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Introduction. All permutations of the mn symbols commutative
with

(g 2y -oovee omy) Ay 2, eeevee M) ooeees Ly 2p oeer )

constitute a group of order n!m®. Let us denote this group by
S, m). Obviously S, m) is the cyclic group with generator @
=12 -.... m). Since S(#n, 1) is the symmetric group S, on » sym-
bols, S(n, m) will be called the generalized symmetric group [10].
S(n, 2) is the hyper-octahedral group of A. Young. The group S(n, m)
was treated from other point of view by H.S. M. Coxeter [2]. We
set @, =1, 2, +---- m;). The = cycles , generate an invariant sub-
group L of order m™ of S(n, m). The totality of permutations
— (1l 2 veeeer My 1y 2y ceeeee My -eeoe 1, 2, coee- mn)
1’1 211 ...... mil ]_l2 212 ...... pni2 T zln ...... mtn

. (]_1 ]_2 ...... 1, )(21 2y eeeenn 2, ) (ml My oeree- mn>
li! 1‘2 ...... 1’n 2‘1 2‘2 ...... 2‘n' m‘1 7ni2 ...... m;
which transform the n cycles . into each other, constitutes a sub-
group S,* of S(n, m). S,* is isomorphic to S, by the mapping

12 ceeeen
w = ( X " ) — W
i, i, £y
We see easily that
Sn,m) = §*C, SF¥nQ=1,

so that S(n, m)/Q =~ S,. Every element P of S(n, m) is expressed
uniquely in the form P = W*Q, where W* e S,* and

Q = Q1 Qf - Q)0 Ol <<m-1).

‘We have also
(WHIQW* = Q1 Q)2 -+ Q.

39
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In the present paper we shall first determine the irreducible
representations of S(», m) [10, Theorem 2]. For this purpose, we
state in §1 some preliminary results for the induced representations
of a group of finite order. As an application, the irreducible repre-
sentations of S(, m) will be determined in §2. In §3 some results
in [11] and [12] are generalized for S(n, m). In particular, a generali-
zation of the Murnaghan-Nakayama recursion formula plays an im-
portant role in the following section. Let p be a prime number.
As was shown in [10], there exists the close relationship between
the theory of the representations of S(b, p) and that of the modular
representations of S, for p. In §4 we shall prove the theorems in
[10] which were stated without proofs.

1. Preliminaries. Let & be a group of finite order. We con-
sider the representations of ® in an algebraically closed field of
characteristic 0. Let © be an invariant subgroup of & and let
Ais Xos o=ty Xns Cpy Loy veveer , . be the distinct irreducible characters
of @ and 9 respectively. As is well known, » is equal to the num-
ber of conjugate classes of ®. The characters ¢ of $ are distributed
in classes of characters which are associated with regard to ®&; two
characters £, and ¢, being associated if

1.1 ¢(H) = {J(G'HG),

where H is a variable element of © and G is a fixed element of .
The totality of elements G € (& which satisfy

(1.2) Z(H) = ¢(GHG) (for He D)
constitutes a subgroup &, of G. Obviously Dc ®,. O, is called the
subgroup of & corresponding to .. Let {,, &, - , & be the

characters of  such that they all lie in different associated classes
and every character { is associated with one of them. Let (8:®,)
=s, and

6 =687 +6.T, + - + 6,7, , T,=1
Then the number of characters { associated 'with ¢, is s,. If we
denote these characters by ¢, = {,®, {9, -+, { &%, we may set
1.3) Cu(i)(H) = Cu(]‘i—lHTl)-

We set
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1.4 0, (H) = z“,c,}”(HJ = ;C,‘(T,"HTL).
Every character x;, considered as a character of 9, is expressed as
(1.5) w(H) = a,0,(H) (for He D)

with a suitable 6,. Here @, is a positive integer. We shall say that
% is the character of & determined by .. Denote by z.%, x.%,
------ , 2. the irreducible characters of & determined by .. We
then have :

(1.6) 3t = n.

