THEORY OF CONNECTIONS AND A THEOREM OF
E. CARTAN ON HOLONOMY GROUPS 1

Tommnosuke OTSUKI

E. Cartan [1]" proved locally a fundamental theorem on holonomy
groups of spaces with generalized connections as follows:

Theorem. Let H be the holonomy group of a space with a con-
nection of structure group G, then the space is equivalent to a space
with a connection of structure group H,

The proof of E. Cartan holds good for the space whose under-
lying manifold is an #-cell. In this paper, we shall investigate the
theorem in the large by means of fibre bundles. For fibre bundles,
we shall utilize the notations in [2]. In §§2-5, we will give an
elementary explanation on the relation between the concept of in-
finitesimal connections in fibre bundles introduced by C. Ehresmann
[3] and the classical one of E. Cartan [1].

§1. We consider a fibre bundle B = {B,p, X, Y, G}. For the
purpose of differential geometry the following assumptions will be
made :

1) The bundle space B, the base space X, the fibre Y are con-
nected, differentiable® manifolds;

2) the group G of the bundle is a Lie group which acts differ-
entiably and effectively on Y;

3) the projection p of B onto X is differentiable.

We assume that a differentiable family of tangent subspaces to B
which are transversal to the fibres is given. For any curve ¥ of class
C" (r>2) in X from x, to ¥, and any point b,€ p"'(x,), we have an
uniquely determined curve ¢ in B from b, to a point b, € p~'(x,) such
that p({) = ¥ and at any point b€, ¢ is tangent to the tangent
subspace at & of the family. Then, corresponding b, to b,, we get a
homeomorphism

(€)1 p7'x) = Y, —> p7w) = Y, .

Furthermore, we assume that o(%) is a bundle mapping. Then,
according to C. Ehresmann [3], we will say an infinitesimal connection

1) Numbers enclosed in brackets refer to the bibliography.
2) In the following, we suppose that all the manifolds B, X, Y, etc. are of class
C7 (r > 2) and the differentiabilities of mappings are of suitable orders respectively.
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r is given in B. Then the group G is called the structure group of
the connection.

Let us put
2. . = the set of curves of class D" in X from x, to ¥,
and
Q = 'Qm z,
kN ,aLn{ EX 0™

The above-mentioned p(%) can be also defined for any curve of class
DT by combining the homeomorphisms corresponding to subarcs of
class C. Then, by the definition, we have

(1) (GE) = o(GIo(6), BELy ., GEL, ..

Let 2,=2,,,, z.=0!12,, then by (1) the transformation x,:2, >
%2 = @, is a homomorphism of the group £, of closed paths at x
and a group of bundle mappings of Y, on itself. Let ¢ be any
admissible map at xe X, then H, = ¢'0,¢ is a subgroup of G.2 We
call H, the holonomy group at x of the bundle B with the infinitesi-
mal connection 7. ‘

Let be given another fibre bundle ¥ = {#’, ¢, X, Y, G} with an
infinitesimal connection I’ as B. Let ¢/, x,, 9., H, be the maps and
the groups defined for %’ as analogous to o, 2,, 2,, H,.

If for a point x€ X, we can take two admissible mappings ¢:
Y- Y, ¢:Y—> Y/ such that €'¢,(%)¢ =& '%.(¥)¢ for any v €2,
which we denote simply by & '.f =¢"'%.¢, we denote this by
a2

‘We shall prove the following lemma.

Lemma 1. Fibre bundles B, B’ with infinitesimal connections, the
same base space, fibre and group are equivalent in G (G-equivalent) as
Jibre bundles if 1., = x;, at a point %,€ X.

Proof. By the assumption of this theorem, let us put

(2) s—lzmns — 5/—11;“5/'

where £, &’ are admissible mappings of B, B’ at x,.

1) A curve in X is said to be of class D7, r >0, if it is defined by a continuous
mapping of a closed interval into X, and if the interval can be divided into a finite set of
subintervals on the closure of each of which the mapping is of class C".

