THEORY OF CONNECTIONS AND A THEOREM OF E. CARTAN ON HOLONOMY GROUPS I

TOMINOSUKE ŌTSUKI

E. Cartan [1]¹⁾ proved locally a fundamental theorem on holonomy groups of spaces with generalized connections as follows:

Theorem. Let H be the holonomy group of a space with a connection of structure group G, then the space is equivalent to a space with a connection of structure group H.

The proof of E. Cartan holds good for the space whose underlying manifold is an n-cell. In this paper, we shall investigate the theorem in the large by means of fibre bundles. For fibre bundles, we shall utilize the notations in [2]. In §§2-5, we will give an elementary explanation on the relation between the concept of infinitesimal connections in fibre bundles introduced by C. Ehresmann [3] and the classical one of E. Cartan [1].

- §1. We consider a fibre bundle $\mathfrak{B} = \{B, p, X, Y, G\}$. For the purpose of differential geometry the following assumptions will be made:
- 1) The bundle space B, the base space X, the fibre Y are connected, differentiable²⁾ manifolds;
- 2) the group G of the bundle is a Lie group which acts differentiably and effectively on Y;
 - 3) the projection p of B onto X is differentiable.

We assume that a differentiable family of tangent subspaces to B which are transversal to the fibres is given. For any curve $\mathscr E$ of class C^r $(r \geqslant 2)$ in X from x_0 to x_1 and any point $b_0 \in p^{-1}(x_0)$, we have an uniquely determined curve ζ in B from b_0 to a point $b_1 \in p^{-1}(x_1)$ such that $p(\zeta) = \mathscr E$ and at any point $b \in \zeta$, ζ is tangent to the tangent subspace at b of the family. Then, corresponding b_1 to b_0 , we get a homeomorphism

$$\rho(\mathscr{C}) \,:\, p^{-1}(x_1) \,\,=\,\, Y_{x_1} \,\,\longrightarrow\,\, p^{-1}(x_0) \,\,=\,\, Y_{x_0} \,.$$

Furthermore, we assume that $\rho(\mathscr{C})$ is a bundle mapping. Then, according to C. Ehresmann [3], we will say an infinitesimal connection

¹⁾ Numbers enclosed in brackets refer to the bibliography.

²⁾ In the following, we suppose that all the manifolds B, X, Y, etc. are of class C^r $(r \ge 2)$ and the differentiabilities of mappings are of suitable orders respectively.

 Γ is given in \mathfrak{B} . Then the group G is called the *structure group* of the connection.

Let us put

 Q_{x_0,x_0} = the set of curves of class D^{r} in X from x_0 to x_1

and

$$\mathcal{Q} = \bigcup_{x_0, x_1 \in X} \mathcal{Q}_{x_0, x_1}.$$

The above-mentioned $\rho(\mathscr{C})$ can be also defined for any curve of class D^r by combining the homeomorphisms corresponding to subarcs of class C^r . Then, by the definition, we have

$$(1) \qquad \rho(\mathscr{C}_1\mathscr{C}_2) = \rho(\mathscr{C}_1)\rho(\mathscr{C}_2), \qquad \mathscr{C}_1 \in \mathscr{Q}_{x_0, x_1}, \qquad \mathscr{C}_2 \in \mathscr{Q}_{x_1, x_2}.$$

Let $\mathcal{Q}_x = \mathcal{Q}_{x,x}$, $\chi_x = \rho \mid \mathcal{Q}_x$, then by (1) the transformation $\chi_x : \mathcal{Q}_x \to \chi_x(\mathcal{Q}_x) = \emptyset_x$ is a homomorphism of the group \mathcal{Q}_x of closed paths at x and a group of bundle mappings of Y_x on itself. Let ξ be any admissible map at $x \in X$, then $H_x = \overline{\xi^{-1}} \theta_x \overline{\xi}$ is a subgroup of $G^{(2)}$. We call H_x the holonomy group at x of the bundle \mathfrak{B} with the infinitesimal connection Γ .

Let be given another fibre bundle $\mathfrak{B}' = \{B', p', X, Y, G\}$ with an infinitesimal connection Γ' as \mathfrak{B} . Let ρ' , χ'_x , \emptyset'_x , H'_x be the maps and the groups defined for \mathfrak{B}' as analogous to ρ , χ_x , \emptyset_x , H_x .

If for a point $x \in X$, we can take two admissible mappings ξ : $Y \to Y_x$, ξ' : $Y \to Y_x'$ such that $\xi^{-1}\chi_x(\mathscr{C})\xi = \xi^{-1}\chi_x'(\mathscr{C})\xi'$ for any $\mathscr{C} \in \mathscr{Q}_x$, which we denote simply by $\xi^{-1}\chi_x \xi = \xi'^{-1}\chi_x' \xi'$, we denote this by $\chi_x \approx \chi_x'$.

We shall prove the following lemma.

Lemma 1. Fibre bundles \mathfrak{B} , \mathfrak{B}' with infinitesimal connections, the same base space, fibre and group are equivalent in G (G-equivalent) as fibre bundles if $\chi_{x_0} \approx \chi'_{x_0}$ at a point $x_0 \in X$.

Proof. By the assumption of this theorem, let us put

(2)
$$\xi^{-1}\chi_{x_0}\xi = \xi'^{-1}\chi'_{x_0}\xi',$$

where ξ , ξ' are admissible mappings of \mathfrak{B} , \mathfrak{B}' at x_0 .

¹⁾ A curve in X is said to be of class D^r , r > 0, if it is defined by a continuous mapping of a closed interval into X, and if the interval can be divided into a finite set of subintervals on the closure of each of which the mapping is of class C^r .

²⁾ $\xi^{-1}\Phi\xi$ is an abstract subgroup of G and may not be a closed subgroup of G.

For any point $x \in X$, let $\mathscr C$ be a curve of $\mathcal Q_{x_0,x}$ and define h_x : $Y_x \to Y_x'$ by

$$h_x = \rho'(\mathscr{C}^{-1})\hat{\mathfrak{c}}'\hat{\mathfrak{c}}^{-1}\rho(\mathscr{C}).$$

If \mathscr{C}_i is another curve of $\mathscr{Q}_{x_0,x}$ and $h_{1,x}$ is the corresponding mapping, then we have by (1), (2)

$$\begin{array}{ll} h_{x^{-1}}h_{1,\,x} &=& \left[\rho(\mathscr{C}^{-1})\xi\,\dot{\xi}'^{-1}\rho'(\mathscr{C})\right]\left[\rho'(\mathscr{C}_{1}^{-1})\xi'\,\dot{\xi}^{-1}\rho(\mathscr{C}_{1})\right] \\ &=& \left[\rho(\mathscr{C}^{-1})\xi\right]\left[\xi'^{-1}\rho'(\mathscr{C}_{1}^{-1})\xi'\right]\left[\xi^{-1}\rho(\mathscr{C}_{1})\right] \\ &=& \left[\rho(\mathscr{C}^{-1})\xi\right]\left[\xi'^{-1}\chi_{x_{0}}'(\mathscr{C}_{1}^{-1})\xi'\right]\left[\xi^{-1}\rho(\mathscr{C}_{1})\right] \\ &=& \left[\rho(\mathscr{C}^{-1})\xi\right]\left[\xi^{-1}\chi_{x_{0}}(\mathscr{C}_{1}^{-1})\xi\right]\left[\xi^{-1}\rho(\mathscr{C}_{1})\right] \\ &=& \rho(\mathscr{C}^{-1})\rho(\mathscr{C}_{1}^{-1})\rho(\mathscr{C}_{1}^{-1})=1, \end{array}$$

that is $h_x = h_{1,x}$.