We consider a subgroup &’ of &. Let (8:®) =7 and
G = &S, + &S, + - + ®'S,, S, =1

Let G’ - D(G’) be a representation of &. We set D(S,”'GS)) =0 if
S,-'GS; is not contained in &'. Then

(1.7) G —> D*(G) = (D(S5,'GSy)y, (for Ge©)

forms a representation D¥* of @ and is called the representation of
¢ induced by the representation D of ®. If ¢ is the character of
D, we denote by & the character of D*. We define £(S,”'GS) =0,
if S,'GS, is not contained in &’. By (1.7) we then have

a.8) £G) = z} 2(S'GS).

Let © be an invariant subgroup of & as before. The irreducible
character ¢, of 9 is not associated with any other { with regard to
Q.. Applying Frobenius’ reciprocity theorem on induced characters,
we obtain the following

Theorem 1. Let . be any irreducible character of an tnvariant
subgroup O of ©. Denote by 25, 22, - , 2.5 the irreducible
characters of & determined by €, and by €., &, - , £ those of
®,. Then t,=h, and £ = 3., if the notation is suitably chosen.

2. The irreducible representations of S(72, 7). Any element @
of £ is expressed uniquely in the form @ = @h Q@ ----- Q.
O0xLL<m—1). Q is called an element of type (s, 72,, +----- y» o)y
if the number of /; such that ;. =%k is n,.
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Lemma 1. Two elements Q and Q' of Q are conjugale in
S(n, m) if and only if they are of same type.

In this section we assume that @ is an element of type (n(., 7y,
------ » M) such that /, = =10,=0, L= =1,,=1 and
SO on.

Since the invariant subgroup £ is a commutative group, every
irreducible representation of <. is of degree one. Denote by o a
primitive m-th root of unity. Then

Q. —> o% O<La,<m—1), ¢

|
I
N

forms an irreducible representation of . We denote by (‘¢ the
character of the representation defined above. The character (@ is
called the character of type (#,, #,, -+---- s %_1), if the number of «;
such that «, = 2 is #,. Two characters @ and {®? are associated
with regard to S(#, ) if and only if they are of same type. In
what follows we assume that &’ is a character of type (%, #,,
...... , m_]) such that a«, = - = a, = 0, anu-ﬂ = e = Ay, = 1,
and so on.

Lemma 2. Let & be the subgroup of S(n, m) corresponding to
the character £, Then & is the normalizer Q) of @ in S(n, m).

We have
2.1 B = Suy* T, Sept N =1,
where S,,* is the subgroup of S,* and is the direct product of S,*:
Sepyt = Sy % S,,l* X eevees X S,,m_l*.
Hence
(2.2) (S(n, m) : ) = (§* : Sup*) = (Su:Sup) -
This implies that the number of irreducible characters { of Q as-
sociated with £ with regard to S(n, m) is R ”' 1 Let
(2.3) Sa = Sty Pi + SeupPe + oo + SenrPr

be the coset decomposition of S, with respect to Si,,. Zkhen
2.4) Sn,m = @WP* + BPPF + --enne + G px

where P* is the element of S.* corresponding to 7P, of S,,.
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Let U* - D(U*), U*€S,,*, be an irreducible representation of
degree f of S..,*. Then G = U*Q — {“2(Q)D(U*) is an irreducible
representation of &“ determined by ¢“’. Conversely, if G — D'(G)
is an irreducible representation of ®&“? determined by ¢“, then
U* — D'(U*) is an irreducible representation of S.,*. This implies
that the number of irreducible representations of ©&“ determined by
¢ is equal to the number of irreducible representations of S,
= S”o X S’,,J X eeeees S?,m_] .

We shall denote by [a] the irreducible representation of S, cor-
responding to a diagram [«] of z# nodes, and by x, its character.
The degree x,(1) of [a] will be denoted by f,. Any irreducible
representation of S, is given by the Kronecker product representa-
tion

(2.5) [au] X [alj Xoreeeer X [am—l]:

where [a;] is an irreducible representation of S,,.

