BANACH ALGEBRAS GENERATED BY A BOUNDED
LINEAR OPERATOR

Minoru TOMITA

§1. Banach algebras with generators.

In this paper we shall characterize the spectrum and the semi-
spectrums of a bounded linear operator on a Banach space by a ring-
theoretical method. And we shall determine all the type of Banach
algebras generated by a fixed bounded linear operator in connection
with its corresponding semi-spectrums.

Let M be a Banach algebra which contains the identity 7. M
is called normalized if |I| =1 and | AB| < |A||B|. Put

|A| = sup | AX |,
lx]s)

then the norm || A | is equivalent to the original norm | A |, and
by this norm M is a normalized Banach algebra.

Hereafter we shall assume that M is normalized and commuta-
tive. Given an element A of M and given a complex rational func-
tion 7(z) = (2 a2 /( Eb,z’) If EbJAJ is inversible, the element

r(4) = (E atA‘) (E b,Af)“’ is called a rational form. The spectrum

&(M) of A is the set of all complex numbers z so that A — zI fail
to be inversible. The resolvent set of A is the complement of the
spectrum in the complex Riemann sphere £;.

If M contains a fixed element A whose rational forms are con-
tained everywhere densely in M, then A is called a generator of M.
The spectrum of the algebra M is the space of all continuous linear
functionals f on M such that f(I) =1 and AAXY) = f(X)AY).

A fundamental relationship between spectrums of generators and
the spectrum of a Banach algebra will be observed in the sequel.

Theorem 1. Let M be a normalized Banach algebra with the
identity I and a generator A. Then the spectrum & of A is a bounded
closed set in the complex number field. In order that a complex num-
ber z belong to &, it is necessary and sufficient that |r(A | = |7 |
kold for every rational form r(A). Every rational form r(A) satisfies

lim | 7"(4) I% = sup | 7(2) .

7 — cC z¢ S
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The spectrum & of M is homeomorphic to & by the mapping
reE® —> (A€ G

Proof. The famous L. Gelfund’s theorem states that:
If M is a commutative Banach algebra, the spectrum ® of M is
a compact space. For every fixed f€ M, ¥ € @ —» x(f) is a continuous
mapping of & in the complex field. And every fe M satisfies
lim | f* |V = su%! 2(f) |,
x €

Now our Banach algebra M in question contains the generator
A. Then especially x € — x(4) is a continuous mapping of @ in
the complex number field. So the range &(A) of this mapping is
a bounded closed set. ‘We show that this mapping ¥ - x(4) is a
homeomorphism between ® and ®&(A). Assume that » and v be two
elements in & which satisfy #(A) = v(4) =t Then every rational
form 7(A) satisfies u(r(4)) = v(r(A)) = r(¢). Since the set of all
rational forms 7(A) is everywhere dense in M, # coincides with ».
Hence ¥ — x(4) is a one-to-one continuous mapping of the compaét
set @ on &(4), i.e. a homeomorphism.

Next we show that &(A) coincides with &. Let z be an element
in &. Then A —zI fails to be inversible, and the monomial ideal

—zI)M of M is a proper ideal of M. By the Gelfunds theorem
there exists at least one element # in & which satisfies #(X) =0
for every Xe (A —zI)M. Especially #(A —zI) =0 and z = u(A) € $(A4).
Therefore G(A) contains &,

Conversely let z be a complex number which does not belong to
&. Then A —zI is inversible, and

sup l(u—z)li—sup]x\(A—zI)l)l S |A-zD) | = d
u e B(A)

That is,

inf |—2)]| =d*>0.
2 ¢ GO(A)
And &(A4) does not contain z. Hence ®&(4) coincides with &.