Then, we define an one-to-one transformation $h: B \to B'$ by $h \mid Y_x = h_x$. For a fixed point $x_1 \in X$, let U be a coordinate neighborhood of x_1 which is simply covered by a differentiable family of curves issuing from x_1 . For $x \in U$, let \mathscr{C}_x be the curve from x_1 to x of the family. Then, since Γ is differentiable, $\rho(\mathscr{C}_x)(b)$, $b \in p^{-1}(x)$, is a differentiable mapping of $p^{-1}(U)$ onto Y_{x_1} , and $\rho(\mathscr{C}_x^{-1})(b)$, $b \in Y_{x_1}$, is a differentiable homeomorphism of $Y_{x_1} \times U$ onto $p^{-1}(U)$. $\rho'(\mathscr{C}_x)$ has the same property as $\rho(\mathscr{C}_x)$, Let \mathscr{C}_1 be a curve of \mathscr{Q}_{x_0, x_1} , then we have

$$h_x = \rho'(\mathscr{C}_x^{-1}\mathscr{C}_1^{-1})\xi'\xi^{-1}\rho(\mathscr{C}_i\mathscr{C}_x) = \rho'(\mathscr{C}_x^{-1})h_{x_1}\rho(\mathscr{C}_x).$$

This relation shows that h is continuous at x_1 , furthermore, h is a differentiable homeomorphism.

Let $\{U_{\alpha}\}$ be a system of admissible coordinate neighborhoods as above which is a covering of X and

$$\phi_{\alpha} : U_{\alpha} \times Y \longrightarrow p^{-1}(U_{\alpha}),$$
 $\phi'_{\alpha} : U_{\alpha} \times Y \longrightarrow p'^{-1}(U_{\alpha})$

be the coordinate functions of B and B' respectively. Define

$$p_{\alpha} : p^{-1}(U_{\alpha}) \longrightarrow Y,$$
 $p'_{\alpha} : p'^{-1}(U_{\alpha}) \longrightarrow Y$

by
$$p_{\alpha} | Y_x = \phi_{\alpha,x}^{-1}, p'_{\alpha} | Y'_x = \phi'_{\alpha,x}^{-1}$$
. If $U_{\alpha} \cap U_{\beta} \neq \phi$, let

$$g_{\alpha\beta}, g'_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \longrightarrow G,$$

 $g_{\alpha\beta}(x) = \phi_{\alpha,x}^{-1}\phi_{\beta,x}, \quad g'_{\alpha\beta}(x) = \phi'_{\alpha,x}^{-1}\phi'_{\beta,x}$

be the coordinate transformations of \mathfrak{B} , \mathfrak{B}' respectively. These mappings have the property as

$$(4) g_{\alpha\beta}(x) g_{\beta\gamma}(x) = g_{\alpha\gamma}(x), g'_{\alpha\beta}(x) g'_{\beta\gamma}(x) = g'_{\alpha\gamma}(x), x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}.$$

If the point $x_1 \in U_\alpha \cap U_\gamma$, $\mathscr{C}_\alpha \subset U_\alpha \cap U_\gamma$, then we have

$$\bar{g}_{\gamma\alpha}(x) = p'_{\gamma}h_{\alpha}\phi_{\alpha,x}
= p'_{\gamma}\rho'(\mathscr{C}_{x}^{-1})h_{\alpha_{1}}\rho(\mathscr{C}_{x})\phi_{\alpha,x}
= [p'_{\gamma}\rho'(\mathscr{C}_{x}^{-1})\phi'_{\gamma,x_{1}}][p'_{\gamma}h_{\alpha_{1}}\phi_{\alpha,x_{1}}][p_{\alpha}\rho(\mathscr{C}_{x})\phi_{\alpha,x}]
= [p'_{\gamma}\rho'(\mathscr{C}_{x}^{-1})\phi'_{\gamma,x_{1}}]\bar{g}_{\gamma\alpha}(x_{1})[p_{\alpha}\rho(\mathscr{C}_{x})\phi_{\alpha,x}].$$

The first and third factors enclosed in square brackets of the last side of the above equations are differentiable on x. Hence, the map $\overline{g}_{\gamma\alpha}: U_\alpha \cap U_\gamma \to G$ is differentiable in a neighborhood of x_1 in $U_\alpha \cap U_\gamma$. By the definition of $\overline{g}_{\gamma\alpha}$, it has the property as

$$(5) \bar{g}_{\delta\beta}(x) = g'_{\delta\gamma}(x)\bar{g}_{\gamma\alpha}(x)g_{\alpha\beta}(x), x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \cap U_{\delta}.$$

Therefore, h is a differentiable bundle mapping. \mathfrak{B} , \mathfrak{B}' are equivalent in G.

§2. Let $\mathfrak{B} = \{B, p, X, Y, G\}$ be a fibre bundle with an infinitesimal connection Γ as in §1, then we can give an infinitesimal connection $\overline{\Gamma}$ for the associated principal bundle¹⁾ $\overline{\mathfrak{B}} = \{\overline{B}, \overline{p}, X, G, G\}$ of \mathfrak{B} such that for any point $x_0, x_1 \in X$ and any curve $\mathscr{C} \in \mathcal{Q}_{x_0, x_1}$

(6)
$$\bar{\rho}(\mathscr{C})(\xi_{x_1}) = \rho(\mathscr{C})\xi_{x_1}, \qquad \xi_{x_1} \in G_x,$$

since $\rho(\mathscr{C})$ is a bundle mapping. Denoting the right translation corresponding to $g \in G$ by r(g), we get from (6)

$$(\bar{\rho}(\mathscr{C}) \mathbf{r}(g)) (\boldsymbol{\xi}_{\pi_1}) = \bar{\rho}(\mathscr{C}) (\boldsymbol{\xi}_{\pi_1} g)$$

$$= \rho(\mathscr{C}) (\boldsymbol{\xi}_{\pi_1} g)$$

$$= (\rho(\mathscr{C}) \boldsymbol{\xi}_{\pi_1}) g$$

$$= \mathbf{r}(g) (\bar{\rho}(\mathscr{C}) (\boldsymbol{\xi}_{\pi_1})),$$

¹⁾ See [2], §8.

hence

(7)
$$\bar{\rho}(\mathscr{C})r(g) = r(g)\bar{\rho}(\mathscr{C}).$$

This shows that $\overline{\Gamma}$ is invariant under right translations.

Conversely, if we have a differentiable family of tangent subspaces to \overline{B} which are transversal to the fibres and are invariant under right translations, there exists an infinitesimal connection Γ in $\mathfrak B$ such that (6) holds good.

By virtue of the above argument, in the following, we may consider only principal fibre bundles.

Let $\mathfrak{B} = \{B, p, X, G, G\}$ be a differentiable principal fibre bundle as in §1 and let Γ be a differentiable family of tangent subspaces $\Gamma_b \subset T_b(B)$, $b \in B^{1}$, which are transversal to the fibres $G_{p(b)}$ and are invariant under right translations, that is

(8)
$$\begin{cases} p_*(\Gamma_b) = T_{p(b)}(X), \\ r(g)_*\Gamma_b = \Gamma_{r(g)(b)}, \end{cases} b \in B, g \in G$$

where p_* , $r(g)_*$ denote the differential mappings of p, $r(g)^2$.

The decomposition of $T_b(B)$ into the direct sum

$$T_b(B) = \Gamma_b + T_b(G_{p(b)})$$

define the projection $\mu_b: T_b(B) \to T_b(G_{\mu(b)})$. Let μ be the mapping $T(B) \to T(B)$ by $\mu(b) = \mu_b(b)$ for any $b \in T_b(B)$. Let ℓ_x be the imbedding mapping of G_x into B, then, by the definition of μ_b , we get

$$\mu \iota_{x*} = \iota_{x*}.$$

For any $b \in T_b(B)$, $g \in G$, by (8) and the relation

$$r(g)_*(b) = r(g)_*(b - \mu_b(b) + \mu_b(b))$$

= $r(g)_*(b - \mu_b(b)) + r(g)_*\mu_b(b)$

we get

$$(10) r(g)_* \mu_b = \mu_{r(g)(b)} r(g)_*$$

or

¹⁾ For a differentiable manifold X, we denote the tangent space at $x \in X$ by $T_x(X)$ and the bundle space of the tangent bundle of X by T(X).