Let us denote by £’ the character of the irreducible representa-
tion (2.5). As was shown previously, any irreducible character of
2 determined by ¢ is given by &9 x &2, Theorem 1 shows
that the character of Sz, m) induced by £“® x £« is irreducible.
Hence the irreducible characters of Sz, ) determined by Z®? are
in (1- 1) correspondence with star diagrams

[a]m% = [ao]'[a’l]' T '[am-l]

of »# nodes such that the i-th component [«,] is a diagram of #; nodes.
We shall denote by («)* the irreducible representation of S(z, m)

corresponding to [«],*, and by #,+ its character. We see by (2.3)
and (2.4) that

2.6) 92 (W*) = Jié‘“t’(P,“WPj) for W*eS*

where we set £“?(P,"'WP) =0 if P, WP, is not contained in S,
and -

@1 9@ = fufe e fa  2CRUPHTQPA) for QeX
In particular, if W* in S,* is not contained in S, ,*, then

(2.8) G (W*) = 0.
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Let %(n) be the number of partitions of #. The number of dis-
tinct irreducible representations of S, is k() E(n,) - k(n,_,).
Hence, by (1.6) and Theorem 1, the number of irreducible representa-
tions of S(n, m) is given by

(2.9) W, m) = S () B e kn,_,),
1

g Ty ey Ry

Sin=n 0n<n.

As in [12], we shall denote by [«],.* the reducible representation
of S, induced by the irreducible Kronecker product representation
[a] % [@,] x -+ % [@,,_,] Of Swy- The representation [«],* is called
the skew representation corresponding to the star diagram [a].*.
We shall denote by z,+ the character of [a].* and by f,* its degree.
(2.6) implies

(2.10) I (W*) = z.x(W).

In particular, the degree of (a)* is equal to

(2-11) fm* =

Thus we have proved the following

Theorem 2. The irreducible representations of S(n, m) are in
(1- 1) correspondence with star diagrams [a),* of n nodes.

Let H, be the hook product [4; 4a] of a diagram [a] of »# nodes.
The degree f, of [a] is given by n!/H,. We shall define the hook
product H,+ of a star diagram [a],* by
(2.12) Hx = H,-H, - -H,

.
m-1

Theorem 3. Let (a)* be an irreducible representation of S(n, m)
corresponding to [a),*. The degree of (x)* is given by n!|H .

Proof. Our assertion follows immediately from fa‘z =n,! /Hﬁ and
(2.11).

Let P be any element of S, with &, 1-cycles, b, 2-cycles, :----- .
b, k-cycles. The normalizer 2(P) of P in S, is the direct product
of S, i):

R(P) = Sb,, 1) x Sb,, 2) x -+-ee- x S, k).

Hence we can easily determine the irreducible representations of
N(P).
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Let A be the subgroup of S,* corresponding to the alternating
group A, of S,. Evidently A,*Q is an invariant subgroup of S(z, m).
This will be denoted by A(#n, m) and will be called the generalized alter-
nating group. We shall determine the irreducible representations of
A(n, m). If the rows and columns of a diagram [«] are interchanged,
the resulting diagram [a] is said to be conjugate to [«]. If [a] = [a],
then [a] is called self-conjugate. For a star diagram, we shall say
that [a]* = [a@,]-[@]" - ‘[@.-] Is conjugate to [a]*. A star dia-
gram [a]* is called self-conjugate, if [a]* = [a]*.

Theorem 4. Let (a)* be an irreducible representation of S(n, m)
corresponding to a star diagram [a)*. If [a]* is self-conjugate, then
(a)* breaks up into two irreducible conjugate parts of equal degree as
a representation of A(n, m). If [a]* is not self-conjugate, then (a)*
remains irreducible as a representation of A(n, m). Moreover (wo re-
presentations (a)* and (x)* of A(n, m) are equivalent.

We shall study the modular representations of Sz, m) in a
forthcoming paper.

3. A generalization of the Murnaghan-Nakayama recursion for-
mula. We first consider the conjugate classes of S(x, 7). We see
easily that if two elements W* and U* of S,* are conjugate in
S(n, m), then they are conjugate in S,*. Generally we have

Lemma 3. If two elements W*Q and U*Q' are conjugate in
S, m), then W* and U* are conjugate in S,*.

