ON THE REPRESENTATIONS OF THE GENERALIZED SYMMETRIC GROUP

Masaru OSIMA

Introduction. All permutations of the mn symbols commutative with

$$(1, 2, \cdots, m_1)$$
 $(1, 2, \cdots, m_2)$ \cdots $(1, 2, \cdots, m_n)$

constitute a group of order $n! m^n$. Let us denote this group by S(n, m). Obviously S(1, m) is the cyclic group with generator $Q = (1 \ 2 \ \cdots \ m)$. Since S(n, 1) is the symmetric group S_n on n symbols, S(n, m) will be called the *generalized symmetric group* [10]. S(n, 2) is the hyper-octahedral group of A. Young. The group S(n, m) was treated from other point of view by H. S. M. Coxeter [2]. We set $Q_i = (1, 2, \cdots \ m_i)$. The n cycles Q_i generate an invariant subgroup $\mathfrak Q$ of order m^n of S(n, m). The totality of permutations

$$W^* = \begin{pmatrix} 1_1 & 2_1 & \cdots & m_1 & 1_2 & 2_2 & \cdots & m_2 & \cdots & 1_n & 2_n & \cdots & m_n \\ 1_{i_1} & 2_{i_1} & \cdots & m_{i_1} & 1_{i_2} & 2_{i_2} & \cdots & m_{i_2} & \cdots & 1_{i_n} & 2_{i_n} & \cdots & m_n \end{pmatrix}$$

$$= \begin{pmatrix} 1_1 & 1_2 & \cdots & 1_n \\ 1_{i_1} & 1_{i_2} & \cdots & 1_{i_n} \end{pmatrix} \begin{pmatrix} 2_1 & 2_2 & \cdots & 2_n \\ 2_{i_1} & 2_{i_2} & \cdots & 2_{i_n} \end{pmatrix} \cdots \begin{pmatrix} m_1 & m_2 & \cdots & m_n \\ m_{i_1} & m_{i_2} & \cdots & m_{i_n} \end{pmatrix}$$

which transform the n cycles Q_i into each other, constitutes a subgroup S_n^* of S(n, m). S_n^* is isomorphic to S_n by the mapping

$$W = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix} \longrightarrow W^*.$$

We see easily that

$$S(n, m) = S_n * \mathfrak{Q}, S_n * \cap \mathfrak{Q} = 1,$$

so that $S(n, m)/\Omega \cong S_n$. Every element P of S(n, m) is expressed uniquely in the form $P = W^*Q$, where $W^* \in S_n^*$ and

$$Q = Q_1^{l_1} Q_2^{l_2} \cdots Q_n^{l_n} \qquad (0 \le l_i \le m-1).$$

We have also

$$(W^*)^{-1}QW^* = Q_{i_1}^{l_1} Q_{i_n}^{l_2} \cdots Q_{i_n}^{l_n}.$$

In the present paper we shall first determine the irreducible representations of S(n, m) [10, Theorem 2]. For this purpose, we state in §1 some preliminary results for the induced representations of a group of finite order. As an application, the irreducible representations of S(n, m) will be determined in §2. In §3 some results in [11] and [12] are generalized for S(n, m). In particular, a generalization of the Murnaghan-Nakayama recursion formula plays an important role in the following section. Let p be a prime number. As was shown in [10], there exists the close relationship between the theory of the representations of S(b, p) and that of the modular representations of S_n for p. In §4 we shall prove the theorems in [10] which were stated without proofs.

1. Preliminaries. Let $\mathfrak B$ be a group of finite order. We consider the representations of $\mathfrak B$ in an algebraically closed field of characteristic 0. Let $\mathfrak D$ be an invariant subgroup of $\mathfrak B$ and let $\mathfrak A_1, \mathfrak A_2, \cdots, \mathfrak A_n$; $\mathfrak A_1, \mathfrak A_2, \cdots, \mathfrak A_m$ be the distinct irreducible characters of $\mathfrak B$ and $\mathfrak D$ respectively. As is well known, n is equal to the number of conjugate classes of $\mathfrak B$. The characters $\mathfrak C$ of $\mathfrak D$ are distributed in classes of characters which are associated with regard to $\mathfrak B$; two characters $\mathfrak C_\mu$ and $\mathfrak C$, being associated if

$$\zeta_{\nu}(H) = \zeta_{\mu}(G^{-1}HG),$$

where H is a variable element of \mathfrak{P} and G is a fixed element of \mathfrak{P} . The totality of elements $G \in \mathfrak{P}$ which satisfy

(1.2)
$$\zeta_{\mu}(H) = \zeta_{\mu}(G^{-1}HG) \qquad (\text{for } H \in \mathfrak{H})$$

constitutes a subgroup \mathfrak{G}_{μ} of \mathfrak{G} . Obviously $\mathfrak{H} \subseteq \mathfrak{G}_{\mu}$. \mathfrak{G}_{μ} is called the subgroup of \mathfrak{G} corresponding to ζ_{μ} . Let $\zeta_1, \zeta_2, \dots, \zeta_k$ be the characters of \mathfrak{H} such that they all lie in different associated classes and every character ζ is associated with one of them. Let $(\mathfrak{G} : \mathfrak{G}_{\mu}) = s_{\mu}$ and

$$\mathfrak{G} = \mathfrak{G}_{\mu}T_{1} + \mathfrak{G}_{\mu}T_{2} + \cdots + \mathfrak{G}_{\mu}T_{s_{\mu}}, \qquad T_{1} = 1$$

Then the number of characters ζ associated with ζ_{μ} is s_{μ} . If we denote these characters by $\zeta_{\mu} = \zeta_{\mu}^{(1)}, \zeta_{\mu}^{(2)}, \dots, \zeta_{\mu}^{(\epsilon_{\mu})}$, we may set

(1.3)
$$\zeta_{\mu}^{(i)}(H) = \zeta_{\mu}(T_i^{-1}HT_i).$$

We set

(1.4)
$$\theta_{\mu}(H) = \sum_{i} \zeta_{\mu}^{(i)}(H) = \sum_{i} \zeta_{\mu}(T_{i}^{-1}HT_{i}).$$

Every character χ_i , considered as a character of \mathfrak{H} , is expressed as

with a suitable θ_{μ} . Here a_i is a positive integer. We shall say that χ_i is the character of \mathfrak{G} determined by ζ_{μ} . Denote by $\chi_{\mu}^{(1)}$, $\chi_{\mu}^{(2)}$,, $\chi_{\mu}^{(i_{\mu})}$ the irreducible characters of \mathfrak{G} determined by ζ_{μ} . We then have

$$\sum_{\mu=1}^k t_\mu = n.$$

We consider a subgroup \mathfrak{G}' of \mathfrak{G} . Let $(\mathfrak{G}:\mathfrak{G}')=r$ and

$$\mathfrak{G} = \mathfrak{G}'S_1 + \mathfrak{G}'S_2 + \cdots + \mathfrak{G}'S_r$$
, $S_1 = 1$