²⁾ Let X, Y be any differentiable manifolds and let f be a differentiable mapping $X \to Y$. Then we denote by $f_*: T(X) \to T(X)$ the differential mapping of f. If $f: X \to Y$, $h: Y \to Z$, then $(fh)_* = f_*h_*$. See [4] or [5].

$$r(g)_*\mu = \mu r(g)_*.$$

We denote by the same notation b the mapping of G onto G_* that b(e) = b and define a linear transformation $\pi_b: T_b(B) \to T_e(G)$ by

$$\pi_b = (b_{*})^{-1} \mu_b$$

where e denotes the identity element of G. Thus, we obtain a set of linear differential forms on B with values in the Lie algebra $L(G) \approx T_e(G)$ (as vector space).

Since $r(g)(b) \equiv bg = bl(g)$, br(g) = r(g)b, where $l(g): G \to G$ denotes the left translation corresponding to g, for any $v \in T_b(B)$, we get by (10), (11)

$$r(g)^* \pi(\mathfrak{d}) = \pi(r(g)_* \mathfrak{d}) = \pi_{bg}(r(g)_* \mathfrak{d})^{2}$$

$$= ((bg)_*)^{-1} \mu_{bg} r(g)_* \mathfrak{d}$$

$$= ((bg)_*)^{-1} r(g)_* \mu_b \mathfrak{d}$$

$$= ((bl(g))_*)^{-1} r(g)_* \mu_b \mathfrak{d}$$

$$= l(g^{-1})_* r(g)_* r(g)_*^{-1} b_*^{-1} r(g)_* \mu_b \mathfrak{d}$$

$$= l(g^{-1})_* r(g)_* b_*^{-1} \mu_b \mathfrak{d}$$

$$= l(g^{-1})_* r(g)_* \pi(\mathfrak{d}).$$

Putting $ad(g) = (l(g) r(g^{-1}))_*$ which is the differential mapping of the adjoint mapping $A(g): G \to G$ by $A(g)(y) = gyg^{-1}$, $y \in G$, the above relation is written as

(12)
$$r(g)^* \pi = ad(g^{-1}) \pi.$$

For $v \in T_{\sigma}(G)$, $b \in p^{-1}(x)$, we have

$$(\iota_{x}b)^{*}\pi(\mathfrak{v}) = \pi((\iota_{x}b)_{*}\mathfrak{v})$$

$$= (bg)_{*}^{-1}\mu_{bg}(\iota_{x*}b_{*}\mathfrak{v})$$

$$= l(g^{-1})_{*}b_{*}^{-1}b_{*}\mathfrak{v} = l(g^{-1})_{*}(\mathfrak{v}).$$

If we define

$$(\iota_x b)^* \pi = \omega,$$

¹⁾ We denote by $T^*(X, L(G))$ the bundle space of the fibre bundle over X whose fibre at $x \in X$ is $\mathcal{L}(T_x(X); L(G))$. Let f be a differentiable mapping $X \to Y$, then we denote by $f^*: T^*(Y, L(G)) \to T^*(X, L(G))$ the dual mapping of f_* . It $f: X \to Y$, $h: Y \to Z$, then $(hf)^* = f^*h^*$.

²⁾ By the natural isomorphism $l(g)_*: T_c(G) \to T_g(G), T_c(G) \approx T_g(G)$.

the above relation is written as

$$\omega(\mathfrak{v}) = l(g^{-1})_*\mathfrak{v}, \qquad \mathfrak{v} \in T_{\sigma}(G), \quad g \in G.$$

From this relation, we obtain

(14)
$$\begin{cases} l(g)^* \omega = \omega, & g \in G, \\ \omega(\mathfrak{v}) = \mathfrak{v}, & \mathfrak{v} \in T_e(G). \end{cases}$$

This shows that the L(G)-valued linear differential form ω on G is independent of $b \in B$.

Conversely, we can define a differentiable family of tangent subspaces satisfying (8) from a L(G)-valued linear differential from π on B satisfying (12), (13).

§3. Now, let ι_{α} be the imbedding mapping $p^{-1}(U_{\alpha}) \to B$ and define a mapping $\rho_{\alpha}: U_{\alpha} \to U_{\alpha} \times G$ by

$$\rho_{\alpha}(x) = x \times e, \qquad x \in U_{\alpha}.$$

Define a L(G)-valued linear differential form θ_{α} on U_{α} by

(15)
$$\theta_{\alpha} = (\ell_{\alpha} \phi_{\alpha} \rho_{\alpha})^* \pi.$$

Since $b = r(p_{\alpha}(b)) \iota_{\alpha} \phi_{\alpha} \rho_{\alpha} p(b)$, $b \in p^{-1}(U_{\alpha})$, for any $v \in T_b(B)$, we have

$$v = (r(g) \iota_{\alpha} \phi_{\alpha} \rho_{\alpha} p)_{*} v + (\iota_{x} \phi_{\alpha}(x, e))_{*} p_{\alpha *} v, \qquad x = p(b), \quad g = p_{\alpha}(b).$$

Hence, we get by (12), (13), (14), (15)

$$\pi_{b} = p^{*} \rho_{\alpha}^{*} \phi_{\alpha}^{*} \iota_{\alpha}^{*} r(g)^{*} \pi_{b} + p_{\alpha}^{*} \phi(x, e)^{*} \iota_{x}^{*} \pi_{b}
= p^{*} (\iota_{\alpha} \phi_{\alpha} \rho_{\alpha})^{*} (\operatorname{ad}(g^{-1}) \pi_{b}) + p_{\alpha}^{*} (\phi_{\alpha}(x, g) l(g^{-1}))^{*} \iota_{x}^{*} \pi_{b}
= \operatorname{ad}(g^{-1}) p^{*} \theta_{\alpha, x} + p_{\alpha}^{*} l(g^{-1})^{*} \omega_{e}
= \operatorname{ad}(g^{-1}) p^{*} \theta_{\alpha, x} + p_{\alpha}^{*} \omega_{g},$$

that is

(16)
$$\pi_b = a\dot{d}(g^{-1})p^*\theta_{\alpha,x} + p_{\alpha}^* \omega_g, \qquad p(b) = x, p_{\alpha}(b) = g.$$

If $b \in p^{-1}(U_{\alpha} \cap U_{\beta})$, then $p_{\beta}(b) = g_{\beta\alpha}(p(b))p_{\alpha}(b)$. Hence, at b, we have the relation

$$p_{\beta*} = l(g_{\beta\sigma}(p(b))_* p_{\alpha*} + r(p_{\sigma}(b))_* g_{\beta\alpha*} p_*,$$

$$p_{\beta^*} \omega = p_{\alpha^*} l(g_{\beta\alpha}(p(b))^* \omega + p^* g_{\beta\alpha^*} r(p_{\alpha}(b))^* \omega$$

$$= p_{\alpha^*} \omega + p^* g_{\beta\alpha^*} (\operatorname{ad}(p_{\sigma}(b)^{-1}) \omega).$$

By the relations above and the equation

$$\operatorname{ad}(p_{\alpha}(b)^{-1})p^*\theta_{\alpha,x}+p_{\alpha}^*\omega_{p_{\alpha}(b)}=\operatorname{ad}(p_{\beta}(b)^{-1})p^*\theta_{\beta,x}+p_{\beta}^*\omega_{p_{\beta}(b)}$$
,

we get

$$p^* \theta_{\alpha,x} = p^* \{ \operatorname{ad} (g_{\beta\alpha}(x)^{-1}) \theta_{\beta,x} + g_{\beta\alpha}^* \omega_{g_{\beta\alpha}(x)} \},$$

from which we get

(17)
$$\theta_{\alpha,\pi} = \operatorname{ad}(g_{\beta\alpha}(x)^{-1})\theta_{\beta,\pi} + g_{\beta\alpha}^* \omega_{g_{\beta\alpha}(\pi)},$$

or simply

$$\theta_{\alpha} = \operatorname{ad}(g_{\beta\alpha}^{-1})\theta_{\beta} + g_{\beta\alpha}^{*}\omega,$$

since p is onto.