Let C*¥ be an element of S,* corresponding to a b-cycle C =
2y 1) Of S,

(3.1) C* = (1;1 1;’ """ 1:b) (2;1 252 """ 2"1)) """ (m, m,z """ ﬂl-b) .

C*Q'1<l<m-—1 1<ax<b) is the cycle of length mb. We
shall say that C* Qiﬁ' is a permutation of type (b, /) and denote it by
P, ). Of course, P(b,0) =C*. If i%7, then P(h, i) and P, j)
are not conjugate in S, 7). We consider a permutation P of
S, m) such that

P = P@a®,0) P@®,0) - Pa>, m—1),

where no two of Pe ™, k) have common symbols. For a fixed i, we
may assume that ¢ > a® > -.---- > a,l‘” =0. We set

a® + a® + «-oe. + a,{‘“ = b.
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Then

by + by + e +0b0,., = n 0Lb <L n.
We set [a,] = [a,®, a,®, ------, a.’] and associate P with a star dia-
gram [a],* = [a,]-[a,]: -+ -[a, ;] of # nodes. We then have

Lemma 4, Let S and T be two elements of S(n, m) corresponding
to the star diagrams [a],* and [8],* of n nodes respectively. S and T
are conjugate in S(n, m) if and only if [a],* = [B].*.

Since there exists an element of S(1#, m) corresponding to an
arbitrary star diagram of » nodes, Lemma 4 implies that there exist
at least the I(n, m) elements which are not mutually conjugate in
S(n, m). On the other hand, Theorem 2 shows that the number of
conjugate classes of S(n, m) is "l(n, m). Thus, if we denote by P,»
the element of S(», m) corresponding to [a],*, then the [(n, m) ele-
ments P,» form a complete system of representatives for the con-
jugate classes of S(n, m). Hence we have obtained the following

Theorem 5. The conjugate classes of S(n, m) are in (1- 1) cor-
respondence with star diagrams [«],* of n nodes.

We shall summarlize some results of G.de B. Robinson [11; 12]
on the skew representations of the symmetric group which are
significant hereafter. Let [a] —[8] be a skew diagram [11] of /
nodes. [a] — [B] determines a reducible representation of S,. This
is called a skew representation of S; and is denoted by [a]— [8].
We shal! denote by 7. the character of [a] —[B]. The irreducible
representation [a] of S, is reducible considered as a representation
of a subgroup S, x S;. Let [a] = 3184, [8] x [r]). Then [a] —[B] =
;gw.,[r], so that

(3.2) [«] = %‘[3] x ([a] — [B].
Hence we have for § = S®WS®e S, x S,
3.3) 2a(S) = %Jzﬂ(S(l))xwﬂ(S('!)).

If Cis a cycle of length  in S,, then
3.4) 22(C) = (=17 or O,

according as [«] — [B] is a skew hook equivalent to the right hook
H, =[n—7, 1"] or not. We can prove, as in [11], the Murnaghan-
Nakayama recursion formula [5; 7] by (3.3) and (3.4).
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We shall prove, by the analogous method, a generalization of
the Murnaghan-Nakayama recursion formula for S(n, m). Let («)*
be an irreducible representation of S(n, ) corresponding to a star
diagram [«],*. Let [e,]—[8.] be a skew diagram of / nodes. A
diagram which has [a,]—[8;] as its i-th component will be called a
skew star diagram and will be denoted by [a]* —[B]*:

[ﬂ’]* —_ [19]* = [a'u] - {Bn]'[al] - [BJJ TTenee '[am—l] - [B.u—l]'

We set 3}/, =1 Then [a]* —[B8]* corresponds to a reducible repre-
sentation of S(/, m), which will be denoted by (a)* — (8)*, where (8)*
denotes the irreducible representation of Sz — !, m) corresponding to