Let $G' \to D(G')$ be a representation of \mathfrak{G}' . We set $D(S_i^{-1}GS_j) = 0$ if $S_i^{-1}GS_j$ is not contained in \mathfrak{G}' . Then

$$(1.7) G \longrightarrow D^*(G) = (D(S_i^{-1}GS_j))_{ij}, (for G \in \emptyset)$$

forms a representation D^* of \mathfrak{G} and is called the representation of \mathfrak{G} induced by the representation D of \mathfrak{G} . If \mathfrak{F} is the character of D, we denote by \mathfrak{F} the character of D^* . We define $\mathfrak{F}(S_i^{-1}GS_i)=0$, if $S_i^{-1}GS_i$ is not contained in \mathfrak{G}' . By (1.7) we then have

(1.8)
$$\tilde{\xi}(G) = \sum_{i=1}^{r} \xi(S_i^{-1}GS_i).$$

Let \mathfrak{D} be an invariant subgroup of \mathfrak{G} as before. The irreducible character ζ_{μ} of \mathfrak{D} is not associated with any other ζ with regard to \mathfrak{G}_{μ} . Applying Frobenius' reciprocity theorem on induced characters, we obtain the following

Theorem 1. Let ζ_{μ} be any irreducible character of an invariant subgroup \mathfrak{D} of \mathfrak{G} . Denote by $\chi_{\mu}^{(1)}$, $\chi_{\mu}^{(2)}$,, $\chi_{\mu}^{(i_{\mu})}$ the irreducible characters of \mathfrak{G} determined by ζ_{μ} and by $\xi_{\mu}^{(1)}$, $\hat{\xi}_{\mu}^{(2)}$, $\xi_{\mu}^{(h_{\mu})}$ those of \mathfrak{G}_{μ} . Then $t_{\mu} = h_{\mu}$ and $\tilde{\xi}_{\mu}^{(4)} = \chi_{\mu}^{(4)}$, if the notation is suitably chosen.

2. The irreducible representations of S(n, m). Any element Q of \mathfrak{L} is expressed uniquely in the form $Q = Q_1^{l_1} Q_2^{l_2} \cdots Q_n^{l_n}$ $(0 \le l_i \le m-1)$. Q is called an element of type $(n_0, n_1, \dots, n_{m-1})$, if the number of l_i such that $l_i = k$ is n_k .

Lemma 1. Two elements Q and Q' of \mathfrak{Q} are conjugate in S(n, m) if and only if they are of same type.

In this section we assume that Q is an element of type $(n_0, n_1, \dots, n_{m-1})$ such that $l_1 = \dots = l_{n_0} = 0$, $l_{n_0+1} = \dots = l_{n_0+n_1} = 1$, and so on.

Since the invariant subgroup $\mathfrak L$ is a commutative group, every irreducible representation of $\mathfrak L$ is of degree one. Denote by ω a primitive m-th root of unity. Then

$$Q_i \longrightarrow \omega^{\alpha_i} \quad (0 \leq \alpha_i \leq m-1), \quad i = 1, 2, \dots, n$$

forms an irreducible representation of \mathfrak{Q} . We denote by $\zeta^{(\alpha_i)}$ the character of the representation defined above. The character $\zeta^{(\alpha_i)}$ is called the character of type $(n_0, n_1, \dots, n_{m-1})$, if the number of α_i such that $\alpha_i = k$ is n_k . Two characters $\zeta^{(\alpha_i)}$ and $\zeta^{(\beta_i)}$ are associated with regard to S(n, m) if and only if they are of same type. In what follows we assume that $\zeta^{(\alpha_i)}$ is a character of type $(n_0, n_1, \dots, n_{m-1})$ such that $\alpha_i = \dots = \alpha_{n_0} = 0$, $\alpha_{n_0+1} = \dots = \alpha_{n_0+n_1} = 1$, and so on.

Lemma 2. Let $\mathfrak{G}^{(\alpha_i)}$ be the subgroup of S(n, m) corresponding to the character $\zeta^{(\alpha_i)}$. Then $\mathfrak{G}^{(\alpha_i)}$ is the normalizer $\mathfrak{R}(Q)$ of Q in S(n, m). We have

(2.1)
$$\mathfrak{G}^{(\alpha_{i})} = S_{(n_{i})}^{*}\mathfrak{D}, \quad S_{(n_{i})}^{*} \cap \mathfrak{D} = 1,$$

where $S_{(n,i)}^*$ is the subgroup of S_n^* and is the direct product of $S_{n,i}^*$:

$$S_{(n_i)}^* = S_{n_0}^* \times S_{n_i}^* \times \cdots \times S_{n_{m-1}}^*$$

Hence

$$(2.2) (S(n, m) : \mathfrak{G}^{(\alpha_i)}) = (S_n^* : S_{(n_i)}^*) = (S_n : S_{(n_i)}).$$

This implies that the number of irreducible characters ζ of $\mathbb Q$ associated with $\zeta^{(\alpha_i)}$ with regard to S(n,m) is $\frac{n!}{n_0! \ n_1! \ \cdots \ n_{m-1}!}$. Let

$$(2.3) S_n = S_{(n,)}P_1 + S_{(n,)}P_2 + \cdots + S_{(n,)}P_r$$

be the coset decomposition of S_n with respect to $S_{(n_i)}$. Then

$$(2.4) S(n, m) = \mathfrak{G}^{(\alpha_i)} P_1^* + \mathfrak{G}^{(\alpha_i)} P_2^* + \cdots + \mathfrak{G}^{(\alpha_i)} P_r^*,$$

where P_i^* is the element of S_n^* corresponding to P_i of S_n .

Let $U^* \to D(U^*)$, $U^* \in S_{(n_i)}^*$, be an irreducible representation of degree f of $S_{(n_i)}^*$. Then $G = U^*Q \to \zeta^{(\alpha_i)}(Q) D(U^*)$ is an irreducible representation of $\mathfrak{G}^{(\alpha_i)}$ determined by $\zeta^{(\alpha_i)}$. Conversely, if $G \to D'(G)$ is an irreducible representation of $\mathfrak{G}^{(\alpha_i)}$ determined by $\zeta^{(\alpha_i)}$, then $U^* \to D'(U^*)$ is an irreducible representation of $S_{(n_i)}^*$. This implies that the number of irreducible representations of $\mathfrak{G}^{(\alpha_i)}$ determined by $\zeta^{(\alpha_i)}$ is equal to the number of irreducible representations of $S_{(n_i)}^*$ and $S_{(n_i)}^*$ is equal to the number of irreducible representations of $S_{(n_i)}^*$.

We shall denote by $[\alpha]$ the irreducible representation of S_n corresponding to a diagram $[\alpha]$ of n nodes, and by χ_{α} its character. The degree $\chi_{\alpha}(1)$ of $[\alpha]$ will be denoted by f_{α} . Any irreducible representation of $S_{(n)}$ is given by the Kronecker product representation

$$[\alpha_0] \times [\alpha_1] \times \cdots \times [\alpha_{m-1}],$$

where $[\alpha_i]$ is an irreducible representation of S_{n_i} .