2) £-1#¢ is an abstract subgroup of G and may not be a closed subgroup of G.
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For any point x€ X, let ¥ be a curve of 2, , and define A, :
Y.—> Y. by

(3) h, = (€7 )¢ 0(%).

If % is another curve of £, .and A, is the corresponding map-
ping, then we have by (1), (2)

B Ry = [0(E Y88 0 (6) 0 (G7IE 8 0(5)]
[o( € )E][E o' (€6,)¢" ][4 0(6)]
= [p(E)ENE 2, (6, )66 0(E))
= [o(E)E][E " 2a,(FENE][E 0(F)]
= o(€Ne(EENe(E) = 1,

that is A, =h, ..

Then, we define an one-to-one transformation %2:B — B’ by
R\Y,=h,. For a fixed point r,€X, let U be a coordinate neigh-
borhood of x, which is simply covered by a differentiable family of
curves issuing from x,. For xe€ U, let %, be the curve from x, to x
of the family. Then, since I" is differentiable, o(%,)(0), b€ p~'(x), is
a differentiable mapping of p~'(U) onto Y. , and »(%,7) (), be Y, , is
a differentiable homeomorphism of Y,l x U onto pYU). o0'(%) has
the same property as p(%,), Let % be a curve of !25",,] , then we
have

he = 0'(GTVETNEET(EE) = 0 (CT )R, p(E).

This relation shows that % is continuous at x,, furthermore, % is a
differentiable homeomorphism.

Let {U,} be a system of admissible coordinate neighborhoods as
above which is a covering of X and

¢m . Um X Y — pwl(Ua-)v
9. ¢ Usx Y — p'(U)

be the coordinate functions of B and B’ respectively. Define

pw : p—j(Ua;) — Y;
o t DU — Y

by De I Yz = ¢m,z_ls ;! Y; = ¢.;a,:n—]- If Ua. n Z}:a :\—_- b, let
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Zups oy - Uu0Us —> G,
BuslX) = by, " g5 Qupgl¥) = &, 05,

be the coordinate transformations of B, ¥’ respectively.
These mappings have the property as

(4) Lap(%) 8ay(%) = Zor(%),
Lap(X) gey(¥) = gay(%), xeUnUnT,.

If the point x,€ U,nU,, %.cU,nU,. then we have

By(X) = Pih,bs,,
= Py (6 "V, 0(C) s, -
= [50'(6.797,. [y ha b, 2, | [PaP () B ]
= [20/(6, 97,2 181 (%) [ Dup (B, s )
The first and third factors enclosed in square brackets of the last
side of the above equations are differentiable on x. Hence, the

map &y :U,nU, > G is differentiable in a neighborhood of %, in
U.nU,. By the definition of z,,, it has the property as

( 5) g&ﬂ(x) = ga,y(x)g.ym(x)gms(x)a X € Um n UB n U/ n UZS *

Therefore, # is a differentiable bundle mapping. B, B’ are equivalent
in G.

§2. Let B = {B,p, X, Y, G} be a fibre bundle with an infinitesi-
mal connection 7" as in §1, then we can give an infinitesimal con-

nection 7" for the associated principal bundle® 8B = {B, 5, X, G, G}
of B such that for any point x,, x,€ X and any curve %€ 2, ..

(6) HENE) = (D)., £, €G,,

since o(¥) is a bundle mapping. Denoting the right translation
corresponding to g€ G by r(g), we get from (6)

@) (@) €.) = p(F) (¢, 8)
= 0(%)(£.,8)
= (0(¥)s.) g
= 1(g) (3(F) €.)),

1) See [2], §8.
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hence
(7) (F)r(g) = r(g)e(¥F).

This shows that 7 is invariant under vight translations.

Conversely, if we have a differentiable family of tangent subspaces
to B which are transversal to the fibres and are invariant under right
translations, there exists an infinitesimal connection I' in B such that
(6) holds good.

By virtue of the above argument, in the following, we may
consider only principal fibre bundles.