[B]* = [Bo]-[8,]: -+-*++ *[Bn-1)- The representation (a)* is reducible con-
sidered as a representation of a subgroup Sz —I, m) x S(I, m). Let
(3.5 (a)* = 3 hapy(B)* % ()¥

as a representation of S(n —1I, m) x S, m).
Theorem 6. Let [a]—[8]= > &up,+[7:]. Then
(@* — (B)* = 37 hagy (1)*,

where hugy = 1 Zaoy, and (r)* is an irreducible representation of
S, m) corresponding to [r1* = [ro)-[v.]" == [T m-i]e

If [«]=[B], we must set &, 4, =1 in Theorem 6. We obtain
by Theorem 6 and (3.5)

(3.6) (a)* = HE*(B)* x ((@)* — (8)*).

We shall denote by d,+"* the character of (a)* —(B)*. By (3.6) we
have for T.= T T®e Sn—1, m) x S{, m)

3.7 I (T) = 3)0%(TO) S (TW),

In particular, if 7® = U* is an element of the subgroup S,* of
S, m), then

(3-8) lya*ﬂ* (U*) = 2 huﬂyxv*(U) ’

where U is an element of S, corresponding to U* of S;*. Let C* be
an element of type (/, 0), that is, an element of S;* corresponding to
an [Icycle C of S,. We shall determine the value of x.*(C). Let
I, <! for every i. Since C is not contained in a subgroup S,O x S
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X easen xS, _, of S, we have z#(C) =0 by (2.8). Next we consider
the case when one of /,, say /,, isequal to Zand , =0 (0 < 7). We
see by (34) that z,#(C) = 2,%(C) = (—1)" or 0, according as [a,] —[B,]
is a skew hook equivalent to the right hook H, =[/—7,1"] or not.
In this case we have &8y, =1 for every i>0. Hence we can
conclude that

(3.9) 2,45 (C*) = (=1 or 0,

according as [a]* —[A]* is a skew hook of some component [a;]
equivalent to the right hook H, =[/—7, 17] or not. (3.7), combined
with (3.9), yields a generalization of the Murnaghan-Nakayama re-
cursion formula for S(n, m).

Theorem 7. Let H,, H,, ------ be the totality of hooks of length 1
in the star diagram T* = [a]*, and let 9*(T*) be the character of
(@)* of S(n, m) corresponding to T*. Then ‘

SHT*; P) = 3(=1sX(T* — H; P,

where P is any permutation of S(n,m) which contains a permutation
C* of S,* corresponding 1o a cycle C of length 1 and P is the permu-
tation of Sn— I, m) obtained by removing C* from P. If T* has no
hook of length 1, then 9*(T*; P) =0.

As a special case of Theorem 7, we obtain

Corollary. Let H,, H,, ------ be the tlotalilty of hooks of length [
in the star diagram T* = [a]*, and let x*(T*) be the character of the
skew representation [«]* of S,. Then

*(T*; P) = 2(=1yx*(T* — H; P),
i

where P is any permutation of S, which contains a cycle C of length
! and P is the permutation on n—1 symbols obtained by removing
C from P. If T* has no hook of length l, then x*(T*; P) = 0.

In what follows we shall denote by [«]* the irreducible repre-
sentation of S(», m) corresponding to a star diagram [a]* in place of
(a)* and by x.» its character.

4. The decomposition numbers of S,. Let p be a fixed prime
number. If b p-hooks are removable from [a«] of # nodes, we shall
say that [a] is of weight & and residue [a®] of 7 — bp nodes is called
the p-core of [a]. The p-hook structure of [a] is completely repre-
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sented by the star diagram [«],* = [a,)-[a,]* -+ *[a,_,] of b nodes
[12; also 8, 13]. Namely, each node of [a],* represents a p-hook of
[a«] and each 7r-hook of [«]* represents an 7p-hook of [«]. Let
H=[g—7r 17 be a g-hook of [«]. (—1)" is called the parity of H
and is denoted by «(H). Let us consider a ¢p-hook H = [¢p—7, 17] of
[a] and suppose that its representative in [a]* is H* =[c—s, 17].
If we denote by H, the i-th of the ¢ component p-hooks of H, then
we have [11]

“.) o(H) = o(H*) 1T o(H).