Let us denote by $\xi^{(\alpha_i)}$ the character of the irreducible representation (2.5). As was shown previously, any irreducible character of $\mathfrak{G}^{(\alpha_i)}$ determined by $\zeta^{(\alpha_i)}$ is given by $\xi^{(\alpha_i)} \times \zeta^{(\alpha_i)}$. Theorem 1 shows that the character of S(n,m) induced by $\xi^{(\alpha_i)} \times \zeta^{(\alpha_i)}$ is irreducible. Hence the irreducible characters of S(n,m) determined by $\zeta^{(\alpha_i)}$ are in (1-1) correspondence with star diagrams

$$[\alpha]_m^* = [\alpha_0] \cdot [\alpha_1] \cdot \cdots \cdot [\alpha_{m-1}]$$

of n nodes such that the i-th component $[\alpha_i]$ is a diagram of n_i nodes. We shall denote by $(\alpha)^*$ the irreducible representation of S(n, m) corresponding to $[\alpha]_n^*$, and by ϑ_{α^*} its character. We see by (2.3) and (2.4) that

$$(2.6) \vartheta_{\alpha}*(W^*) = \sum_{j=1}^r \hat{\varsigma}^{(\alpha_j)}(P_j^{-1}WP_j) \text{for } W^* \in S_n^*,$$

where we set $\xi^{(\alpha_i)}(P_j^{-1}WP_j) = 0$ if $P_j^{-1}WP_j$ is not contained in $S_{(n_i)}$, and

$$(2.7) \vartheta_{\alpha^*}(Q) = f_{\alpha_0} f_{\alpha_1} \cdots f_{\alpha_{m-1}} \sum_{j=1}^{\tau} \zeta^{(\alpha_i)}((P_j^*)^{-1} Q P_j^*) \text{for } Q \in \mathfrak{Q}.$$

In particular, if W^* in S_n^* is not contained in $S_{(n)}^*$, then

$$(2.8) \theta_{\alpha} * (W^*) = 0.$$

Let k(n) be the number of partitions of n. The number of distinct irreducible representations of $S_{(n_1)}$ is $k(n_0) k(n_1) \cdots k(n_{m-1})$. Hence, by (1.6) and Theorem 1, the number of irreducible representations of S(n, m) is given by

(2.9)
$$l(n, m) = \sum_{n_0, n_1, \dots, n_{m-1}} k(n_0) k(n_1) \dots k(n_{m-1}), \\ (\sum n_i = n, \quad 0 \leq n_i \leq n).$$

As in [12], we shall denote by $[\alpha]_m^*$ the reducible representation of S_n induced by the irreducible Kronecker product representation $[\alpha_n] \times [\alpha_1] \times \cdots \times [\alpha_{m-1}]$ of $S_{(n_i)}$. The representation $[\alpha]_m^*$ is called the skew representation corresponding to the star diagram $[\alpha]_m^*$. We shall denote by χ_{α^*} the character of $[\alpha]_m^*$ and by f_{α^*} its degree. (2.6) implies

$$(2.10) \vartheta_{\alpha^*}(W^*) = \chi_{\alpha^*}(W).$$

In particular, the degree of $(\alpha)^*$ is equal to

$$(2.11) f_{\alpha^*} = \frac{n!}{n_0! \; n_1! \cdots n_{m-1}!} f_{\alpha_0} f_{\alpha_1} \cdots f_{\alpha_{m-1}}.$$

Thus we have proved the following

Theorem 2. The irreducible representations of S(n, m) are in (1-1) correspondence with star diagrams $[\alpha]_m^*$ of n nodes.

Let H_{α} be the hook product [4; 4a] of a diagram [α] of n nodes. The degree f_{α} of [α] is given by $n!/H_{\alpha}$. We shall define the hook product H_{α} * of a star diagram $[\alpha]_m$ * by

$$(2.12) H_{\alpha^*} = H_{\alpha_0} \cdot H_{\alpha_1} \cdot \cdots \cdot H_{\alpha_{m-1}}.$$

Theorem 3. Let $(\alpha)^*$ be an irreducible representation of S(n, m) corresponding to $[\alpha]_m^*$. The degree of $(\alpha)^*$ is given by $n!/H_{\alpha^*}$.

Proof. Our assertion follows immediately from $f_{\alpha_i} = n_i!/H_{\alpha_i}$ and (2.11).

Let P be any element of S_n with b_1 1-cycles, b_2 2-cycles,, b_k k-cycles. The normalizer $\mathfrak{N}(P)$ of P in S_n is the direct product of $S(b_i, i)$:

$$\mathfrak{N}(P) = S(b_1, 1) \times S(b_2, 2) \times \cdots \times S(b_k, k).$$

Hence we can easily determine the irreducible representations of $\mathfrak{R}(P)$.

Let A_n^* be the subgroup of S_n^* corresponding to the alternating group A_n of S_n . Evidently $A_n^*\mathfrak{Q}$ is an invariant subgroup of S(n, m). This will be denoted by A(n, m) and will be called the *generalized alternating group*. We shall determine the irreducible representations of A(n, m). If the rows and columns of a diagram $[\alpha]$ are interchanged, the resulting diagram $[\bar{\alpha}]$ is said to be conjugate to $[\alpha]$. If $[\alpha] = [\bar{\alpha}]$, then $[\alpha]$ is called self-conjugate. For a star diagram, we shall say that $[\bar{\alpha}]^* = [\bar{\alpha}_0] \cdot [\bar{\alpha}_1] \cdot \cdots \cdot [\bar{\alpha}_{m-1}]$ is conjugate to $[\alpha]^*$. A star diagram $[\alpha]^*$ is called self-conjugate, if $[\alpha]^* = [\bar{\alpha}]^*$.

Theorem 4. Let $(\alpha)^*$ be an irreducible representation of S(n, m) corresponding to a star diagram $[\alpha]^*$. If $[\alpha]^*$ is self-conjugate, then $(\alpha)^*$ breaks up into two irreducible conjugate parts of equal degree as a representation of A(n, m). If $[\alpha]^*$ is not self-conjugate, then $(\alpha)^*$ remains irreducible as a representation of A(n, m). Moreover two representations $(\alpha)^*$ and $(\bar{\alpha})^*$ of A(n, m) are equivalent.

We shall study the modular representations of S(n, m) in a forthcoming paper.

3. A generalization of the Murnaghan-Nakayama recursion formula. We first consider the conjugate classes of S(n, m). We see easily that if two elements W^* and U^* of S_n^* are conjugate in S(n, m), then they are conjugate in S_n^* . Generally we have

Lemma 3. If two elements W^*Q and U^*Q' are conjugate in S(n, m), then W^* and U^* are conjugate in S_n^* .