Let B = {B,p, X, G, G} be a differentiable principal fibre bundle
as in §1 and let " be a differentiable family of tangent subspaces
r,c T,(B), be BY, which are transversal to the fibres G, and are
invariant under right translations, that is

(8) {p*(rb) = Tp[b)(-X),
r(@)xTy = Ty beB, geG

where p,, r(g), denote the differential mappings of p, r(g)”.
The decomposition of T,(B) into the direct sum

Tb(B) =TI, + Tb(Gp(b))

define the projection pz,: T(B) — Ty(G,w). Let # be the mapping
T(B) — T(B) by #(v) = u#,(v) for any b€ T,(B). Let ¢, be the im-
bedding mapping of G, into B, then, by the definition of #,, we get

(g) ﬂV‘s* = ‘x*'
For any ve To(B), g€ G, by (8) and the relation
r(g)s(®) = 1(g)e(d — £,(0) + £,(0))

= 1(g)s(® — £,(0)) + T(Z) 4 #,(V)
we get

10) Tt = MpoT(&)s

or

1) For a differentiable manifold X, we denote the tangent space at x ¢ X by Tx(X)
and the bundle space of the tangent bundle of X by 7(X).

2) Let X, Y be any differentiable manifolds and let f be a differentiable mapping
X =Y. Then we denote by fy: T(X)— 7(X) the differential mapping of f. If
f:X—=Y, h:Y > Z, then (fh)y = fxhx. See[4] or [5]. ’
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r(@)rst = ur(g)y -

We denote by the same notation 5 the mapping of G onto G.
that b(e) = b and define a linear transformation n,: Ty(B) - T,(G) by

(11) n, = (b*)_lﬂn

where e denotes the identity element of G. Thus, we obtain a set
of linear differential forms on B with values in the Lie algebra
L(G) = T.(G) (as vector space).”

Since r(g)(b) = bg = bl(g), br(g) = r(g)b, where Kg):G —» G
denotes the left translation corresponding to g, for any ve T,(B),
we get by (10), (11)

r(g)*n(®) = 7w(r(Q)xD) = my(r(g)v)?
= ((68)%) 7 1y T(g) 4D

((52)x)'x(g) x 2450
= ((bX(8))%)7'T(&)x 110 .
= &™) T(£)xT(8) & by ' 1(Z)x 11,0
= HZ87)x1(g)p byt ety0
= lg™")x1(g)xn(0).

Putting ad(g) = (/(g)r(g™Y)), which is the differential mapping of

the adjoint mapping A(g): G — G by A(g)(y) =gyg™, y€G, the
above relation is written as

12) r(g)*r = ad(g™Yn.
For ve T,(G), bep~'(x), we have

(Dy*n(®) = n((e,d)yY)
= (bg)w"" g (t55 By D)
= U@ by b0 = g7, (0).

If we define
(13) (ta0)*n = o,

1) We denote by T*(X, L(G)) the bundle space of the fibre bundle over X whose
fibre at x ¢ X is & (T%(X); L(G)). Let f be a differentiable mapping X — Y, then we
denote by f*:7*(Y, L(G)) — T*(X, L(G)) the dual mapping of f,. It f: XY,
h:Y — Z, then (hf)* = f*h*.

2) By the natural isomorphism #g)y: Te(G) = Ty(G), Te(G) = THG).
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the above relation is written as

o®) = Ig )b, ve T,(G), g€G.
From this relation, we obtain
Hg)*o = o, s
(14) { (@*o = o geG
o = b, ve T.(G).

This shows that the L(G)-valued linear differential form o« on G is
independent of be B.

Conversely, we can define a differentiable family of tangent sub-
spaces satisfying (8) from a L(G)-valued linear differential from = on
B satisfying (12), (13).