Conversely, on each U_{α} , let be given a system of L(G)-valued linear differential forms θ_{α} satisfying (17), then we can obtain a L(G)-valued linear differential form π satisfying (12), (13) by (16).

Thus we see that an infinitesimal connection Γ as in §1 is given in $\mathfrak B$ is equivalent to that on each coordinate neighborhood U_α , a L(G)-valued linear differential form satisfying (17') is given. The components of θ_α are the parameters of the connection in the classical sense and (17') is the transformation equation of the parameters for coordinate transformations.

§4. In U_1 , let be given a differentiable family of curves $\mathscr{E}(x_1, x) \in \mathscr{Q}_{x_1, x}$ which covers simply over U_1 except x_1 . Then, $\rho(\mathscr{E}(x_1, x)) : G_x \to G_{x_1}$ define a differentiable mapping

$$F: p^{-1}(U_1) \to G_{x_1}$$
 by $F(b) = \rho\left(\mathscr{C}(x_1, p(b))(b)\right)$

Since $F \mid G_x$ is a bundle mapping, we can define a differentiable mapping $\eta: U_1 \to G$ by

(18)
$$p_1 F \phi_1(x, g) = \eta(x) g = f(x, g).$$

Let $\tau_1: U_1 \times G \to U_1$, $\tau_2: U_1 \times G \to G$ be the natural projections, then for any $v \in T_{x_1,e}(U_1 \times G)$, we get by (14), (16)

$$f_* \mathfrak{v} = (\eta \tau_1)_* \mathfrak{v} + \tau_2 * \mathfrak{v},$$

 $(p_1 F \phi_1)_* \mathfrak{v} = p_1 * \mu_{b_1} \phi_1 * \mathfrak{v} = b_1 *^{-1} \mu_{b_1} \phi_1 * \mathfrak{v}$
 $= \pi_{b_1} (\phi_1 * \mathfrak{v})$

$$= p^* \theta_1(\phi_{1*} \mathfrak{v}) + p_1^* \omega(\phi_{1*} \mathfrak{v})$$

$$= \theta_1(p_* \phi_{1*} \mathfrak{v}) + \omega(p_{1*} \phi_{1*} \mathfrak{v})$$

$$= \theta_1(\tau_{1*} \mathfrak{v}) + \omega(\tau_{2*} \mathfrak{v})$$

$$= \theta_1(\tau_{1*} \mathfrak{v}) + \tau_{2*} \mathfrak{v}, \qquad b_1 = \phi_1(x_1, e),$$

since $\eta(x_1) = e$, $p_1(b_1) = e$, $\tau_1 = p\phi_1$, $\tau_2 = p_1\phi_1$. Hence, from (18) and the above relation we obtain

$$\eta_{\star}(\tau_{1\star}\mathfrak{b}) = \theta_{1}(\tau_{1\star}\mathfrak{b})$$

or

$$\eta^* \omega_e = \theta_{1,x_1}.$$

This equation will imply the following result which is in connection with the development of a curve in X on a tangent space to X at a point of the curve, in the classical differential geometry.

For any curve $\mathscr C$ of class C^r from x_0 to $x_1: x = \psi(t)$, $0 \leqslant t \leqslant 1$, let $\mathscr C_\lambda \subset U_{x_\lambda}$, $\lambda = 1, 2, \dots, m$, be the subarc of $\mathscr C$ corresponding to the interval $t_{\lambda-1} \leqslant t \leqslant t_{\lambda}$, $0 = t_0 < t_1 < \dots < t_m = 1$. Then, we can determine mappings

$$\eta_{\lambda}:[t_{\lambda-1},t_{\lambda}]\longrightarrow G,$$

so that

(20)
$$\begin{aligned} \eta_{\lambda}^{*}\omega &= \psi_{\lambda}^{*}\theta_{\alpha_{\lambda}}, \\ \eta_{\lambda}(t_{\lambda-1}) &= \eta_{\lambda-1}(t_{\lambda-1})g_{\alpha_{\lambda-1},\alpha_{\lambda}}(\psi(t_{\lambda-1})) \end{aligned}$$

where $\psi_{\lambda} = \psi \mid [t_{\lambda-1}, t_{\lambda}]$. This is to integrate some system of ordinary differential equations in each coordinate neighborhood under certain conditions. If we extend each solution $\eta_{\lambda}(t)$ for $[t_{\lambda-1}, t_{\lambda}]$ to both sides of the interval, then in $U_{\alpha_{\lambda-1}} \cap U_{\alpha_{\lambda}}$, by means of (17') we have

$$\eta_{\lambda}(t) = \eta_{\lambda-1}(t) g_{\alpha_{\lambda-1}\alpha_{\lambda}}(\psi(t)).$$

We define an element of G by

(21)
$$k_{\alpha_0 \alpha_m}(\mathscr{C}) = \eta_1(0)^{-1} \eta_m(1),$$

and for any curve $\mathscr{C} \in \mathscr{Q}_{\pi_0, \pi_1}$, we define likewise $k_{\alpha_0 \alpha_m}(\mathscr{C})$. Since ω is left-invariant, $k_{\alpha_0 \alpha_m}(\mathscr{C})$ is independent of the choice of the initial point $\eta_1(0)$. Furthermore, we get easily the relation

$$(22) k_{\alpha_1\alpha_3}(\mathscr{C}_1\mathscr{C}_2) = k_{\alpha_1\alpha_2}(\mathscr{C}_1) k_{\alpha_2\alpha_3}(\mathscr{C}_2),$$

$$\mathscr{C}_1 \in \mathscr{Q}_{x_1, x_2}, \quad \mathscr{C}_2 \in \mathscr{Q}_{x_2, x_2}, \quad x_1 \in U_{\alpha_1}, \quad x_2 \in U_{\alpha_2}, \quad x_3 \in U_{\alpha_3}.$$

By means of (19), between ρ and k, there exists the following relation

(23)
$$\rho(\mathscr{C}) \cdot \phi_{\alpha_2, \alpha_2} = \phi_{\alpha_1, \alpha_1} \cdot k_{\alpha_1 \alpha_2}(\mathscr{C}),$$

$$\mathscr{C} \in \mathcal{Q}_{\alpha_1, \alpha_2}, \quad x_1 \in U_1, \quad x_2 \in U_2.$$

