)|.$$

Consider a fixed $w \in \mathfrak{T}$, then for every rational form r(A) of which r(z) has no pole on \mathfrak{T} , we have

$$| r(A) | \ge \sup_{z \in \mathfrak{S}} | r(z) | = \sup_{z \in \mathfrak{X}} | r(z) | \ge | r(w) |.$$

Those rational forms r(A) are contained everywhere densely in **N**. By Theorem 1 we conclude that w belongs to $\mathfrak{S}(\mathbf{N})$. Therefore $\mathfrak{S}(\mathbf{N})$ contains \mathfrak{T} , and coincides with \mathfrak{T} .

Finally we show that the correspondence between Banach algebras \mathbf{N} generated by the same A and the related spectrums $\mathfrak{S}(\mathbf{N})$ is one-to-one. Let \mathbf{N} and \mathbf{L} be two Banach sub-algebras of \mathbf{M} which are generated by A and which have the common related spectrums

 $\mathfrak{T} = \mathfrak{S}(\mathbf{N}) = \mathfrak{S}(\mathbf{L})$. We show that \mathbf{L} and \mathbf{N} coincide with each other. By Lemma 1 a rational form r(A) belongs to \mathbf{N} (and \mathbf{L}) if and only if the rational function r(z) has no pole on \mathfrak{T} . Therefore \mathbf{L} and \mathbf{N} contain all the rational forms r(A) commonly. Hence they must be coincident with each other. q.e.d.

§3. Spectrums and semi-spectrums of bounded linear operators.

We shall now apply our Theorem 1 and 2 to an analisis of the spectrums of general bounded linear operators on Banach spaces.

Let **B** be a Banach space and A be a bounded linear operator on it. The *spectrum* of A is the set of all complex numbers z so that A-zI fail to be inversible. There exists the largest Banach algebra $\mathbf{R}(A)$ of bounded linear operators generated by A. $\mathbf{R}(A)$ is the uniform closure of the set of all rational forms r(A). In order to avoid any mis-understand, a spectrum $\mathfrak{S}(\mathbf{N})$ of A corresponding to a Banach algebra \mathbf{N} of bounded linear operators generated by A, is called a *semi-spectrum* of A. Then $\mathfrak{S}(\mathbf{N})$ is the set of all complex numbers z so that $(A-zI)^{-1}$ do not appear in \mathbf{N} . Clearly the semi-spectrum of A corresponding to $\mathbf{R}(A)$ is coincident with the usual spectrum \mathfrak{S} of A. Then using Theorem 1 we have

Theorem 3. Let A be a bounded linear operator on a Banach space B. In order that a complex number z belong to the spectrum of A, it is necessary and sufficient that $| r(A) | \ge | r(z) |$ hold for every rational form r(A). The spectrum $\mathfrak S$ of A is a bounded closed set, and every rational form r(A) satisfies

$$\lim_{n\to\infty} |r^n(A)|^{1/n} = \sup_{z\in\mathfrak{S}} |r(z)|.$$

Every Banach algebra of bounded operators generated by A is a Banach sub-algebra of $\mathbf{R}(A)$. Then we can determine the type of all such Banach algebras using our Theorem 2.

Theorem 4. Let \mathfrak{S} be the spectrum of a bounded linear operator A. If \mathbf{N} is a Banach algebra of bounded operators generated by A, then its corresponding semi-spectrum $\mathfrak{S}(\mathbf{N})$ is a bounded closed set containing \mathfrak{S} such that $\mathfrak{S}(\mathbf{N}) - \mathfrak{S}$ is open.

Conversely if $\mathfrak T$ is a bounded closed set which contains $\mathfrak S$ such that $\mathfrak T-\mathfrak S$ is open, then there exists a uniquely determined Banach algebra $\mathbf N$ generated by A whose corresponding semi-spectrum coincides with $\mathfrak T$.

§4. Some remarks for Theorem 2.

Given a Banach algebra M generated by an element A. Let \mathfrak{S} denote the spectrum of A, and \mathfrak{R} denote the resolvent set $\mathfrak{R}_0 - \mathfrak{S}$. (Conveniently we add the infinity point of the Riemann sphere to the resolvent set \mathfrak{R}). \mathfrak{R} is the sum of mutually disjoint connected components $\mathfrak{R} = \mathfrak{R}_{\infty} \cup (\bigcup_{i=1}^{\infty} \mathfrak{R}_i)$, where \mathfrak{R}_{∞} is the connected component of \mathfrak{R} which contains the infinity.

Now if $\mathfrak T$ is a bounded closed set containing $\mathfrak S$ such that $\mathfrak T-\mathfrak S$ is open, then $\mathfrak T-\mathfrak S$ is a component of $\mathfrak R$ which does not contain $\mathfrak R_{\infty}$. That is, $\mathfrak T-\mathfrak S$ is a sum $\mathfrak T-\mathfrak S=\cup\mathfrak R_{n'}$, where $\mathfrak R_{n'}$ are connected components of $\mathfrak R$ which do not contain the infinity. Since every Banach sub-algebra $\mathbf N$ of $\mathbf M$ is determined by the corresponding semi-spectrum $\mathfrak S(\mathbf N)$, $\mathbf N$ is completely determined by the system of connected components $\mathfrak R_{n'}$ which are contained in $\mathfrak S(\mathbf N)$. Therefore

Theorem 5. Let **M** be a normalized Banach algebra generated by an element A. If the resolvent set \Re of A is decomposed into n pieces of connected components, then there exists exactly 2^{n-1} pieces of mutually different Banach sub-algebras of **M** generated by A.

Let \mathbf{P} denote the uniform closure of all rational integral forms p(A). Then \mathbf{P} is the smallest Banach sub-algebra of \mathbf{M} generated by A. The complement of the corresponding semi-spectrum $\mathfrak{S}(\mathbf{P})$ coincides with the connected component of the resolvent set \Re of A which contains the infinity. Especially when the resolvent set of A is connected, then \mathbf{M} coincides with \mathbf{P} , and every rational from r(A) is uniformly approximative by a sequence of rational integral forms $\{p_n(A)\}$.

References

- [1] I. Gelfund, Normierte Ringe, Rec. Mat., 9 (1941), 3 24.
- [2] HALMOS, Introduction to Hilbert space, (1951).
- [3] F. Riesz and B. v. Sz. Nagy, Leçons d'analyse Fonctionelle, (1952).

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received November 8, 1954)