Let C^* be an element of S_n^* corresponding to a *b*-cycle $C = (i_1 i_2 \cdots i_b)$ of S_n :

$$(3.1) C^* = (1_{i_1} 1_{i_2} \cdots 1_{i_b}) (2_{i_1} 2_{i_2} \cdots 2_{i_b}) \cdots (m_{i_1} m_{i_a} \cdots m_{i_b}).$$

 $C^*Q_{i_{\alpha}}^{\ l}$ $(1 \le l \le m-1, \ 1 \le \alpha \le b)$ is the cycle of length mb. We shall say that $C^*Q_{i_{\alpha}}^{\ l}$ is a permutation of type (b, l) and denote it by P(b, l). Of course, $P(b, 0) = C^*$. If $i \ne j$, then P(b, i) and P(b, j) are not conjugate in S(n, m). We consider a permutation P of S(n, m) such that

$$P = P(a_1^{(n)}, 0) P(a_2^{(n)}, 0) \cdots P(a_t^{(m-1)}, m-1),$$

where no two of $P(a_{\mu}^{(k)}, k)$ have common symbols. For a fixed i, we may assume that $a_1^{(i)} \geq a_2^{(i)} \geq \cdots \geq a_{r_i}^{(i)} \geq 0$. We set

$$a_1^{(i)} + a_2^{(i)} + \cdots + a_{r_i}^{(i)} = b_i$$
.

Then

$$b_0 + b_1 + \cdots + b_{m-1} = n$$
 $(0 \le b_i \le n).$

We set $[\alpha_i] = [a_1^{(i)}, a_2^{(i)}, \dots, a_{r_i}^{(i)}]$ and associate P with a star diagram $[\alpha]_m^* = [\alpha_0] \cdot [\alpha_1] \cdot \dots \cdot [\alpha_{m-1}]$ of n nodes. We then have

Lemma 4. Let S and T be two elements of S(n, m) corresponding to the star diagrams $[\alpha]_m^*$ and $[\beta]_m^*$ of n nodes respectively. S and T are conjugate in S(n, m) if and only if $[\alpha]_m^* = [\beta]_m^*$.

Since there exists an element of S(n, m) corresponding to an arbitrary star diagram of n nodes, Lemma 4 implies that there exist at least the l(n, m) elements which are not mutually conjugate in S(n, m). On the other hand, Theorem 2 shows that the number of conjugate classes of S(n, m) is l(n, m). Thus, if we denote by P_{α} * the element of S(n, m) corresponding to $[\alpha]_m$ *, then the l(n, m) elements P_{α} * form a complete system of representatives for the conjugate classes of S(n, m). Hence we have obtained the following

Theorem 5. The conjugate classes of S(n, m) are in (1-1) correspondence with star diagrams $[\alpha]_m^*$ of n nodes.

We shall summarlize some results of G. de B. Robinson [11; 12] on the skew representations of the symmetric group which are significant hereafter. Let $[\alpha] - [\beta]$ be a skew diagram [11] of I nodes. $[\alpha] - [\beta]$ determines a reducible representation of S_i . This is called a skew representation of S_i and is denoted by $[\alpha] - [\beta]$. We shall denote by χ_{α}^{β} the character of $[\alpha] - [\beta]$. The irreducible representation $[\alpha]$ of S_n is reducible considered as a representation of a subgroup $S_k \times S_i$. Let $[\alpha] = \sum g_{\alpha\beta\gamma}[\beta] \times [\gamma]$. Then $[\alpha] - [\beta] = \sum g_{\alpha\beta\gamma}[\gamma]$, so that

(3.2)
$$[\alpha] = \sum_{\beta} [\beta] \times ([\alpha] - [\beta]).$$

Hence we have for $S = S^{(1)}S^{(2)} \in S_k \times S_l$

(3.3)
$$\chi_{\alpha}(S) = \sum_{\beta} \chi_{\beta}(S^{(1)}) \chi_{\alpha}^{\beta}(S^{(2)}).$$

If C is a cycle of length l in S_i , then

(3.4)
$$\chi_{\alpha}^{\beta}(C) = (-1)^r \text{ or } 0,$$

according as $[\alpha] - [\beta]$ is a skew hook equivalent to the right hook $H_r = [n-r, 1^r]$ or not. We can prove, as in [11], the Murnaghan-Nakayama recursion formula [5; 7] by (3.3) and (3.4).

We shall prove, by the analogous method, a generalization of the Murnaghan-Nakayama recursion formula for S(n, m). Let $(\alpha)^*$ be an irreducible representation of S(n, m) corresponding to a star diagram $[\alpha]_{n}^*$. Let $[\alpha_i] - [\beta_i]$ be a skew diagram of l_i nodes. A diagram which has $[\alpha_i] - [\beta_i]$ as its *i*-th component will be called a skew star diagram and will be denoted by $[\alpha]^* - [\beta]^*$:

$$\lceil \alpha \rceil^* - \lceil \beta \rceil^* = \lceil \alpha_0 \rceil - \lceil \beta_0 \rceil \cdot \lceil \alpha_1 \rceil - \lceil \beta_1 \rceil \cdot \cdots \cdot \lceil \alpha_{m-1} \rceil - \lceil \beta_{m-1} \rceil.$$

We set $\sum l_i = l$. Then $[\alpha]^* - [\beta]^*$ corresponds to a reducible representation of S(l, m), which will be denoted by $(\alpha)^* - (\beta)^*$, where $(\beta)^*$ denotes the irreducible representation of S(n-l, m) corresponding to $[\beta]^* = [\beta_0] \cdot [\beta_1] \cdot \dots \cdot [\beta_{m-1}]$. The representation $(\alpha)^*$ is reducible considered as a representation of a subgroup $S(n-l, m) \times S(l, m)$. Let

$$(3.5) (\alpha)^* = \sum h_{\alpha\beta\gamma}(\beta)^* \times (\gamma)^*$$

as a representation of $S(n-l, m) \times S(l, m)$.

Theorem 6. Let $[\alpha_i] - [\beta_i] = \sum g_{\alpha_i \beta_i \gamma_i} [\gamma_i]$. Then

$$(\alpha)^* - (\beta)^* = \sum h_{\alpha\beta\gamma}(\gamma)^*,$$

where $h_{\alpha\beta\gamma} = \prod_{i} g_{\alpha_i\beta_i\gamma_i}$ and $(r)^*$ is an irreducible representation of S(l, m) corresponding to $[r]^* = [r_0] \cdot [r_1] \cdot \cdots \cdot [r_{m-1}]$.