§3. Now, let ¢, be the imbedding mapping » (U, — B and
define a mapping o,: U, — U, x G by
04(%) = X X e xeU,.
Define a L(G)-valued linear differential form ¢, on U, by
(15) 0, = (‘a¢mpw)*7t~
Since b= r(ii.,(b))tmapwlb(b), bep~\(U,), for any ve T,(B), we have
b = ‘r(g) ‘a¢ap¢p)*b + (‘s¢m(x’ 3) )*pﬂ*bv X ‘.‘=p(b)’ g =pa(b)-
Hence, we get by (12), (13), (14), (15)
m, = P¥p.* " X T(@V 1 + DF B(X, €)* ¥,
= Pp*(tadba0a)*(@d(g™")m,) + D*(da(x, g)UG™"))* e, ¥,
= ad(g")l’* 0&,: + pw*l(g_L)*“’c
= ad (g HP¥0u,s + D @,
that is
(16) 7 = ad(Z™p*0,,. + pa* o, o) =%, pub) =g

If bep™(U,nU,), then pad) = gu(p))pab). Hence, at b, we
have the relation
Dex = U Geal D) Y Dax + T (DulD)) s Bpas Dy »
bt o = P lg(DD))F 0 + P* gau* T (Du(D))* 00
= Da* 0 + D* gp* (@d (Pu(b) ) o).
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By the relations above and the equation
ad (Pald) ) D* Ou,s + Du* 0y 0 = ad (Dp(B) )% 0p,, + Do* Doy »
we get
D*0s,s = P*{ad(gp(¥)7)0p,x + Loa™ @0y, 0}

from Which we get

(17) 0d,n = ad (gﬁd(x)-l) 05,:: + gBm* wapm(z) 3
or simply
17) 0, = ad(gp.")0p + Za* @,

since p is onto.

Conversely, on each U,, let be given a system of L(G)-valued
linear differential forms 8, satisfying (17), then we can obtain a L(G)-
valued linear differential form = satisfying (12), (13) by (16).

Thus we see that an infinitesimal connection I as in §1 is given
in B is equivalent to that on each coordinate neighborhood U,, a
L(G)-valued linear differential form satisfying (17’) is given. The
components of ¢, are the parameters of the connection in the classi-
cal sense and (17’) is the transformation equation of the parameters
for coordinate transformations.

§4. In U,, let be given a differentiable family of curves
&é(x,,x)eL, ,, which covers simply over U, except x,. Then,
2006(x,,x): G, —> G,1 define a differentiable mapping

F:pU) - G, by F®) = p(&(x,, p()) ).

Since F| G, is a bundle mapping, we can define a differentiable
mapping »:U, - G by
18) DFé(%,8) = 72(x)g = flx, 8).
Let -,: U, x G » U, 7,: Ui x G—> G be the natural projections,
then for any ve T.J,l,e(UI x G), we get by (14), (16)
Jxb = (@7)%D + 7o b,
(D1 Fé)yd = Disty 140 = bl*—lﬂhl‘ﬁl*b
= 7~'b1(¢1*n)
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= P*0,(8,40) + H* 0($,4 1)

= 0,(D:650) + @Dy 15 D)

= 0)(r,5x0) + 0(t.x D)

= 0,(r141) + 7ou D, b = é,(x,, e),

since #(x) =e, p(b) = e, t, =p%,, 7. =09¢,. Hence, from (18) and
the above relation we obtain

74 (T1x0) = 0,(r,4D)

or
19 70, = 0, .

This equation will imply the following result which is in connection
with the development of a curve in X on a tangent space to X at a
point of the curve, in the classical differential geometry.