Let [8] be a diagram obtained by removing succestvely b,p-hook H,,
b.p-hook H,, ------ , bp-hook H, from [a]. We set o'(a, f) = Ta(H).
Suppose that the representatives of H, in [a],* are H*. We set
a*(a¥, B*) = IT a(H*). Let b = “Y_,‘bt. Since [3] is obtained by remov-

ing succesively & p-hooks from [a], we shall denote by o(a, f) the
product of parities of these & p-hooks. Then it follows from (4.1)
that

(4.2) 0"(“, B) = ”*(a*’ B*)U(a'! B)'

Let Pe S, be the product of a p-cycle Q,, a.p-cycle Q., -,
a,p-cycle Q,, where ¢, >a,> ------ >a,=>1. P is called an element
of type (e, a,, ------ , @) and of weight a = ga; [10]. We shall asso-

ciate P with the diagram [»] = [a,, a,, -+ ,a,] and P will be denoted
by P,. The number of elements of weight @ such that they all lie
in different conjugate classes of S, is k(a), where k(a) denotes, as
before, the number of diagrams of ¢ nodes. We set n=# + ip

0O<# <p) and ﬁk(a) =7. We then have 7 elements P, of S,,

am=i)

where [#] ranges over 7 diagrams of a nodes (0{ea={{. Every
conjugate class contains an element of the form VP,, where [«] is
uniquely determined by the class and where V is a p-regular element
of S,.q,, if [#] is a diagram of @ nodes. In what follows we shall
denote by 7, the number of nodes of [«]. Let [a®™] be a p-core with
m nodes and # = m + bp. and let B be the p-block of S, with p-core
[a®]. We denote by x, the character of the irreducible represen-
tation [8] of S,_.,- Let P, be an element of type [2] = [a,, @;, -+
a,]. Applying the Murnaghan-Nakayama recursion formula iterated
s times to [a]c B, we obtain
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% o' (e, B) B¥(a, B) xS V), [B]c B
4.3) *a(VP,) = (for »n,<0),
0 (for b < n,),

where the %4*(a, B) are rational integers >0, and B“ denotes the
block of S, ., with p-core [«®]. Let ¢,"» be the character of
S,,_,,“,, in the modular irreducible representation i. We then have

(4.4) 2" (V) = Edp " 0, " (V) (Vin S,_, ,, p-regular),

where the dp, ™ are the decomposition numbers of S,‘, "o Hence
(4.3), combined with (4.4), yields

(45) 2 VP) = Sua®e(V),
where
(4.6) P Ea (@, B) h*a, B) dg\™? .

The %, will be called the u-numbers of S,. Let D= (d,) be the
decomposition matrix of S,. For P, =1, we have

(4.7)' Up? = d,.

In [10] we have proved the orthogonality relations for the z-numbers
udl(") :

4.8 DU u, > = 0 [«]c B, if [2]=*[v])
(4.9) 3 U U = €, T (k! (i) [«]c B,

where the ¢,/ denote the Cartan invariants of S, , and [x]=
aw, 2%, ... , m*=). In particular, by (4.7) and (4.8)

(4.10) S ditta® = 0 [«]e B, it [#]=[0].

Let P,« be, as before, a complete system of representatives for
the conjugate classes of S, p). P,x is contained in S,* if and only
if the first component [«,] of [a],* is a diagram of & nodes and
[a]=[0] for 0 <i. On the other hand, P,» is contained in L if
and only if [«,] =[1%] or [0] for every i. We associate P,+ with a
diagram [#], if [a,) =[#]. The number of P, associated with a
fixed [«] is I*(b—n,). Here I*(a) is defined by
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(4.11) *(a) =b E k(b)) k(D) -+ k(bp- D
’ (3b=a, 0<b,<a).