If $[\alpha_i] = [\beta_i]$, we must set $g_{\alpha_i\beta_i\gamma_i} = 1$ in Theorem 6. We obtain by Theorem 6 and (3.5)

(3.6)
$$(\alpha)^* = \sum_{\beta *} (\beta)^* \times ((\alpha)^* - (\beta)^*).$$

We shall denote by $\vartheta_{\alpha^*}^{\beta^*}$ the character of $(\alpha)^* - (\beta)^*$. By (3.6) we have for $T_i = T^{(1)} T^{(2)} \in S(n-l, m) \times S(l, m)$

(3.7)
$$\vartheta_{\alpha^*}(T) = \sum \vartheta_{\beta^*}(T^{(1)}) \vartheta_{\alpha^*}^{\beta^*}(T^{(2)}).$$

In particular, if $T^{(2)} = U^*$ is an element of the subgroup S_i^* of S(l, m), then

(3.8)
$$\vartheta_{\alpha^*}^{\beta^*}(U^*) = \sum h_{\alpha\beta\gamma} \chi_{\gamma^*}(U),$$

where U is an element of S_i corresponding to U^* of S_i^* . Let C^* be an element of type (l, 0), that is, an element of S_i^* corresponding to an l-cycle C of S_i . We shall determine the value of $\chi_{\gamma^*}(C)$. Let $l_i < l$ for every i. Since C is not contained in a subgroup $S_{i_0} \times S_{i_1}$

 $\times \cdots \times S_{l_{m-1}}$ of S_l , we have $\chi_{\gamma^*}(C)=0$ by (2.8). Next we consider the case when one of l_i , say l_0 , is equal to l and $l_i=0$ (0 < i). We see by (3.4) that $\chi_{\gamma^*}(C)=\chi_{\alpha_0}^{\ \beta_0}(C)=(-1)^r$ or 0, according as $[\alpha_0]-[\beta_0]$ is a skew hook equivalent to the right hook $H_r=[l-r,1^r]$ or not. In this case we have $g_{\alpha_1\beta_1\gamma_l}=1$ for every i>0. Hence we can conclude that

(3.9)
$$\vartheta_{\alpha} *^{\beta *} (C^*) = (-1)^r \text{ or } 0,$$

according as $[\alpha]^* - [\beta]^*$ is a skew hook of some component $[\alpha_i]$ equivalent to the right hook $H_r = [l-r, 1^r]$ or not. (3.7), combined with (3.9), yields a generalization of the Murnaghan-Nakayama recursion formula for S(n, m).

Theorem 7. Let H_1, H_2, \cdots be the totality of hooks of length l in the star diagram $T^* = [\alpha]^*$, and let $\vartheta^*(T^*)$ be the character of $(\alpha)^*$ of S(n, m) corresponding to T^* . Then

$$\vartheta^*(T^*; P) = \sum_{i} (-1)^{r_i} \vartheta^*(T^* - H_i; \overline{P}),$$

where P is any permutation of S(n, m) which contains a permutation C^* of S_n^* corresponding to a cycle C of length l and \overline{P} is the permutation of S(n-l, m) obtained by removing C^* from P. If T^* has no hook of length l, then $\vartheta^*(T^*; P) = 0$.

As a special case of Theorem 7, we obtain

Corollary. Let H_1, H_2, \dots be the totality of hooks of length I in the star diagram $T^* = [\alpha]^*$, and let $\chi^*(T^*)$ be the character of the skew representation $[\alpha]^*$ of S_n . Then

$$\chi^*(T^*; P) = \sum_{i} (-1)^{r_i} \chi^*(T^* - H_i; \bar{P}),$$

where P is any permutation of S_n which contains a cycle C of length l and \overline{P} is the permutation on n-l symbols obtained by removing C from P. If T^* has no hook of length l, then $\chi^*(T^*; P) = 0$.

In what follows we shall denote by $[\alpha]^*$ the irreducible representation of S(n, m) corresponding to a star diagram $[\alpha]^*$ in place of $(\alpha)^*$ and by χ_{α}^* its character.

4. The decomposition numbers of S_n . Let p be a fixed prime number. If b p-hooks are removable from $[\alpha]$ of n nodes, we shall say that $[\alpha]$ is of weight b and residue $[\alpha^{(n)}]$ of n-bp nodes is called the p-core of $[\alpha]$. The p-hook structure of $[\alpha]$ is completely repre-

sented by the star diagram $[\alpha]_p^* = [\alpha_0] \cdot [\alpha_1] \cdot \cdots \cdot [\alpha_{p-1}]$ of b nodes [12; also 8, 13]. Namely, each node of $[\alpha]_p^*$ represents a p-hook of $[\alpha]$ and each r-hook of $[\alpha]_p^*$ represents an rp-hook of $[\alpha]$. Let $H = [g-r, 1^r]$ be a g-hook of $[\alpha]$. $(-1)^r$ is called the parity of H and is denoted by $\sigma(H)$. Let us consider a cp-hook $H = [cp-r, 1^r]$ of $[\alpha]$ and suppose that its representative in $[\alpha]_p^*$ is $H^* = [c-s, 1^s]$. If we denote by H_i the i-th of the c component p-hooks of H, then we have [11]

(4.1)
$$\sigma(H) = \sigma(H^*) \prod_i \sigma(H_i).$$

Let $[\beta]$ be a diagram obtained by removing succesively b_1p -hook H_1 , b_2p -hook H_2 ,, b_sp -hook H_s from $[\alpha]$. We set $\sigma'(\alpha, \beta) = \prod_i \sigma(H_i)$. Suppose that the representatives of H_i in $[\alpha]_p^*$ are H_i^* . We set $\sigma^*(\alpha^*, \beta^*) = \prod_i \sigma(H_i^*)$. Let $b = \sum_i b_i$. Since $[\beta]$ is obtained by removing successively b p-hooks from $[\alpha]$, we shall denote by $\sigma(\alpha, \beta)$ the product of parities of these b p-hooks. Then it follows from (4.1) that

(4.2)
$$\sigma'(\alpha, \beta) = \sigma^*(\alpha^*, \beta^*) \sigma(\alpha, \beta).$$

Let $P \in S_n$ be the product of $a_1 p$ -cycle Q_1 , $a_2 p$ -cycle Q_2 ,, $a_s p$ -cycle Q_s , where $a_1 \ge a_2 \ge \cdots \ge a_s \ge 1$. P is called an element of type (a_1, a_2, \dots, a_s) and of weight $a = \sum_i a_i$ [10]. We shall associate P with the diagram $[\mu] = [a_1, a_2, \dots, a_s]$ and P will be denoted by P_{μ} . The number of elements of weight a such that they all lie in different conjugate classes of S_n is k(a), where k(a) denotes, as before, the number of diagrams of a nodes. We set n = n' + tp $(0 \le n' < p)$ and $\sum_{n=0}^{t} k(n) = r$. We then have r elements P_{μ} of S_n , where $[\mu]$ ranges over r diagrams of a nodes $(0 \le a \le t)$. Every conjugate class contains an element of the form VP_{μ} , where $[\mu]$ is uniquely determined by the class and where V is a p-regular element of $S_{n-\alpha p}$, if $[\mu]$ is a diagram of a nodes. In what follows we shall denote by n_{μ} the number of nodes of $[\mu]$. Let $[\alpha^{(0)}]$ be a p-core with m nodes and n = m + bp, and let B be the p-block of S_n with p-core $[\alpha^{(0)}]$. We denote by $\chi_{\beta}^{(\alpha)}$ the character of the irreducible representation $[\beta]$ of S_{n-ap} . Let P_{μ} be an element of type $[\mu] = [a_1, a_2, \dots, a_n]$ a_i]. Applying the Murnaghan-Nakayama recursion formula iterated s times to $\lceil \alpha \rceil \subset B$, we obtain