§5. Now, in each coordinate neighborhood U_{α} , we take a differentiable mapping $f_{\alpha}:U_{\alpha}\to G$ and define a L(G)-valued linear differential form by

$$\hat{\theta}_{\alpha} = \operatorname{ad}(f_{\alpha})\theta_{\alpha} + (f_{\alpha}^{-1})^* \omega,$$

then we get

$$\hat{\theta}_{\beta} = \operatorname{ad}(f_{\beta} g_{\alpha\beta}^{-1} f_{\alpha}^{-1}) \hat{\theta}_{\alpha} + (f_{\alpha} g_{\alpha\beta} f_{\beta}^{-1})^{*} \omega, \qquad x \in U_{\alpha} \cap U_{\beta},$$

where we put $f_{\omega}^{-1}(x) = (f_{\omega}(x))^{-1}$. If we take, in each neighborhood U_{ω} , a coordinate function

$$\hat{\phi}_{\alpha,x} = \phi_{\alpha,x} f_{\alpha}(x)^{-1},$$

then we get the coordinate transformation of the bundle

(26)
$$\hat{g}_{\alpha\beta}(x) = \hat{\phi}_{\alpha,x}^{-1} \hat{\phi}_{\beta,x} = f_{\alpha}(x) g_{\alpha\beta}(x) f_{\beta}(x)^{-1}, \qquad x \in U_{\alpha} \cap U_{\beta}.$$

Then, the fibre bundle $\hat{\mathbb{B}} = \{B, p, X, Y, G, \hat{\phi}_{\alpha}\}$ with the infinitesimal connection $\{\hat{\theta}_{\alpha}\}$ is G-equivalent to the fibre bundle $\mathfrak{B} = \{B, p, X, Y, G, \phi_{\alpha}\}$ with the infinitesimal connection $\{\theta_{\alpha}\}$, that is, $\{\hat{\theta}_{\alpha}\}$ is obtained from $\{\theta_{\alpha}\}$ by transformations of frames. In both \mathfrak{B} and $\hat{\mathfrak{B}}$, B has the same family of tangent subspaces to B which are transversal to the fibres. For \hat{k} in $\hat{\mathfrak{B}}$ and k in \mathfrak{B} , from (23), (25) we get easily the relation

$$\hat{k}_{\alpha\beta} = f_{\alpha}k_{\alpha\beta}f_{\beta}^{-1}.$$

Now, we take a coordinate neighborhood U such that if $U\ni x=(x^1,\dots,x^n)$, then $U\ni (tx^1,\dots,tx^n)$, $0\leqslant t\leqslant 1$. Let θ be the L(G)-valued linear differential form in U. Let θ be the coordinate system and \widehat{ox} be the image of the segment joining θ and x in the coordinates. Define a mapping $f:U\to G$ by

$$(28) k(\widehat{ox}) = k_{\overline{vv}}(\widehat{ox}) = f(x).$$

The mapping f is differentiable. For any point $x \in U$, we define the mapping $a_x : 0 \le t \le 1 \to U$ by $a_x(t) = (tx^i)$. Then, we have by (20), (28), (24)

$$a_x^*f^*\omega = a_x^*\theta$$
,
 $a_x^*\theta = a_x^*(\operatorname{ad}(f^{-1})\hat{\theta} + f^*\omega)$.

Hence we obtain

$$a_{\mathbf{x}}^*\hat{\theta} = 0.$$

Now, let X be an n-cell. U = X be an coordinate neighborhood as above. Then, we get from (29)

$$\widehat{k}(\widehat{ox}) = e.$$

Hence, by (23), (27), for any $\mathscr{C} \in \mathscr{Q}_{x,x}$, we have

$$\hat{\phi}_{\sigma,0}^{-1}\chi_0(\widehat{ox}\mathscr{C}\widehat{ox}_1^{-1})\hat{\phi}_{\sigma,0} = \hat{k}(\widehat{ox}\mathscr{C}\widehat{ox}^{-1}) = \hat{k}(\mathscr{C})$$

$$= k(\widehat{ox}\mathscr{C}\widehat{ox}^{-1}) \in H_0$$

since f(o) = e. From this and (19), $\hat{\theta}$ is a $L(H_0)$ -valued linear differential form. In other words, if X is an n-cell, we can take a $L(H_0)$ -valued linear differential form $\hat{\theta}$ from the L(G)-valued linear differential form θ by a suitable transformation of coordinate functions (that is, by a suitable choice of frames).

- §6. Lemma 2. Let X, Y, G be differentiable manifolds, a Lie group as stated in Section 1. For a point $x_0 \in X$, let be given a transformation $\chi_0: \Omega_{x_0} \to G$ with the properties as follows:
 - i) $\chi_0(\mathscr{C}_1\mathscr{C}_2) = \chi_0(\mathscr{C}_1)\chi_0(\mathscr{C}_2)$, \mathscr{C}_1 , $\mathscr{C}_2 \in \mathscr{Q}_{x_0}$;
 - $\mbox{ii)} \quad \chi_{\scriptscriptstyle 0}(\mathscr{D}_1\mathscr{D}_2) \ = \ \chi_{\scriptscriptstyle 0}(\mathscr{D}_1\mathscr{D}\mathscr{D}^{-1}\mathscr{D}_2) \text{,} \quad \ \mathscr{D}_1 \text{,} \ \mathscr{D}_2 \in \mathscr{Q} \text{,}$

$$\mathscr{D}_{1}\mathscr{D}\mathscr{D}^{-1}\mathscr{D}_{2}\in\mathscr{Q}_{x_{0}};$$

iii) χ_0 is differentiable.

Then there exists a fibre bundle $\mathfrak{B} = \{B, p, X, Y, G\}$ with an infinitesimal connection Γ such that $\chi_{x_0} \approx \chi_0$.

In the lemma, the differentiablity of x_0 is in the sense as follows. For any points $x_1, x_2 \in X$, let $\mathcal{D}(x_1, x)$, $\mathcal{D}(x, x')$, $\mathcal{D}(x_2, x')$ be differentiable families of curves, $x \in a$ coordinate neighborhood U,

 $x' \in a$ coordinate neighborhood V, then

$$\begin{split} \chi_0(\,\mathscr{C}_1\,\mathscr{D}\,(x_{_1}\,,\,x)\,\,\mathscr{D}\,(x,\,x')\,\,\mathscr{D}\,(x_{_2}\,,\,x')^{-1}\,\mathscr{C}_2^{-1}) \,\in\, G, \\ &\qquad \qquad \mathscr{C}_1 \,\in\, \mathscr{Q}_{x_{_0}\,,\,x_{_1}}\,, \quad \mathscr{C}_2 \,\in\, \mathscr{Q}_{x_{_0}\,,\,x_{_2}}\,, \end{split}$$

is differentiable with respect to x, x'.

Proof. Let $\{U_{\alpha}\}$ be a covering system of coordinate neighborhoods such that if $U_{\alpha}\ni x=(x^{1},\cdots,x^{n})$, then $U\ni (tx^{1},\cdots,tx^{n})$, $0\leqslant t\leqslant 1$. Let x_{α} be the point whose coordinates in U_{α} are $(0,\cdots,0)$, and for $x\in U_{\alpha}$, let $\mathscr{C}(x_{\alpha},x)$ be the curve which is the locus of points whose coordinates are (tx^{1},\cdots,tx^{n}) , $0\leqslant t\leqslant 1$, in U_{α} . For each point x_{α} , we take a fixed curve $\mathscr{C}_{\alpha}\in \mathscr{Q}_{x_{\alpha},x_{\alpha}}$.