Now our theorem is clear. In fact, ¥ — x(A4) is a homeomorphism
between & and &. Therefore we can determine ® as follows: for
every z€ & there exists a uniquely determined bounded linear func-
tional z on M defined by z(r(A)) = 7(2) for every rational form 7(A).
@ is the set of all such bounded linear functionals z. Thus z€ & if
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and only if | 7(4) | = | 7(2) | for every rational form 7(4). And by
the Gelfund’s theorem,

lim | »"(A) |"* = sup | x(z(4)) | = sup | (z) |.
x¢®

7n— 0 z¢B
q.e.d.

§2. The classification of congenetic subalgebras.

Let M be a normalized Banach algebra with the identity I and
a fixed generator A. We shall now classify all the sub-algebras of
M generated by the same A.

Theorem 2.  Let M be a normalized Banach algebra with the
identity I and a fixed generator A. If N is a Banach sub-algebra of
M which is also generated by A, then the spectrum S(N) of A which
corresponds with N contains the spectrum © of A (which corresponds
with M). And S(N)— S is an open sel.

Conversely let ¥ be a bounded closed set in the complex field con-
taining & such that T — & is open, then there exists a uniquely deter-
mined Banach sub-algebra N of M such that its corresponding spectrum
S&(N) of A coincides with . '

Proof. Let N be a Banach sub-algebra of M which is also
generated by A. Then the resolvent set R(N) of A which corre-
sponds with N is contained in the resolvent set R(M) of A which
corresponds with M. We show that R(iM) — R(N) is open. ,

Let {z,} be a sequence in R(N) which converges to a number 2z
in R(M). Then (A —2z,)"! belongs to N, and (4 — 2I)-! belongs to M.
In a suitable neighbourhood of z, (A— wl)~' is developped to the
power series

CA—wD? = 5 @ —2MA — 2D
Therefore (A — z,J)~' converges uniformly to (A —zI)-t. This means
(A—zI)*e N, and ze R(N). Thus R(N) is relatively closed in R(M),
so that (M) —R(N) is an open set. Hence S(N) = & —R(N) is a
bounded closed set which contains & = & —R@M). And T—6 =
RV — R(N) is open. The former half of Theorem 2 is thus
proved.

To prove the latter half of the Theorem, we shall prepare the
next Lemma.

Lemma 1. Let N be a Banach sub-algebra generated by A. In
arder that a rational form r(A) exist and belong to N, it is necessary
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and sufficient that r(z) have no pole on the spectrum S(N) of A cor-
responding with N. }

In fact, if 7(2) is a rational function which has no pole on T =
S (N), then 7(z) = p(2) gf: (z2—a)"', where p(z) is 2 polynomial, and
every a, is not contained in T. Then 7(4) = p(A) TA —al)* exists
and belongs to N. Conversely if a rational form 7(4) belongs to N,
then |7(4) | = 51:1;: | #(z) |. Therefore 7(2) is bounded on &(N), and

has no pole on it. This concludes the Lemma.

We now turn to the proof of our Theorem. Let £ be a bounded
closed set of complex numbers which contains & and satisfies that
¥ — & is open. We denote by N the smallest Banach sub-algebra of
M which contains all rational forms 7(A) for which corresponding
rational functions 7(z) have no pole on . N is clearly generated
by A, and contains the identity. We show that the spectrum &(N)
of A which corresponds with N coincides with £. Let z be any
complex number which does not belong to £, Then (A —zI)~! exists
and belongs to N. Therefore z does not belong to &(N), so £ con-
tains S(N). ‘

Next we show the converse. Let 7(z) be a rational function
which has no pole on Z. 7(2) is regular and one-valued in the
interior of . Then by the well-known maximal modulous theorem
for analitic functions, the maximal value of | 7(z) | in € is taken on
the boundary B of . Since B=% — int T is contained in & (be-
cause ¥ —& is open by the assumption), we have

sup | 7(z) | = sup | 7(2) | = sup | 7(2) |.
z € ze¢B Pc)

Consider a fixed we ¥, then for every rational form 7(A) of
which 7(z) has no pole on ¥, we have

| 7A) | = sup |7@) | = sup [72) | = | rw) |.