$$(4.3) \chi_{\alpha}(VP_{\mu}) = \begin{cases} \sum_{\beta} \sigma'(\alpha, \beta) h^{(\mu)}(\alpha, \beta) \chi_{\beta}^{(n_{\mu})}(V), & [\beta] \subset B^{(n_{\mu})} \\ \text{(for } n_{\mu} \leq b), \\ 0 & \text{(for } b < n_{\nu}). \end{cases}$$

where the $h^{(\mu)}(\alpha,\beta)$ are rational integers ≥ 0 , and $B^{(n_{\mu})}$ denotes the block of $S_{n-n_{\mu}p}$ with p-core $[\alpha^{(0)}]$. Let $\varphi_{\lambda}^{(n_{\mu})}$ be the character of $S_{n-n_{\mu}p}$ in the modular irreducible representation λ . We then have

$$(4.4) \chi_{\beta}^{(n_{\mu})}(V) = \sum_{\lambda} d_{\beta\lambda}^{(n_{\mu})} \varphi_{\lambda}^{(n_{\mu})}(V) (V \text{ in } S_{n-n_{\mu},p}, p\text{-regular}),$$

where the $d_{\beta\lambda}^{(n_{\mu})}$ are the decomposition numbers of $S_{n-n_{\mu}p}$. Hence (4.3), combined with (4.4), yields

(4.5)
$$\chi_{\alpha}(VP_{\mu}) = \sum_{\lambda} u_{\alpha\lambda}^{(\mu)} \varphi_{\lambda}^{(n_{\mu})}(V),$$

where

(4.6)
$$u_{\alpha\lambda}^{(\mu)} = \sum_{\beta} \sigma'(\alpha, \beta) h^{(\mu)}(\alpha, \beta) d_{\beta\lambda}^{(n_{\mu})}.$$

The $u_{\alpha\lambda}^{(\mu)}$ will be called the *u-numbers* of S_n . Let $D=(d_{\alpha\lambda})$ be the decomposition matrix of S_n . For $P_0=1$, we have

$$u_{\alpha\lambda}^{(0)} = d_{\alpha\lambda}.$$

In [10] we have proved the orthogonality relations for the *u*-numbers $u_{\alpha\lambda}^{(\mu)}$:

(4.8)
$$\sum_{\alpha} u_{\alpha\lambda}^{(\mu)} u_{\alpha\kappa}^{(\nu)} = 0 \qquad [\alpha] \subset B, \qquad \text{if } [\mu] \neq [\nu].$$

where the $c_{\lambda_k}^{(n_{\mu})}$ denote the Cartan invariants of $S_{n-n_{\mu}p}$ and $[\mu]=(1^{k_1}, 2^{k_2}, \dots, m^{k_m})$. In particular, by (4.7) and (4.8)

$$(4.10) \sum_{\alpha} d_{\alpha\lambda} u_{\alpha\kappa}^{(\mu)} = 0 [\alpha] \subset B, \text{if } [\mu] \neq [0].$$

Let P_{α^*} be, as before, a complete system of representatives for the conjugate classes of S(b,p). P_{α^*} is contained in S_b^* if and only if the first component $[\alpha_0]$ of $[\alpha]_p^*$ is a diagram of b nodes and $[\alpha_i] = [0]$ for 0 < i. On the other hand, P_{α^*} is contained in $\mathfrak Q$ if and only if $[\alpha_i] = [1^{b_i}]$ or [0] for every i. We associate P_{α^*} with α diagram $[\alpha]$, if $[\alpha_0] = [\alpha]$. The number of P_{α^*} associated with a fixed $[\alpha]$ is $I^*(b-n_{\alpha})$. Here $I^*(a)$ is defined by

(4.11)
$$l^*(a) = \sum_{b_1, b_2, \dots, b_{p-1}} k(b_1) k(b_2) \dots k(b_{p-1}),$$

$$(\sum b_i = a, 0 \le b_i \le a).$$

We have proved [9; also 6, 3, 10] that the number of modular irreducible representations in a p-block of weight a is $l^*(a)$. Let P_{α}^* be any element of S(b,p) associated with $[\mu]$. Then P_{α}^* is expressed in the form $T_i^{(n_{\mu})}R_{\mu}^* = R_{\mu}^* T_i^{(n_{\mu})}$, where R_{μ}^* is an element of $S_{n_{\mu}}^*$ corresponding to $[\mu] \cdot [0] \cdot \cdots \cdot [0]$, considered as an element of S(n,p), and $T_i^{(n_{\mu})}$ is an element corresponding to $[0] \cdot [\alpha_1] \cdot \cdots \cdot [\alpha_{p-1}]$, considered as an element of $S(b-n_{\mu},p)$. Hence the l(b,p) elements

$$T_i^{(n_\mu)}R_\mu^*$$
 $(i=1,2,\dots,l^*(b-n_\mu))$

form a complete system of representatives for the conjugate classes of S(b,p), if $[\mu]$ ranges over all diagrams of a nodes $(0 \le a \le b)$. In particular, the $T_i^{(0)}$ $(i=1,2,\dots,l^*(b))$ are the elements of S(b,p) corresponding to $[\alpha]^*$ such that $[\alpha_0] = [0]$.

We consider a diagram $[\alpha]$ with p-core $[\alpha^{(0)}]$ belonging to a p-block B of weight b. Let $[\alpha]^*$ be the irreducible representation of S(b, p) corresponding to the star diagram $[\alpha]^*$ of $[\alpha]$ and let $[\mu] = [a_1, a_2, \dots, a_s]$. Applying the Murnaghan-Nakayama recursion formula (Theorem 7) iterated s times to $[\alpha]^*$, we obtain

(4.12)
$$\chi_{\alpha^*}(T_i^{(n_{\mu})}R_{\mu^*}) = \sum_{\beta^*} \sigma^*(\alpha^*, \beta^*) h^{(\mu)}(\alpha^*, \beta^*) \chi_{\beta^*}(n_{\mu}) (T_i^{(n_{\mu})}),$$

where $[\beta]^*$ ranges over all star diagrams of $S(b-n_{\mu}, p)$. Moreover we see that $h^{(\mu)}(\alpha^*, \beta^*)$ is equal to $h^{(\mu)}(\alpha, \beta)$ in (4.3):

(4.13)
$$h^{(\mu)}(\alpha^*, \beta^*) = h^{(\mu)}(\alpha, \beta).$$

For any R_{μ}^* of S_b^* corresponding to $[\mu] \cdot [0] \cdot \cdots \cdot [0]$, we have

$$\chi_{\sigma^*}(R_{\mu^*}) = \sigma^*(\alpha^*, 0) h^{(\mu)}(\alpha^*, 0) = \sigma^*(\alpha^*, 0) h^{(\mu)}(\alpha, \alpha^{(0)}).$$