For any curve ¥ of class C” from x, to x,: % = y(), 0 <<¥ L1,
let %c Usr 2=1,2, eee , m, be the subarc of % corresponding to
the interval #_, <t<h, 0 =4, < ¢t < ------ < t,=1. Then, we can
determine mappings

7 : (s B] — G,
so that

77)«*“’ = "l"A*ﬁmA’

(20)
) = 77A-1(t,\-1)gu,)‘_1m,\(‘l"(t)‘—l))

where v, = |[£i_,, £h). This is to integrate some system of ordinary
differential equations in each coordinate neighborhood under certain
conditions. If we extend each solution 7,(f) for [£,_;, {,] to both sides
of the interval, then in U,, nU,, ., by means of (17') we have

Nl = n-i(f)&,_ o, (P(E)).
We define an element of G by
(21) k“o“m((g) = 771(0)-17]771(1)’

and for any curve ¥ €9, ., we define likewise R, . (%). Since o
is left-invariant, %, . (%) is independent of the choice of the initial
point 7,(0). Furthermore, we get easily the relation
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(22) k“l“s(% (&) = kwla,(%)kas,as(%)’

GELsay GEL Ly TE€EUs, %€ U, %,€ U, -
By means of (19), between p and &, there exists the following
‘relation
(23) p((g) '¢u2.4=2 = ¢“1"‘1.k"’1”2((6)’
%E.Q O xer-uxzeU‘z'

2

§5. Now, in each coordinate neighborhood U,, we take a dif-
ferentiable mapping f,: U, — G and define a L(G)-valued linear
differential form by

24) b, = ad(f)0s + (f 7)o,
then we get
éﬁ = ad(fﬁgdﬂ_lfa—l)éa + (fugaﬁfﬂ—l)*w! XE€ U’ n (];3 ’

where we put f,7'(x) = (fu(x))"'. If we take, in each neighborhood
U,, a coordinate function

(25) Gurs = Bu,ufal®)™
then we get the coordinate transformation of the bundle
(26) Lupl®) = buubp.s = [ul®)Zup(®)Salx), xeU,nU,.

Then, the fibre bundle B = {B,p, X, Y, G, :3,,,} with the infinitesimal
connection {f,} is G-equivalent to the fibre bundle B = {B,, X, Y,
G, ¢,} with the infinitesimal connection {6,}, that is, {f,} is obtained
from {6,} by transformations of frames. In both B and B, B has
the same family of tangent subspaces to B which are transversal to
the fibres. For % in B and % in B, from (23), (25) we get easily the
relation

(27) 2’%8 = fmkmﬂﬁl_l .
Now, we take a coordinate neighborhood U such that if U>sx
= (x', +veenn , X%, then U3 (ixY - yix™), 0<{¢t<1. Let 6 be the

L(G)-valued linear differential form in U. Let o be the origin of the
coordinate system and ox be the image of the segment joining ¢
and x in the coordinates. Define a mapping f: U — G by
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(28) ko x) = ky(0%) = flx).

The mapping f is differentiable. For any point x € U, we define the
mapping a,:0<t<1— U by a,t) = (tx). Then, we have by (20),
(28), (24)

a,*f*a) — d,*ﬁ,

ax0 = a*@d(f)f + f*o).

Hence we obtain
(29) a*d = 0.

Now, let X be an n-cell. U = X be an coordinate neighborhood
as above. Then, we get from (29)

Eox) = e.
Hence, by (23), (27), for any ¥ €2,,, we have

bo, 0 20X E 0%, Ny, = ROXE X = k()

since f(0) = e. From this and (19), 6 is a L(Hy-valued linear dif-
ferential form. In other words, 7f X is an n-cell, we can take a
L(H,)-valued linear differential form 6 from the L(G)-valued linear
differential form 0 by a suitable transformation of coordinate functions
(that is, by a suitable choice of frames).

§6. Lemma 2. Let X, Y, G be differentiable manifolds, a Lie
group as stated in Section 1. For a point x,€ X, let be given a trans-
SJormation x,: 2, — G with the properties as follows :

) %(6%) = w6 6, 6€2,;
ii) Xn(.@lgg) = 10(-@".@3 —]egg), ﬁ], .g, .@269,

D DD Th€L,;
iii) x, s differentiable.