In $U_{\alpha} \cap U_{\beta} \neq \phi$, define $g_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to G$ by

$$(30) g_{\beta\alpha}(x) = \chi_0(\mathscr{C}_{\beta}\mathscr{C}(x_{\beta}, x)\mathscr{C}(x_{\alpha}, x)^{-1}\mathscr{C}_{\alpha}^{-1}), x \in U_{\alpha} \cap U_{\beta}.$$

By iii), $g_{\beta\alpha}$ is differentiable. For any point $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, we get by i), ii)

$$g_{\gamma\beta}(x)g_{\beta\alpha}(x) = \chi_{0}(\mathcal{E}_{\gamma}(\mathcal{E}(x_{\gamma}, x)\mathcal{E}(x_{\beta}x)^{-1}\mathcal{E}_{\beta}^{-1})$$

$$\chi_{0}(\mathcal{E}_{\beta}\mathcal{E}(x_{\beta}, x)\mathcal{E}(x_{\alpha}, x)^{-1}\mathcal{E}_{\beta}^{-1})$$

$$= \chi_{0}(\mathcal{E}_{\gamma}(\mathcal{E}(x_{\gamma}, x)\mathcal{E}(x_{\beta}, x)^{-1}\mathcal{E}_{\beta}^{-1}\mathcal{E}_{\beta}\mathcal{E}(x_{\beta}, x)\mathcal{E}(x_{\alpha}, x)^{-1}\mathcal{E}_{\alpha}^{-1})$$

$$= \chi_{0}(\mathcal{E}_{\gamma}\mathcal{E}(x_{\gamma}, x)\mathcal{E}(x_{\alpha}, x)^{-1}\mathcal{E}_{\alpha}^{-1}) = g_{\gamma\alpha}(x),$$

that is

$$g_{\gamma\beta}(x)g_{\beta\alpha}(x) = g_{\gamma\alpha}(x)$$
.

Hence, there exists a fibre bundle $\mathfrak{B} = \{B, p, X, Y, G\}$ with fibre Y, group of bundle G whose coordinate transformations are $g_{\beta\alpha}(x)$ with respect to the covering $\{U_{\alpha}\}^{1}$.

In the next place, for any curve $\mathscr{D}(x,x')\subset U_{\alpha}$, $\mathscr{D}(x,x')\in \mathscr{Q}_{x,x'}$, define g_{α} by

$$(31) g_{\alpha}(\mathscr{D}(x, x')) = \chi_{0}(\mathscr{C}_{\alpha}\mathscr{E}(x_{\alpha}, x)\mathscr{D}(x, x')\mathscr{E}(x_{\alpha}, x')^{-1}\mathscr{C}_{\alpha}^{-1})$$

and define $\rho(\mathcal{D}(x, x')): Y_{x'} \to Y_x$ by

(32)
$$\rho(\mathscr{D}(x, x')) = \phi_{\alpha, x} g_{\alpha}(\mathscr{D}(x, x')) p_{\alpha, x'}.$$

If $\mathscr{D}(x, x') \subset U_{\alpha} \cap U_{\beta}$, then by (30), (31), i), ii) we get

¹⁾ See [2], §3.

$$\phi_{\beta,\pi} g_{\beta}(\mathscr{D}(x, x')) p_{\beta,\pi'} = \phi_{\alpha,\pi} g_{\alpha\beta}(x) g_{\beta}(\mathscr{D}(x, x')) g_{\beta\alpha}(x') p_{\alpha,\pi'}$$

$$= \phi_{\alpha,\pi} \chi_{\mathfrak{C}}(\mathscr{C}_{\alpha} \mathscr{E}(x_{\alpha}, x) \mathscr{E}(x_{\beta}, x)^{-1} \mathscr{C}_{\beta}^{-1})$$

$$\chi_{0}(\mathscr{C}_{\beta} \mathscr{E}(x_{\beta}, x) \mathscr{D}(x, x') \mathscr{E}(x_{\beta}, x')^{-1} \mathscr{C}_{\beta}^{-1})$$

$$\chi_{0}(\mathscr{C}_{\beta} \mathscr{E}(x_{\beta}, x') \mathscr{E}(x_{\alpha}, x')^{-1} \mathscr{C}_{\alpha}^{-1}) p_{\alpha,\pi'}$$

$$= \phi_{\alpha,\pi} \chi_{0}(\mathscr{E}_{\alpha} \mathscr{E}(x_{\alpha}, x) \mathscr{D}(x, x') \mathscr{E}(x_{\alpha}, x')^{-1} \mathscr{C}_{\alpha}^{-1}) p_{\alpha,\pi'}$$

$$= \phi_{\alpha,\pi} g_{\alpha}(\mathscr{D}(x, x')) p_{\alpha,\pi'}.$$

This shows that $\rho(\mathcal{D}(x, x'))$ is independent of $U_{\alpha} \supset \mathcal{D}(x, x')$.

Now, we will show that $\rho(\mathscr{D}(x, x'))$ commutes with right translations of \mathfrak{B} .

Let $\overline{\mathfrak{B}} = \{\overline{B}, \overline{p}, X, G, G\}$ be the associated principal fibre bundle of \mathfrak{B} and by means of (32), define $\overline{p}(\mathscr{D}(x, x')) : G_{x'} \to G_x$ by

$$(33) \qquad \overline{\rho}(\mathscr{D}(\mathbf{x},\mathbf{x}'))(\phi_{\alpha,x'}g) = \phi_{\alpha,x}g_{\alpha}(\mathscr{D}(\mathbf{x},\mathbf{x}'))p_{\alpha,x'}\phi_{\alpha,x'}g$$
$$= \phi_{\alpha,x}g_{\alpha}(\mathscr{D}(\mathbf{x},\mathbf{x}'))g \in G_{x}.$$

This shows that

$$\bar{\rho}(\mathscr{D}(x, x')) \operatorname{r}(g_0) = \operatorname{r}(g_0) \bar{\rho}(\mathscr{D}(x, x')), \qquad g_0 \in G.$$

If $\mathscr{D}(x,x')$ is a differentiable family of curves, then $g_{\alpha}(\mathscr{D}(x,x'))$ is differentiable with respect to x,x' by iii). Hence, we can obtain an infinitesimal connection Γ in \mathfrak{B} such that the holonomy map ρ with respect to Γ coincides with the transformation as above for $\mathscr{D}(x,x')\subset U_{\alpha}$.

It follows that for $\mathscr{C} \in \mathscr{Q}_{r_0}$ such that

(34)
$$\mathscr{C} = \mathscr{L}_0 \mathscr{T}_1 \cdots \cdots \mathscr{T}_m, \qquad \mathscr{D}_{\lambda} \subset U_{\alpha_{\lambda}}, \quad \lambda = 0, 1, \cdots, m,$$

$$\rho(\mathscr{C}) = \rho(\mathscr{L}_0) \rho(\mathscr{L}_1) \cdots \cdots \rho(\mathscr{L}_m).$$

Lastly, we will prove $\chi_0 \approx \chi_{x_0}$. For any points $x, x' \in X$, let $\mathscr{D} \in \mathcal{Q}_{x,x'}$ and

$$\mathscr{D} = \mathscr{D}_1 \mathscr{D}_2 \cdots \mathscr{D}_m$$
, $\mathscr{D}_{\alpha} \subset U_{\alpha}$, $\mathscr{D}_{\alpha} \in \Omega_{x'_{\alpha-1}x'_{\alpha}}$ $x = x'_0$, $x' = x'_m$.