We have proved [9; also 6, 3, 10] that the number of modular irre-
ducible representations in a p-block of weight ¢ is /*(z). Let P, be
any element of S(b, p) associated with [#]. Then P,x is expressed
in the form 7w R}* = R* T\, where R,* is an element of S,,“*
corresponding to [#«]-[0]- ------ -[0], considered as an element of S(z, p),
and T\’ is an element corresponding to [0]:[«,]: -+ -[&,_,], con-
sidered as an element of S(»—n,, p). Hence the (3, p) elements

T R¥ (i=1,2, e, I*(b—n,))

form a complete system of representatives for the conjugate classes
of S, p), if [#~] ranges over all diagrams of ¢ nodes 0 <a<{b). In
particular, the T, (=1, 2, ------ , I¥(b)) are the elements of S, p)
corresponding to [a]* such that [a,] = [0].

We consider a diagram [a] with p-core [a™] belonging to a
p-block B of weight b. Let [a]* be the irreducible representation of
Sib, p) corresponding to the star diagram [a]* of [a] and let [x] =
[a., a,, -----+, @,]. Applying the Murnaghan-Nakayama recursion for-
mula (Theorem 7) iterated s times to [a]*, we obtain

(4_12) xm*(Tl(""")Ru.*) — pz*a*(a.*’ ﬁ*) k(#)(a*’ B*) XB*(n"‘)(TL("")):

where [3]* ranges over all star diagrams of S —#,, p). Moreover
we see that A®™(a*, 3*) is equal to A" (a, 8) in (4.3): )

4.13) h¥(a*, %) = h*(a, B).
For any R,* of S,* corresponding to [#]-[0]------- -[0], we have
r*(RF) = o*(a¥, 0) ¥ (a*, 0) = o*(a*, 0) A (a, a®),

Let VP, be an element of S, such that [«] is a diagram of b
nodes and V is any p-regular element on the fixed symbols of P,.
We have by (4.2) and (4.3)

2(VP,) = o'(a, a®) B, a®) 1,0(V)
— a*(a*, 0)0‘(&, a(o)) }zm)(a, a(“)):{,.,(ﬂ)(V)

= G xx*(R¥) 2 V),
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where ¢, = o(a, ). This result was first obtained by R. M. Thrall
and G. de B. Robinson [14]. Since [«*’] is the p-core, z,® is irre-
ducible as a modular character of S,_,,. If we set z,® = ¢,®, we
have

4.14) Up® = a7+ (R¥) (for [«] of b nodes).
(4.14) combined with (4.10), yields
(4.15) S 04luta*(R*) = 0 (for [#] of b nodes),

where [a] ranges over all diagrams in a p-block B of weight b&.
Generally, by (4.8) and (4.13), we have [10, Theorem 3] for any [2] of
b nodes and [v] of @ nodes with ¢ b

4.16) St VP, 2a*(R*) = 0 [«]c B.

We shall consider the special case when b = 1. Since S(,p) is
the cyclic group of order p with generator @ = (12 --.--- p), the
number of irreducible characters of S(,p) is p. Let » be a primi-
tive p-th root of unity. The irreducible character x,» of the repre-
sentation @ — o' (0 <{7<{p —1) corresponds to the star diagram [a]*
of one node with i-th component [a«,]=[1]. Also @' corresponds to
the same star diagram. Let (d,)) be the decomposition matrix of
a p-block B of weight 1. As was shown previously, (d,,) is a matrix
of type (p, p—1). Hence each column of (s.d,,) can be written as a
linear combination of the columns of (x,*(@"):

-1
Oglay = ’g) mn Xa* (Ql) [a] c B.

By the orthogonality relations for group characters of S({, p), we
have

Mo = 53 0o rax (@),
According to (4.14), we obtain
2 7lna(l) = 30uda = 0,
whence m,, = 0. This implies that
4.17) (0ada)) = (a* (@) M, 1=1,2, - p—1.

Here M, = (m,) with ! (1 <!<p—1) as row index and 4 as column
index. We see easily that M, is non-singular.
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Now we shall prove the following theorem [10, Theorem 5].

Theorem 8. Let D= (d,,) be the decomposition matrix of a p-block
B of weight b. Let T (i =1,2, ----- , 1*(D)) be the elements of S(b, p)
associated with [#] = [0]. There exists a non-singular matrix M, of
degree 1*(b) which salisfy

(dm dm)«) = (Za* ( Ttm)) ) ]‘lb .