Then there exists a fibre bundle B = {B,p, X, Y, G} with an in-
Sinitesimal connection ' such that Lay = Ao -
In the lemma, the differentiablity of %, is in the sense as follows.
For any points %,,%.€ X, let 2 (x,, %), Z(x, %), 2 (x,,x") be
differentiable families of curves, x €a coordinate neighhborhood U,
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%' € a coordinate neighborhood V, then

w82, %) 2%, x)D (%, )%™ € G,
GE€EL, s GEL, .,

is differentiable with respect to x, z'.

Proof. Let {U,} be a covering system of coordinate neighbor-
hoods such that if U,3x = (x!, ------ , ¥%), then U> ({x', .-----, tx),
0<?#<1. Let x, be the point whose coordinates in U, are (0, ---, 0),
and for x € U,, let &(x,, x) be the curve which is the locus of points
whose coordinates are (#x', «----- » 19", 0L, in U,. For each
point x,, we take a fixed curve %€ Loy

In U,nUs4¢, define g,: U,nU; - G by
(30) &%) = (G E (%p, X)E (%4, X)7'6.7Y, xeU,NUs.
By iii), gs, is differentiable. For any point x€ U,nU;nU,, we get
by i), ii)
(%) &pal®) = x(GUE (¥y, ) E (X %) 67"
WG E (X, X) E(Xa, %) G7")
= 2(GAE (xy, X)C (%5, ¥) ' G G E (X5, X) E(Xs, %) 67
= 2(KE(%y, X)E(Xs, )76, = Zyal¥),
that is
gys(x)gﬂa(x) = gya(x)'

Hence, there exists a fibre bundle B = {B, p, X, Y, G} with fibre Y,
group of bundle G whose coordinate transformations are g,(x) with
respect to the covering {U,}."”

In the next place, for any curve Z(x, x)cU,, Z(x,x)€2, ..,
define g, by

(31) g2 (%, %) = (G € (%, ¥) D (%, ) E (X, ¥)'E7")
and define p(2(x, %)) : Y, > Y, by
(32) (2 (%, %)) = 64,.8:F (¥, X)) Dy,

If 2, x')cU,nU,, then by (30), (31), i), ii) we get

1) See [2], §3.
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b8,28:(Z (%, X)) Da,» = ba,»Lus(¥)8a(F (¥, X)) Loul¥') D,
= Go, Xl CuC (%o, X) C (¥p, X))
X(GE (Xa, X) Z (X, X')E (%, ') G7Y)
X G (X, X')E (X0, X') ' G ) Das,xr
= G, Xo(Ca® (Xs, X) T (%, X')E (Xo, X) 67" ) D, wr
= bu,28e( T (%, X)) Du, -
This shows that »(Z (%, x¥')) is independent of U,>.Z (x, x').

Now, we will show that »(.Z(x, ¥')) commutes with right trans-
lations of 9.

Let B = {B,p, X, G, G} be the associated principal fibre bundle
of B and by means of (32), define (2 (¥, x)): G, - G, by

(33) b—(g(x’ xl))(¢¢t,x'g) = ¢a,,rgm(g (x) x,))pao.z"ﬁa.x'g
= ¢¢.ag¢(g(x! x’))ge G:s-
This shows that

p(Z(x, x'))x(g) = r(g)o(Z(x, x')), 2.€G.

If 2(x, x) is a differentiable family of curves, then g% (x, x'))
is differentiable with respect to x, ¥’ by iii). Hence, we can obtain
an infinitesimal connection I in B such that the holonomy map »
with respect to I" coincides with the transformation as above for
Z(x, x\cU,.

It follows that for & € %, such that

C = DDy T _%c:U,_\, A=0,1, eceee, m,
CO 0(B) = 0(P)p(Z) - 0( ).

Lastly, we will prove x,= X.,- For any points x, '€ X, let
Z €L, , and

X =x4, ¥ =x,.