Those rational forms 7(4) are contained everywhere densely in
N. By Theorem 1 we conclude that w belongs to &(N). Therefore
&(N) contains 2, and coincides with .

Finally we show that the correspondence between Banach algebras
N generated by the same A and the related spectrums S(N) is
one-to-one. Let N and L be two Banach sub-algebras of M which
are generated by A and which have the common related spectrums
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T =S(N) =6(L). We show that L and N coincide with each
other. By Lemma 1 a rational form r(4) belongs to N (and L) if
and only if the rational function 7(z) has no pole on ¥. Therefore
L and N contain all the rational forms 7(4) commonly. Hence they
must be coincident with each other. q.e.d.

§3. Spectrums and semi-spectrums of bounded linear operators.

We shall now apply our Theorem 1 and 2 to an analisis of the
spectrums of general bounded linear operators on Banach spaces.

Let B be a Banach space and A be a bounded linear operator
on it. The spectrum of A is the set of all complex numbers z so
that A — 2] fail to be inversible. There exists the largest Banach
algebra R(4) of bounded linear operators generated by A. R(A4) is
the uniform closure of the set of all rational forms 7»(A4). In order
to avoid any mis-understand, a spectrum &(N) of A corresponding
to a Banach algebra N of bounded linear operators generated by A,
is called a semi-spectrum of A. Then &(N) is the set of all complex
numbers z so that (A—zI)™' do not appear in N. Clearly the
semi-spectrum of A corresponding to R(A) is coincident with the
usual spectrum & of A. Then using Theorem 1 we have

Theorem 3, Let A be a bounded linear operator on a Banach
space B. In order that a complex number z belong to the spectrum of
A, it is necessary and sufficient that | r(A) | = | r(z) | hold for every
rational form r(A). The spectrum & of A is a bounded closed set, and
every rational form r(A) satisfies

lim | 7*(4) |Y" = sup | 7(2) |.
7n— oo z2¢8

Every Banach algebra of bounded operators generated by A is a
Banach sub-algebra of R(A). Then we can determine the type of all
such Banach algebras using our Theorem 2.

Theorem 4. Let & be the spectrum of a bounded linear operator
A. If N is a Banach algebra of bounded operators genmerated by A,
then its corresponding semi-spectrum &(N) is a bounded closed set con-
taining © such that S(N) — S is open.

Conversely if T is a bounded closed set which contains & such that
T — & s open, then there exisls a uniquely determined Banach algebra
N generated by A whose corresponding semi-spectrum coincides with
I.
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§4. Some remarks for Theoram 2.

Given a Banach algebra M generated by an element A. Let &
denote the spectrum of A4, and R denote the resolvent set £,—&.
(Conveniently we add the infinity -point of the Riemann sphere to
the resolvent set N). R is the sum of mutually disjoint connected

components R = R.u ((j R,), where R. is the connected component
i=1

of R which contains the infinity.

Now if T is a bounded closed set containing & such that T - &
is open, then T —& is a component of R which does not contain R..
That is, 3 —& is a sum T — &S = y R,,, where R, are connected
components of R which do not contain the infinity. Since every Banach
sub-algebra N of M is determined by the corresponding semi-spec-
trum S(N), N is completely determined by the system of connected
components N,, which are contained in &(N). Therefore

Theorem 5. Let M be a normalized Banach algebra generated by
an element A. If the resolvent set R of A is decomposed into n pieces
of connected components, then there exists exactly 2 pieces of mutu-
ally different Banach sub-algebras of M generated by A.

Let P denote the uniform closure of all rational integral forms
P(A). Then P is the smallest Banach sub-algebra of W\ generated
by A. The complement of the corresponding semi-spectrum G(P)
coincides with the connected component of the resolvent set R of A
which contains the infinity. Especially when the resolvent set of A is
connected, then M coincides with P, and every rational from r{A) is
uniformly approximative by a sequence of rational integral forms
{54}
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