ON THE REGULARLY CONVEX HULL OF A SET IN A CONJUGATE BANACH SPACE

MINORU TOMITA

The convex hull of a finite set (p_1, p_2, \dots, p_n) in a linear space is the set of all $\sum_{i=1}^{n} \alpha_i p_i$ so that $\alpha_i \ge 0$ and $\sum \alpha_i = 1$. In this paper we shall observe an analogous representation for the regularly convex hull of a bounded weakly closed set in the conjugate space of a Banach space.

Theorem 1. Let \mathbf{E} be a real Banach space, and \mathfrak{X} be a bounded weakly closed sub-set of the conjugate Banach space. Let $Co(\mathfrak{X})$ denote the smallest regularly convex set which contains \mathfrak{X} . Then $Co(\mathfrak{X})$ is the set of all $\int_{\mathfrak{X}} \lambda d\varphi(\lambda)$ so that φ are non-negative Borel measures on \mathfrak{X} with $\varphi(\mathfrak{X}) = 1$, where $p = \int_{\mathfrak{X}} \lambda d\varphi(\lambda)$ are Pettis integrals defined by $p(A) = \int_{\mathfrak{X}} \lambda(A) d\varphi(\lambda)$.

Proof. Put $A^{\nu}(\lambda) = \lambda(A)$ for every $A \in \mathbf{E}$ and $\lambda \in \mathfrak{X}$. \mathfrak{X} is bounded and contained in a sphere $(|\varphi| \leq r)$. Then we have $|A^{\nu}(\lambda)| = |\lambda(A)| \leq r |A|$. And $A \to A^{\nu}$ is a bounded linear transform of \mathbf{E} in the Banach space \mathbf{R} of all real weakly continuous functions on \mathfrak{X} . For every linear functional f on \mathbf{R} define the linear functional f^{ν} on \mathbf{E} by $f^{\nu}(A) = f(A^{\nu})$. Then $f \to f^{\nu}$ is the conjugate transform of $A \to A^{\nu}$, and it is weakly continuous. Let \mathfrak{P} denote the set of all linear functionals p on \mathbf{R} so that p(I) = 1 and $p(f) \geq 0$ for every $0 \leq f \in \mathbf{R}$. Let \mathfrak{P} denote the set $(\delta_{\lambda} : \lambda \in \mathfrak{X})$, where δ_{λ} denotes the linear functional on \mathbf{R} so that $\delta_{\lambda}(f) = f(\lambda)$ for each fixed point $\lambda \in \mathfrak{X}$. Then clearly $\mathfrak{P} \supseteq \mathfrak{P}$. We show that $Co(\mathfrak{P}) = \mathfrak{P}$. Let $f \in \mathbf{R}$, then every $p \in \mathfrak{P}$ satisfies $|p(f)| \leq |f|$. But from the weak compactness of the set \mathfrak{X} , there exists $\lambda \in \mathfrak{X}$ so that $|\delta_{\lambda}(f)| = |f(\lambda)| = \sup_{\mu \in \mathfrak{X}} |f(\mu)| = |f|$.

Hence by the theorem of Krein-Smulian, $Co(\mathfrak{N})$ contains \mathfrak{P} . Since \mathfrak{P} is weakly closed and convex, it is regularly convex. Then $Co(\mathfrak{N}) = \mathfrak{P}$. Now $p \to p^{\nu}$ mapps \mathfrak{P} on the smallest weakly compact convex set which contains all $(\delta_{\lambda}^{\nu}: \delta_{\lambda} \in \mathfrak{N})$. But every δ_{λ}^{ν} at $\lambda \in \mathfrak{X}$ coincides with λ . Then the image $(p^{\nu}: p \in \mathfrak{P})$ of \mathfrak{P} coincides with $Co(\mathfrak{X})$.

Now it is well-known that every positive functional p on R is an

indefinite integral $p(f) = \int f d\varphi$, where φ is a non-negative Borel measure on X. Then every p^{φ} for $p \in \Re$ satisfies

$$p^{\nu}(A) = p(A^{\nu}) = \int_{\mathfrak{X}} A^{\nu}(\lambda) \ d\varphi(\lambda) = \int_{\mathfrak{X}} \lambda(A) \ d\varphi(\lambda).$$

Hence $p^{\nu} = \int \lambda \, d\varphi(\lambda)$, where $\varphi(\mathfrak{X}) = p(1) = 1$. This concludes the theorem.

Let $\mathfrak X$ be a bounded regularly convex set in the conjugate space of a Banach space. By the theorem of Krein-Milman, $\mathfrak X$ is the smallest regularly convex set which contains all the extreme points of $\mathfrak X$. Then we obtain

Theorem 2. Let \mathfrak{X} be a bounded regularly convex set in the conjugate space of a Banach space. Let \mathfrak{E} denote the set of all extreme points of \mathfrak{X} , and $\overline{\mathfrak{E}}$ denote its weak closure. Then every $f \in \mathfrak{X}$ is expressible by a Pettis integral

$$f = \int_{\overline{\mathfrak{G}}} \lambda \ d\varphi(\lambda),$$

where φ is a non-negative Borel measure on $\overline{\mathbb{G}}$ with $\varphi(\overline{\mathbb{G}}) = 1$.

Let **A** be a uniformly closed self-adjoint algebra of operators on a Hilbert space which contains the identity I. A linear functional f on **A** is said a state if it satisfies $f(A^*) = \overline{f(A)}$ and $f(A^*A) \ge 0$. Then the set $\mathfrak P$ of all states p with p(I) = 1 is a bounded regularly convex set conjugate to the real Banach space $\mathbf A^n$ of all Hermitian operators in $\mathbf A^n$. A state p is said irreducible if there is no pair (q, r) of states with p = q + r other than $q = \alpha p$ and $r = (1 - \alpha)p$. Now $p \in \mathfrak P$ is irreducible if and only if it is an extreme point of $\mathfrak P$. Therefore

Theorem 3. Let A be a uniformly closed self-adjoint algebra of operators on a Hilbert space which contains the identity I. Let \Re denote the set of all irreducibe states u with u(I) = 1, and \Re denote its weak closure. Then every state p on A is expressed by a Pettis integral

$$p = \int_{\overline{\mathfrak{N}}} \lambda \ d\varphi(\lambda),$$

where φ is a suitable non-negative Borel measure on $\overline{\mathbb{R}}$.

In fact, every state p with p(I) = 1 is expressed as the Theorem using Theorem 2. But every state p is denoted as αq , where q is a state with q(I) = 1. Then Theorem 3 is valid.

The last theorem is closely related to my immediately subsequent paper of this Journal.

Footnote.

1). Let p be a state. Given an Hermitian $0
ightharpoonup A
ightharpoonup A, we put <math>B = |A|^{\frac{1}{2}}$ ($\sum_{j=1}^{\infty} c_i(A/|A|)^j$), where $\sum_{j=1}^{\infty} c_i x^j$ is the power-series expansion of $(1-x)^{\frac{1}{2}}$. B converges uniformly, and satisfies $B^*B = |A|I - A$. Then $p(A) \le |A|p(I)$. Hence p is a bounded linear functional on A^H with |p| = p(I). Therefore $\mathfrak P$ is a bounded weakly closed convex subset of the conjugate space of A^H .

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received December 20, 1953)