Let VP_{μ} be an element of S_n such that $[\mu]$ is a diagram of b nodes and V is any p-regular element on the fixed symbols of P_{μ} . We have by (4.2) and (4.3)

$$\gamma_{\alpha}(VP_{\mu}) = \sigma'(\alpha, \alpha^{(0)}) h^{(\mu)}(\alpha, \alpha^{(0)}) \chi_{\alpha}^{(0)}(V)
= \sigma^{*}(\alpha^{*}, 0) \sigma(\alpha, \alpha^{(0)}) h^{(\mu)}(\alpha, \alpha^{(0)}) \chi_{\alpha}^{(0)}(V)
= \sigma_{\alpha} \chi_{\alpha^{*}}(R_{\mu}^{*}) \chi_{\alpha}^{(0)}(V),$$

where $\sigma_{\alpha} = \sigma(\alpha, \alpha^{(0)})$. This result was first obtained by R. M. Thrall and G. de B. Robinson [14]. Since $[\alpha^{(0)}]$ is the *p*-core, $\chi_{\alpha}^{(0)}$ is irreducible as a modular character of S_{n-bp} . If we set $\chi_{\alpha}^{(0)} = \varphi_{\lambda}^{(0)}$, we have

$$u_{\alpha\lambda}^{(\mu)} = \sigma_{\alpha} \chi_{\alpha} * (R_{\mu}^*) \qquad \text{(for } [\mu] \text{ of } b \text{ nodes)}.$$

(4.14) combined with (4.10), yields

$$(4.15) \qquad \qquad \sum \sigma_{\alpha} d_{\alpha\lambda} \chi_{\alpha} * (R_{\mu}^*) = 0 \qquad \text{(for } [\mu] \text{ of } b \text{ nodes)},$$

where $[\alpha]$ ranges over all diagrams in a *p*-block *B* of weight *b*. Generally, by (4.8) and (4.13), we have [10, Theorem 3] for any $[\mu]$ of *b* nodes and $[\nu]$ of *a* nodes with $a \neq b$

We shall consider the special case when b=1. Since S(1,p) is the cyclic group of order p with generator $Q=(1\ 2\ \cdots \ p)$, the number of irreducible characters of S(1,p) is p. Let ω be a primitive p-th root of unity. The irreducible character $\chi_{\alpha}*$ of the representation $Q \to \omega^i$ $(0 \le i \le p-1)$ corresponds to the star diagram $[\alpha]^*$ of one node with i-th component $[\alpha_i]=[1]$. Also Q^i corresponds to the same star diagram. Let $(d_{\alpha\lambda})$ be the decomposition matrix of a p-block P0 of weight 1. As was shown previously, $(d_{\alpha\lambda})$ is a matrix of type (p,p-1). Hence each column of $(\sigma_{\alpha}d_{\alpha\lambda})$ can be written as a linear combination of the columns of $(\chi_{\alpha}*(Q^i))$:

$$\sigma_{\alpha}d_{\alpha\lambda} = \sum_{i=0}^{p-1} m_{i\lambda} \chi_{\alpha} * (Q^{i}) \qquad [\alpha] \subset B.$$

By the orthogonality relations for group characters of S(1, p), we have

$$m_{i\lambda} = \frac{1}{p} \sum_{\alpha} \sigma_{\alpha} d_{\alpha\lambda} \chi_{\alpha} * (Q^{-i}).$$

According to (4.14), we obtain

$$\sum_{\alpha} \sigma_{\alpha} d_{\alpha\lambda} \chi_{\alpha} * (1) = \sum_{\alpha} \sigma_{\alpha} d_{\alpha\lambda} = 0,$$

whence $m_{0\lambda} = 0$. This implies that

$$(4.17) (\sigma_{\alpha}d_{\alpha\lambda}) = (\chi_{\alpha}*(Q^{l})) M_{1} l = 1, 2, \dots, p-1.$$

Here $M_1 = (m_{l\lambda})$ with l $(1 \le l \le p-1)$ as row index and λ as column index. We see easily that M_1 is non-singular.

Now we shall prove the following theorem [10, Theorem 5].

Theorem 8. Let $D = (d_{a\lambda})$ be the decomposition matrix of a p-block B of weight b. Let $T_i^{(0)}$ $(i = 1, 2, \dots, l^*(b))$ be the elements of S(b, p) associated with $[\mu] = [0]$. There exists a non-singular matrix M_b of degree $l^*(b)$ which satisfy

$$(\sigma_{\alpha} d_{\alpha\lambda}) = (\chi_{\alpha} \times (T_i^{(0)})) M_b$$
.

Proof. D is a matrix of type $(l(b), l^*(b))$. (Since p is a fixed prime number, we shall denote l(b, p) simply by l(b).) It follows from (4.12) and (4.13) that

$$(4.18) \qquad (\chi_{\alpha} * (T_i^{(n_{\mu})} R_{\mu}^*)) = (\sigma^* (\alpha^*, \beta^*) h^{(\mu)} (\alpha, \beta)) (\chi_{\beta} *^{(n_{\mu})} (T_i^{(n_{\mu})}))$$

for a fixed diagram $[\mu] \neq [0]$. As was shown before, the theorem is true for b = 1. We shall assume it to be true for all *p*-blocks of weight less than b > 1. By our inductive assumption, we have

(4.19)
$$(\sigma_{\beta} d_{\beta\lambda}^{(n_{\mu})}) = (\chi_{\beta} * (T_{i}^{(n_{\mu})})) M_{b-n_{\mu}}.$$

Observe that $T_i^{(n_\mu)}$ corresponds to the star diagram of $b-n_\mu$ nodes with the first component [0], considered as the element of $S(b-n_\mu, p)$. We have by (4.2)

$$\sigma_{\alpha} = \sigma_{\beta} \sigma(\alpha, \beta) = \sigma_{\beta} \sigma'(\alpha, \beta) \sigma^{*}(\alpha^{*}, \beta^{*}),$$

where we set $\sigma_{\beta} = \sigma(\beta, \alpha^{(0)})$. Hence it follows from (4.18), (4.19) and (4.6) that

$$(4.20) \qquad (\chi_{\alpha} * (T_{i}^{(n_{\mu})} R_{\mu}^{*})) = (\sigma^{*}(\alpha^{*}, \beta^{*}) h^{(\mu)}(\alpha, \beta)) (\sigma_{\beta} d_{\beta\lambda}^{(n_{\mu})}) M_{b-n_{\mu}}^{-1}$$

$$= (\sum_{\beta} \sigma_{\alpha} \sigma'(\alpha, \beta) h^{(\mu)}(\alpha, \beta) d_{\beta\lambda}^{(n_{\mu})}) M_{b-n_{\mu}}^{-1}$$

$$= (\sigma_{\alpha} u_{\alpha\lambda}^{(\mu)}) M_{b-n_{\mu}}^{-1} .$$

This, combined with (4.10), yields

for any $[\mu] \neq [0]$. By the orthogonality relations for group characters of S(b, p), each column of $(\sigma_{\alpha} d_{\alpha \lambda})$ can be written as a linear combination of the columns of $(\chi_{\alpha^*}(T_i^{(0)}))$ $(i = 1, 2, \dots, l^*(b))$. Thus we have

$$(\sigma_{\alpha}d_{\alpha\lambda}) = (\chi_{\alpha}*(T_{i}^{(0)}))M_{\lambda}.$$

where M_b is non-singular.