By (32), we get

$$\rho(\mathcal{D}_{\alpha}) = \phi_{\alpha, \alpha'_{\alpha-1}} g_{\alpha}(\mathcal{D}_{\alpha}) p_{\alpha, \pi'_{\alpha}},$$

$$\rho(\mathcal{D}_{\alpha}) \rho(\mathcal{D}_{\alpha+1}) = \phi_{\alpha, \pi'_{\alpha-1}} g_{\alpha}(\mathcal{D}_{\alpha}) g_{\alpha, \alpha+1}(x'_{\alpha}) g_{\alpha+1}(\mathcal{D}_{\alpha+1}) p_{\alpha+1, \pi'_{\alpha+1}}$$

and

$$\rho(\mathcal{D}_1)\rho(\mathcal{D}_2)\cdots \rho(\mathcal{D}_m)$$

$$= \phi_{1,x'_0}g_1(\mathcal{D}_1)g_{12}(x'_1)g_2(\mathcal{D}_2)\cdots g_m(\mathcal{D}_m)p_{m,x'_m}.$$

By i), ii), (30), (31), we get

$$g_{1}(\mathscr{D}_{1})g_{12}(x'_{1})g_{2}(\mathscr{D}_{2})g_{23}(x'_{2})\cdots g_{m-1,m}(x'_{m-1})g_{m}(\mathscr{D}_{m})$$

$$=\chi_{0}(\mathscr{C}_{1}\mathscr{C}(x_{1}, x'_{0})\mathscr{D}_{1}\mathscr{C}(x_{1}, x'_{1})^{-1}\mathscr{C}_{1}^{-1})\chi_{0}(\mathscr{C}_{1}\mathscr{C}(x_{1}, x'_{1})\mathscr{C}(x_{2}, x'_{1})^{-1}\mathscr{C}_{2}^{-1})$$

$$\chi_{0}(\mathscr{C}_{2}\mathscr{C}(x_{2}, x'_{1})\mathscr{D}_{2}\mathscr{C}(x_{2}, x'_{2})^{-1}\mathscr{C}_{2}^{-1})\chi_{0}(\mathscr{C}_{2}\mathscr{C}(x_{2}, x'_{2})\mathscr{C}(x_{3}, x'_{2})^{-1}\mathscr{C}_{3}^{-1})$$

$$\vdots$$

$$\chi_{0}(\mathscr{C}_{m}\mathscr{C}(x_{m}, x'_{m-1})\mathscr{D}_{m}\mathscr{C}(x_{m}, x'_{m})\mathscr{C}_{m}^{-1})$$

$$=\chi_{0}(\mathscr{C}_{1}\mathscr{C}(x_{1}, x'_{0})\mathscr{D}_{1}\mathscr{D}_{2}\cdots \mathscr{D}_{m}\mathscr{C}(x_{m}, x'_{m})^{-1}\mathscr{C}_{m}^{-1}).$$

Accordingly, we get the relation

(35)
$$\rho(\mathscr{Z}_1) \rho(\mathscr{Z}_2) \cdots \rho(\mathscr{Z}_m) = \rho(\mathscr{Z})$$

$$= \phi_{1,m} \chi_1(\mathscr{C}_1 \mathscr{C}(x_1, x) \mathscr{D} \mathscr{C}(x_m, x')^{-1} \mathscr{C}_m^{-1}) p_{m,x'}.$$

Especially, if we put $x = x' = x_0$, $x_0 \in U_1$, then

$$\chi_{x_0}(\mathscr{C}) = \phi_{1,x_0}\chi_0(\mathscr{C})p_{1,x_0}, \qquad \mathscr{C} \in \mathcal{Q}_{x_0},$$

that is

$$\chi_{x_0} \approx \chi_0.$$
Q.E.D.

§7. Lemma 3. Let $\mathfrak{B} = \{B, p, X, Y, G\}$ be a differentiable fibre bundle with an infinitesimal connection Γ whose structure group is G and let H be the holonomy group of Γ at $x_0 \in X$. Then \mathfrak{B} with Γ is G-equivalent to another fibre bundle $\mathfrak{B}' = \{B', p', X, Y, H\}$ with an infinitesimal connection Γ' whose structure group is G.

Proof. We will use the same notations as before. Using Lemme 2, we can obtain a differentiable fibre bundle $\mathfrak{B}' = \{B', p', X, Y, H\}$ with an infinitesimal connection Γ'' whose structure group is H, and whose holonomy map $\chi''_{x_0} \approx \chi_{x_0}$ of Γ . By means of Lemma 1, \mathfrak{B} and \mathfrak{B}' is G-equivalent as fibre bundles. Let $h: B \to B'$ be the differentiable bundle mapping satisfying the condition p'h = p. Then, we can obtain a differentiable family Γ' of tangent subspaces to B' by $\Gamma' = h_* \Gamma$. Since h is a bundle mapping, Γ' define an infinitesimal connection in \mathfrak{B}' . For any points $x, x' \in X$ and any curve $\mathscr{C} \in \mathscr{Q}_{x,x'}$, the mapping $\rho'(\mathscr{C}): Y'_{x'} \to Y'_x$ is clearly given by $\rho'(\mathscr{C}) = h\rho(\mathscr{C})h^{-1}$, where Y'_x denotes the fibre of \mathfrak{B}' at x and ρ' is the map defined for

the fibre bundle with the infinitesimal connection Γ' as in \mathfrak{B} (see §1). Thus, \mathfrak{B} with the infinitesimal connection Γ is G-equivalent to \mathfrak{B}' with the infinitesimal connection Γ' whose structure group is G.

Q.E.D.

Now, we shall deal with the theorem of E. Cartan stated in Introduction. Let $\mathfrak{B}=\{B,p,X,Y,G\}$ be a differentiable fibre bundle with an infinitesimal connection Γ whose structure group is G. Let $\{U_{\alpha}\}$ be a system of coordinate neighborhoods which is an open covering of X, and let θ_{α} be the L(G)-valued linear differential form in U_{α} derived from Γ as in §§ 2-4. For each U_{α} , let x_{α} be the origin of the coordinate neighborhood. Then $H_{\alpha} \equiv H_{x_{\alpha}} = \overline{k_{\alpha\alpha}(\mathcal{Q}_{x_{\alpha},x_{\alpha}})}$ is the holonomy group of Γ at x_{α} . For any curve $\mathscr{C} \in \mathcal{Q}_{x_{\alpha},x_{\beta}}$, we have by means of (22) the relation

$$(36) H_{\alpha} = k_{\alpha\beta}(\mathscr{C}) H_{\beta} k_{\alpha\beta}(\mathscr{C})^{-1}.$$

This shows that H_{α} are homologous each other. Let K be the minimal invariant subgroup of G which contains H_{α} . We may suppose that each U_{α} is a coordinate neighborhood as U in §5. Let \mathfrak{B}_{α} be the portion of \mathfrak{B} over U_{α} and Γ_{α} be the subfamily of Γ on $B \cap p^{-1}(U_{\alpha})$, then the holonomy group of Γ_{α} at x_{α} is clearly a subgroup of H_{α} . Hence, by virtue of the consideration in §5, for each U_{α} , we can obtain a mapping $f_{\alpha}: U_{\alpha} \to G$ such that $\hat{\theta}_{\alpha} = \operatorname{ad}(f_{\alpha})\theta_{\alpha} + (f_{\alpha}^{-1})^* \omega$ is a $L(H_{\alpha})$ -valued linear differential form and $f_{\alpha}(x_{\alpha}) = e$. If $U_{\alpha} \cap U_{\beta} \neq \phi$, we have

$$\hat{\theta}_{\beta} = \operatorname{ad}(\hat{g}_{\beta\alpha})\hat{\theta}_{\alpha} + (\hat{g}_{\alpha\beta})^*\omega,$$

where

$$\hat{g}_{\alpha\beta}(x) = f_{\alpha}(x) g_{\alpha\beta}(x) f_{\beta}(x)^{-1}, \qquad x \in U_{\alpha} \cap U_{\beta}.$$

Now, it may be suppose that $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to H_1$ by means of Lemma 3, and that if $U_{\alpha} \cap U_{\beta} \neq \phi$, then $U_{\alpha} \cap U_{\beta}$ is connected. Then, the above relations imply that $\hat{g}_{\alpha\beta}$ can be written as

$$\hat{g}_{\alpha\beta}(x) = \lambda_{\alpha\beta} h_{\alpha\beta}(x), \qquad h_{\alpha\beta}(x) \in K, \ \lambda_{\alpha\beta} \in G, \quad x \in U_{\alpha} \cap U_{\beta}.$$