@

gac Ua;’ 9¢€ ‘93"‘_1:'
By (32), we get
' 0(..0/3‘,1) = ¢a,;'a_lg¢(o@a)pw.mm!
p(gm)p(gau-l) = ¢m,m’¢_1gm(e-@m)gm.w-x-](x:z)gmivl(gmi-l)pmd-l,:s'G_H

and
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0(2)o (D) +----- 0(Zy)
= ¢1 ,m'ogl(gl)glﬁ(x;)gZ (32) ceceee gm(-@m)pm valy,

By 1), ii), (30), (31), we get

&1( D) 81:(%) Zo(F) Gy (X5) ++- -+ m-1, m(x:n—l)gm(gm)
= 2(GE &, %) L E &, 2) G (G E (%, %) E (%, )7 G
Yo GE (X2, X)) ZoE (%2, %0) G ) 2% (G E (X, X3) E (X5, %) 657Y)

1W( G & (Xpy X)) D E (%> X) Gn™)
= (B E X, X0) DT+ PnC (K> X))

Accordingly, we get the relation

(35) 0(Z,)p (L) --+ - o(Zn) = 0(Z)
= ¢, 0(EE X, £)ZE (%,, ¥) " Cn ) D, «

Especially, if we put ¥ = ¥’ = x,, x,€ U;, then

x:xn(‘g) = ¢1,s"x0((g)pl.a"’ %E‘Qm ’

0

that is

Xey = Aoo Q.E.D.

§7. Lemma 3. Let B = {B,p X, Y, G} be a differentiable fibre
bundle with an infinitesimal connection I' whose structure group is G
and let H be the holonomy group of T at x,€ X. Then B with I' is
G-equivalent to another fibre bundle % = {B,p', X, Y, H} with an
infinitesimal connection I'' whose structure group is G.

Proof. We will use the same notations as before. Using Lemme
2, we can obtain a differentiable fibre bundle ¥’ = {8, ¢, X, Y, H}
with an infinitesimal connection I’ whose structure group is H, and
whose holonomy map %, = x,, of I. By means of Lemmal, B and
B’ is G-equivalent as fibre bundles. Let % : B — B’ be the differenti-
able bundle mapping satisfying the condition p’2 = p. Then, we can
obtain a differentiable family 77 of tangent subspaces to B’ by
Ir'=h,r. Since » is a bundle mapping, I’ define an infinitesimal
connection in ¥'. For any points %, ¥’ € X and any curve ¥ €2, .,
the mapping o'(%): Y. — Y! is clearly given by o' (%) = ho(%)R,
where Y/ denotes the fibre of B’ at ¥ and o’ is the map defined for
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the fibre bundle with the infinitesimal connection I as in B (see §1).
Thus, B with the infinitesimal connection I is G-equivalent to o'
with the infinitesimal connection 7/ whose structure group is
G. Q.E.D.
Now, we shall deal with the theorem of E. Cartan stated in
Introduction. Let B = {B, p, X, Y, G} be a differentiable fibre bundle
with an infinitesimal connection 7" whose structure group is G.
Let {U,} be a system of coordinate neighborhoods which is an open
covering of X, and let ¢, be the L(G)-valued linear differential form
in U, derived from I as in §§2-4. For each U,, let x, be the
origin of the coordinate neighborhood. Then H,,EH% = k,,,(.Qmm'mm)
is the holonomy group of I at x,. For any curve ¥ € 2, 0 WE

have by means of (22) the relation o

(36) Hm = kaa(g)HBkmB(%)_l'

This shows that H, are homologous each other. Let K be the
minimal invariant subgroup of G which contains H,. We may sup-
pose that each U/, is a coordinate neighborhood as U/ in §5. Let B,
be the portion of B over U, and 7", be the subfamily of I on
Bnp~(U,), then the holonomy group of I, at x, is clearly a sub-
group of H,. Hence, by virtue of the consideration in §5, for each
U,, we can obtain a mapping f,: U, - G such that 6, = ad(f,)d,
+ (fi)*e is a L(H,)-valued linear differential form and f,(x,) =e.
If U,nU;=+4¢, we have

éﬂ = ad(g‘Bd)éa + (é'mﬁ)*“’:
where
éas(x) = fm(x)gaﬁ(x)fﬂ(x)-ls xeU,n lj; .