Proof. D is a matrix of type (/(b), /*(d)). (Since p is a fixed
prime number, we shall denote (b, ) simply by [b). It follows
from (4.12) and (4.13) that

418) o (TOWRX) = (o*(a*, 8%)h®(a, B)) (xg+(Ti)))

for a fixed diagram [#]=%[0]. As was shown before, the theorem is
true for b = 1. We shall assume -it to be true for all p-blocks of
weight less than b > 1. By our inductive assumption, we have

(4.19) (o8 dm("n) = (xp+(T")) M, ~ny o

Observe that 7, corresponds to the star diagram of & —#, nodes
with the first component [0], considered as the element of S —#,, ).
We have by 4.2)

6, = ogola, B) = aﬂo"(a', B)a* (a*, 3*),

where we set ¢z = o(8, a®). Hence it follows from (4.18), (4.19) and
(4.6) that

420 @ (TOWRXN) = (7%, B (@, B)) (0pde ") M.,
= (S o.o'(a, B) K, Bde) M., ™

B
= (”mzlaA(“)) M-n“-l .

This, combined with (4.10), yields
4.21) S0 dpx (T RH*) = 0 [«]c B,

for any [#]=[0]. By the orthogonality relations for group characters
of S(b, p), each column of (s,d,) can be written as a linear combina-
tion of the columns of (x*(7:™)) (¢ =1, 2, ----- , I*b). Thus we have

(aada)\) = (;(m*(Tt(")) ) Mb y

where M, is non-singular.
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4.21) yields
4.22) S 0uxe(V) 2 (T R*)) = 0 [«]c B

for any p-regular element V of S, and any [#]==[0] [10, Theorem 4].
Generally we have by (4.8) and (4.20)

423 XeurVP)xa(TWRX) = 0 [a]lcB, if [v]=[x]

As an application of Theorem 8, we shall prove’ the following
theorem [10, Corollary to Theorem 5].

Theorem 9. Let (d..) and (d.,) be the decomposition matrices of
p-blocks B and B of same weight b respectively, and let [a] and [a’]
have the same star diagram [a)*. Then

(”md_w)") = (0,8, (W),

where the w,, are rational integers and | w,, | = +1.
Proof. We have by Theorem 8

(ondun) = @ (T™)M,.
Hence

(4'24) (a’d_w:\') = (”wdm\) M—IMP

If we set M,"'M, = W, = (w,,), then we see by Theorem 14 {1] that
each column of (w,,) can be written as a linear combination
S'Sp(04dy ), where the s, are rational integers which do not depend

on 4. This shows that the w,, are rational integers. Then, apply-
ing again Theorem 14 [1] to (¢.d,.,), we can conclude that | W, |
=41,

1t follows from (4.24) that

(4:25) (EI(' )\’) = Wb’(cx)\) Wh ’

where W, denotes the transpose of W, and where (c.), (€..) are
the matrices of Cartan invariants corresponding to B and B respec-
tively. (4.25), combined with | W, | = +1, yields the following theo-
rem [10, Theorem 6].

Theorem 10. Two mairices of Cartan invariants corresponding
to the p-blocks of same weight have the same elementary divisors.

Let U= (#,?) be the matrix of #-numbers corresponding to a
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p-block B of weight & [10]. U is a square matrix of degree /(b) and
is non-singular. We have by (4.20)

(4.26) (Cathar®) = (xar(TWRH)) M,
where
M, 0
L e M,=1,
0 M,

if the rows and columns are arranged suitably.

Theorem 11. Let (#,%°) and (i1, be the matrices of u-numbers
corresponding to the p-blocks B and B of same weight respectively, and
let [a] and [a') have the same star diagram [al*. Then (o,u,*) and
(04 1y ) have the same elementary divisors.

Proof. We have by (4.26)

(Ot ;\'('L;) = (Uauwh(“)) W:

where
w, 0
W = Wb-l
0 w,
Since | W | = x1, our assertion follows immediately.
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