For each U_{α} , define a mapping $h_{\alpha}: U_{\alpha} \to G$ by $h_{\alpha}(x) = \tau_{\alpha} f_{\alpha}(x)$, where τ_{α} is a fixed element of G, and define a L(G)-valued linear differential from $\tilde{\theta}_{\alpha}$ by

$$\tilde{\theta}_{\alpha} = \operatorname{ad}(h_{\alpha}) \theta_{\alpha} + (h_{\alpha}^{-1})^* \omega.$$

Since $h_{\alpha}^{-1} = r(\tau_{\alpha}^{-1})f_{\alpha}^{-1}$, we have

$$\widetilde{\theta}_{\alpha} = \operatorname{ad}(\tau_{\alpha}) \operatorname{ad}(f_{\alpha}) \theta_{\alpha} + (f_{\alpha}^{-1})^{*} \operatorname{r}(\tau_{\alpha}^{-1})^{*} \omega
= \operatorname{ad}(\tau_{\alpha}) \operatorname{ad}(f_{\alpha}) \theta_{\alpha} + (f_{\alpha}^{-1})^{*} (\operatorname{ad}(\tau_{\alpha}) \omega)
= \operatorname{ad}(\tau_{\alpha}) \left\{ \operatorname{ad}(f_{\alpha}) \theta_{\alpha} + (f_{\alpha}^{-1})^{*} \omega \right\}
= \operatorname{ad}(\tau_{\alpha}) \hat{\theta}_{\alpha}.$$

Hence, $\tilde{\theta}_{\alpha}$ is a L(K)-valued linear differential form. By this change of coordinate functions, the coordinate transformation $g_{\alpha\beta}$ on $U_{\alpha} \cap U_{\beta}$ is replaced by

$$\tilde{g}_{\alpha\beta}(x) = h_{\alpha}(x) g_{\alpha\beta}(x) h_{\beta}(x)^{-1}
= \tau_{\alpha} \hat{g}_{\alpha\beta}(x) \tau_{\beta}^{-1}
= \tau_{\alpha} \lambda_{\alpha\beta} h_{\alpha\beta}(x) \tau_{\beta}^{-1}
= \tau_{\alpha} \lambda_{\alpha\beta} \tau_{\beta}^{-1} (\tau_{\beta} h_{\alpha\beta}(x) \tau_{\beta}^{-1}).$$

Accordingly, if we can choose $\{\tau_{\alpha}\}$ so that

$$\tau_{\alpha}\lambda_{\alpha\beta}\tau_{\beta}^{-1} \in K, \qquad \text{as} \quad U_{\alpha} \cap U_{\beta} \neq \phi,$$

then $\tilde{g}_{\alpha\beta}$ maps $U_{\alpha} \cap U_{\beta}$ into K.

On the other hand, if $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \phi$, we have

$$e = \hat{g}_{\alpha\beta}(x)\hat{g}_{\beta\gamma}(x)\hat{g}_{\gamma\alpha}(x)$$

$$= \lambda_{\alpha\beta}h_{\alpha\beta}(x)\lambda_{\beta\gamma}h_{\beta\gamma}(x)\lambda_{\gamma\alpha}h_{\gamma\alpha}(x)$$

$$= \lambda_{\alpha\beta}\lambda_{\beta\gamma}\lambda_{\gamma\alpha}\left\{(\lambda_{\beta\gamma}\lambda_{\gamma\alpha})^{-1}h_{\alpha\beta}\lambda_{\beta\gamma}\lambda_{\gamma\alpha}\right\}\left\{\lambda_{\gamma\alpha}^{-1}h_{\beta\gamma}(x)\lambda_{\gamma\alpha}\right\}h_{\gamma\alpha}(x),$$

from which we obtain the relation

(39)
$$\lambda_{\alpha\beta}\lambda_{\beta\gamma}\lambda_{\gamma\alpha} \in K, \quad \text{as} \quad U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \phi,$$

since K is an invariant subgroup of G.

Since X is differentiable manifold, there exists a differentiable simplicial triangulation of X. Let A_{α} , $\alpha=1,2,\dots$, be the vertices of this complex \Re and let U_{α} be the open set defined by the star of A_{α} of \Re . Then, the system $\{U_{\alpha}\}$ has all the properties above-mentioned. Thus, the above problem is written as follows:

For each oriented 1-simplex $A_{\alpha}A_{\beta}$ of \Re , let be given an element $\lambda_{\alpha\beta} \in G$ such that

$$\lambda_{\alpha\beta}\lambda_{\beta\gamma}\lambda_{\gamma\alpha}\in K$$
, for any 2-simplex $A_{\alpha}A_{\beta}A_{\gamma}$ of \Re .

Then, can we choose $\tau_{\alpha} \in G$, $\alpha = 1, 2, \dots$, so that

$$\tau_{\alpha}\lambda_{\alpha\beta}\tau_{\beta}^{-1} \in K$$
, for each $A_{\alpha}A_{\beta} \in \Re$?

If X is simply connected, we can easily prove that there exists a system of $\{\tau_{\alpha}\}$ satisfying the above conditions. By means of $\{\tilde{\theta}_{\alpha}\}$, $\{\tilde{g}_{\alpha\beta}\}$, we can obtain a fibre bundle $\tilde{\mathfrak{B}}=\{\tilde{B},\tilde{p},X,Y,K\}$ with an infinitesimal connection $\tilde{\Gamma}$ whose structure group is K, the L(K)-valued linear differential form on U_{α} is $\tilde{\theta}_{\alpha}$ and the coordinate transformations are $\tilde{g}_{\alpha\beta}$. $\tilde{\mathfrak{B}}$ with $\tilde{\Gamma}$ is clearly G-equivalent to \mathfrak{B} with Γ . For the holonomy groups of $\tilde{\Gamma}$, we have by (27)

$$\tilde{H}_{x_{\alpha}} = h_{\alpha}(x_{\alpha}) H_{x_{\alpha}} h_{\alpha}(x_{\alpha})^{-1} = \tau_{\alpha} H_{x_{\alpha}} \tau_{\alpha}^{-1}.$$

Since we can put $\tau_1 = e$, we have $\tilde{H}_{r_1} = H_{r_1} = H$. Accordingly, by virtue of Lemma 3, $\tilde{\mathfrak{B}}$ with $\tilde{\Gamma}$ is K-equivalent to a fibre bundle $\mathfrak{B}' = \{B', p', X, Y, H\}$ with an infinitesimal connection Γ' whose structure group is K.

Thus, we obtained a following theorem.

Theorem 1. Let $\mathfrak{B} = \{B, p, X, Y, G\}$ be a differentiable fibre bundle with an infinitesimal connection Γ whose structure group is G. Let H be the holonomy group of Γ at a point $x_0 \in X$, and K be the minimal invariant subgroup of G which contains H. Then \mathfrak{B} with Γ is G-equivalent to another fibre bundle $\mathfrak{B}' = \{B', p', X, Y, H\}$ with an infinitesimal connection Γ' whose structure group L, where

- i) if X is an n-cell, then L = H:
- ii) if X is simply connected, then L = K:
- iii) otherwise, L = G.

From this theorem, we see that the theorem of E. Cartan on holonomy groups holds good, in the large, at least in the following cases:

- i) X is an n-cell.
- ii) X is simply connected and H is an invariant subgroup of G.

BIBLIOGRAPHY

- [1] E. Cartan, Les groupes d'holonomie des espaces généralisés, Acta Math., Vol. 48 (1926), pp. 1-24.
- [2] N. STEENROD, The topology of fibre bundles, Princeton Univ. Press, (1951).
- [3] C. EHRESMANN, Les connexions infinitésimals dans un espace fibré différentiable, Colloque de Topologie (Espaces Fibrés), (1950), pp. 29-55.
- [4] S.S. CHERN, Topics in differential geometry, Princeton, (1951).

[5] S.S. Chern, Lecture note on differential geometry, Chicago, (1952).

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received June 30, 1954)