(4.21) yields

$$(4.22) \qquad \qquad \sum_{\alpha} \sigma_{\alpha} \chi_{\alpha}(V) \chi_{\alpha} * (T_i^{(n_{\mu})} R_{\mu}^*)) = 0 \qquad \qquad [\alpha] \subset B$$

for any p-regular element V of S_n and any $[\mu] \neq [0]$ [10, Theorem 4]. Generally we have by (4.8) and (4.20)

$$(4.23) \qquad \sum_{\alpha} \sigma_{\alpha} \gamma_{\alpha} (VP_{\nu}) \gamma_{\alpha} * (T_{i}^{(n_{\mu})} R_{\mu} *) = 0 \qquad [\alpha] \subset B, \qquad \text{if} \quad [\nu] \neq [\mu].$$

As an application of Theorem 8, we shall prove the following theorem [10, Corollary to Theorem 5].

Theorem 9. Let $(d_{\alpha\lambda})$ and $(\bar{d}_{\alpha',\lambda'})$ be the decomposition matrices of p-blocks B and \bar{B} of same weight b respectively, and let $[\alpha]$ and $[\alpha']$ have the same star diagram $[\alpha]^*$. Then

$$(\sigma_{\alpha'}\bar{d_{\alpha'}\lambda'}) = (\sigma_{\alpha}d_{\alpha\lambda})(w_{\lambda\lambda'}),$$

where the $w_{\lambda\lambda'}$ are rational integers and $|w_{\lambda\lambda'}| = \pm 1$.

Proof. We have by Theorem 8

$$(\sigma_{\lambda'} \overline{d}_{\lambda'\lambda'}) = (\chi_a * (T_i^{(0)})) \overline{M}_b.$$

Hence

$$(\alpha \cdot \overline{d}_{\alpha',\lambda'}) = (\sigma_{\alpha} d_{\alpha\lambda}) M_b^{-1} \overline{M}_b.$$

If we set $M_b^{-1}\overline{M}_b = W_b = (w_{\lambda\lambda'})$, then we see by Theorem 14 [1] that each column of $(w_{\lambda\lambda'})$ can be written as a linear combination $\sum_{\alpha'} S_{\alpha'}(\sigma_{\alpha'}\overline{d}_{\alpha'\lambda'})$, where the $S_{\alpha'}$ are rational integers which do not depend on λ . This shows that the $w_{\lambda\lambda'}$ are rational integers. Then, applying again Theorem 14 [1] to $(\sigma_{\alpha'}\overline{d}_{\alpha'\lambda'})$, we can conclude that $|W_b| = \pm 1$.

It follows from (4.24) that

$$(4.25) (\bar{c}_{\kappa'\lambda'}) = W_b'(c_{\kappa\lambda})W_b,$$

where W_b denotes the transpose of W_b and where $(c_{\kappa\lambda})$, $(\bar{c}_{\kappa'\lambda'})$ are the matrices of Cartan invariants corresponding to B and \bar{B} respectively. (4.25), combined with $|W_b| = \pm 1$, yields the following theorem [10, Theorem 6].

Theorem 10. Two matrices of Cartan invariants corresponding to the p-blocks of same weight have the same elementary divisors.

Let $U = (u_{\alpha\lambda}^{(\mu)})$ be the matrix of u-numbers corresponding to a

p-block B of weight b [10]. U is a square matrix of degree l(b) and is non-singular. We have by (4.20)

$$(4.26) \qquad (\sigma_{\alpha} u_{\alpha\lambda}^{(\mu)}) = (\chi_{\alpha} * (T_i^{(n_{\mu})} R_{\mu}^*)) M,$$

where

$$M=\left(egin{array}{ccc} M_b & 0 \ M_{b-1} \ \ldots & M_0 \end{array}
ight)$$
 , $M_0=I$,

if the rows and columns are arranged suitably.

Theorem 11. Let $(u_{\alpha\lambda}^{(\mu)})$ and $(\bar{u}_{\alpha'\lambda}^{(\mu)})$ be the matrices of u-numbers corresponding to the p-blocks B and \bar{B} of same weight respectively, and let $[\alpha]$ and $[\alpha']$ have the same star diagram $[\alpha]^*$. Then $(\sigma_{\alpha}u_{\alpha\lambda}^{(\mu)})$ and $(\sigma_{\alpha'}\bar{u}_{\alpha'\lambda}^{(\mu)})$ have the same elementary divisors.

Proof. We have by (4.26)

$$(\sigma_{\alpha}, \bar{u}_{\alpha',\lambda'}(\mu)) = (\sigma_{\alpha} u_{\alpha\lambda}(\mu)) W,$$

where

$$W = \left(egin{array}{ccc} W_b & 0 \ W_{b-1} \ \dots & W_0 \end{array}
ight).$$

Since $|W| = \pm 1$, our assertion follows immediately.

References

- [1] R. Brauer, A characterization of the characters of groups of finite order, Ann. of Math., 57 (1953), 357-377.
- [2] H. S. M. COXETER, The abstract groups $R^m = S^m = (R^j S^j)^{pj} = 1$, $S^m = T^2 = (S^j T)^{2pj} = 1$, and $S^m = T^2 = (S^{-j} T S^j T)^{pj} = 1$, Proc. London Math. Soc., Ser. 2, 41 (1936), 278-301.
- [3] J. S. FRAME and G. DE B. ROBINSON, On a theorem of Osima and Nagao, Can. J. Math., 6 (1954), 125 - 127.
- [4] J.S. Frame, G. DE B. Robinson and R. M. Thrall, The hook graphs of the symmetric group (Abstract 572), Bull. Amer. Math. Soc., 59 (1953), 525.
- [4a] —— , The hook graphs of the symmetric group, Can. J. Math., 6 (1954), 316-324.
- [5] F. D. Murnaghan, On the representations of the symmetric group, Amer. J. Math., 59 (1937), 437 488.

- [6] H. NAGAO, Note on the modular representations of symmetric groups, Can. J. Math., 5 (1953), 356-363.
- [7] T. NAKAYAMA, On some modular properties of irreducible representations of a symmetric group I, Jap. J. Math., 17 (1940), 89 108.
- [8] T. Nakayama and M. Osima, Note on blocks of symmetric groups, Nagoya Math. J., 2 (1951), 111-117.
- [9] M. OSIMA, Some remarks on the characters of the symmetric group, Can. J. Math., 5 (1953), 336-343.
- [10] ______, Some remarks on the characters of the symmetric group II, Can. J. Math., 6 (1954), in press.
- [11] G. DE B. ROBINSON, On the representations of the symmetric group II, Amer. J. Math., 69 (1947), 286-298.
- [12] _____, III, ibid, 70 (1948), 277 294.
- [13] R. A. STAAL, Star diagrams and the symmetric group, Can. J. Math., 2 (1950), 79-92.
- [14] R. M. THRALL and G. DE B. ROBINSON, Supplement to a paper of G. de B. Robinson, Amer. J. Math., 73 (1951), 721-724.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received July 12, 1954)