Now, it may be suppose that g,;: U,Nn Uz — H, by means of
Lemma 3, and that if U,n U=, then U,n U is connected. Then,
the above relations imply that g,; can be written as

(37) Lus(®) = Auphap(x), h)E K, 2,5€ G, x€U,nU,.

For each U,, define a mapping %,: U, - G by k., (x) = r.f.(x), where
7, is @ fixed element of G, and define a L(G)-valued linear differential
from 6, by

b, = ad(h,) 0, + (B, ) 0.
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Since %, =r(z,"Yf.”', we have

0, = ad(r))ad(f.)bs + (fu™)*r(, )0
= ad(r,)ad(fo) b, + (f.7")* (ad (v,) @)
= ad(r,) {ad(f,) 0. + (fu.™Y)* 0}
© = ad(z,) 8:,.

-~

Hence, 6, is a L(K)-valued linear differential form. By this change
of coordinate functions, the coordinate transformation g,z on U,n U,
is replaced by

Zus(%) = ho(X) Gup(¥) a(x) ™
= Tmé'wp(x)fﬂ—l
= Tm'{apkaa(x)fg-l

= TuhapTg Hrphaa(X)757")
Accordingly, if we can choose {r,} so that
]
(38) Tﬁxuﬂfﬂ-l € K, as Ug n Up :’: b,

then g,z maps U,n U, into K.
On the other hand, if U,nU;nU, == ¢, we have

e = é‘as(x )é’py(x)é'w(x)
= Auglap(%)Agy Roy(X) Ay Py (%)
= ZuplpyAya {(ApyRya) " Bup Apy Ay} {Aya™" Pipy(X) Aa} Bra(),

from which we obtain the relation
(39) Aaplpyiya € K, as U,nUgnU, =9,

since K is an invariant subgroup of G.

Since X is differentiable manifold, there exists a differentiable
simplicial triangulation of X. Let A,, a=1,2, ...... , be the vertices
of this complex & and let U, be the open set defined by the star of
A, of R Then, the system {U,} has all the properties above-men-
tioned. Thus, the above problem is written as follows:

For each oriented 1-simplex A,A; of &, let be given an element
2.4 € G such that

Aaplpylye € K, for any 2-simplex A,A;A, of &.
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‘Then, can we choose 7, €G, a =1,2, ------ , so that
Todeptst € K, for each A,Aze K7

If X is simply connected, we can easily prove that there exists
a system of {r,} satisfying the above conditions. By means of {8.},
{€ss}, we can obtain a fibre bundle B =1{Bp X, Y, K} with an in-
finitesimal connection I" whose structure group is K, the L(K)-valued
linear differential form on U, is 6, and the coordinate transforma-
tions are g;. B with T is clearly G-equivalent to B with I. For
the holonomy groups of I, we have by (27)

_}};a = ]zd(x,,)fI,‘k,(xw) = T‘,}L—“.‘-a—’.

Since we can put T, =e, we Igave I?,] =H, = H. Accordingly, by
virtue of Lemma 3, B with I is K-equivalent to a fibre bundle
B ={B,p, X, Y, H with an infinitesimal connection 7" whose
structure group is K.

Thus, we obtained a following theorem.

Theorem 1. Let B = {B, p, X, Y, G} be a differentiable fibre
bundle with an infinitesimal connection I' whose structure group is G.
Let H be the holonomy group of I' at a point x,¢ X, and K be the
minimal invariant subgroup of G which contains H. Then B with T’
2s G-equivalent to another fibre bundle B' = {B,p', X, Y, H} with an
nfinitesimal connection I'' whose structure group L, where

) #f X is an n-cell, then L = H:

i)y if X is simply connected, then L = K;

ili) otherwise, L = G.

From this theorem, we see that the theorem of E. Cartan on
hiolonomy groups holds good, in the large, at least in the following
cases:

1)y X is an n-cell.

il) X is simply connected and H is an invariant subgroup of G.
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