SOME REMARKS ON RADICAL IDEALS

HISAO TOMINAGA

Let R be a (non-commutative) ring. As is well known, every ideal A in R decides a uniquely determined ideal \bar{A} called the *radical* of A, which is defined as the intersection of all (minimal) prime divisors of A. Clearly, the operation: $A \to \bar{A}$ defined in the set \Im consisting of all ideals in R possesses the following properties:

- 1) $A \subseteq \bar{A}$,
- $2) \quad \bar{A} = \bar{\bar{A}},$
- 3) $A \subseteq B$ implies $\bar{A} \subseteq \bar{B}$, where $A, B \in \Im$.

In this note, we consider several properties of ideals A with $\tilde{A} = A$, which are called *radical ideals* by N. H. McCoy [3]¹⁾.

Theorem 1. Let C be an ideal in R. Then the following conditions are equivalent to each other:

- a) C is a radical ideal.
- b) If an ideal A is nilpotent modulo C, then A is contained in C.
- c) $AB \subseteq C$ implies $A \cap B \subseteq C$, where A, B are ideals.
- d) C is an intersection of some prime ideals.

Proof. Cor. 4 to Th. 2 of [2] shows that the intersection of all the prime ideals of a ring is $\{0\}$ if and only if the zero ideal is the only nilpotent ideal of the ring. Hence, the equivalence between a) and b) may be easily seen.

Let C be a radical ideal. Then, for each prime divisor P of C, $AB \subseteq C$ implies $P \supseteq A$ or B. Hence $A \cap B \subseteq P$, accordingly, $A \cap B \subseteq C$. This shows that a) implies c). Conversely, C be not a radical ideal. Then, by b), there exists an ideal $A \not\equiv C$ such that $A^2 \subseteq C$. Thus, c) does not hold.

The equivalence of d) to a) is also easy.

In general, let $A \to A^*$ be a operation defined in \Im which satisfies the following axioms:

- 1') $A \subseteq A^*$,
- $(A^*)^* = A^*,$
- 3') $B \subseteq A$ implies $B^* \subseteq A^*$, where A, B are in \mathfrak{F} . For arbitrary ideals A, B in R we define the join $A \cup B$ as the ideal

¹⁾ Numbers in brackets refer to the references cited at the end of this note. The term "ideal" will maen a two-sided ideal.

 $(A+B)^*$, and the meet $A \cap B$ as the intersection of A and B. We set $\mathfrak{C} = \{A \in \mathfrak{J} \mid A^* = A\}$.

Lemma. © forms a distributive lattice with respect to the above-defined join and meet if one of the following (trivially equivalent) conditions is satisfied:

- a) For any $C \in \mathbb{C}$, $(AB)^* \subseteq C$ implies $A^* \cap B^* \subseteq C$, where $A, B \in \mathbb{R}$.
- b) $(AB)^* = A^* \cap B^*$, where $A, B \ni \Im$.

Proof. As our operation * satisfies the axioms 1'), 2') and 3') we have $(A^* + B^*)^* = (A + B)^*$. Let A, B and C be in $\mathbb C$, then $(A \cap B) \cup (A \cap C) = ((A \cap B) + (A \cap C))^* = ((AB)^* + (AC)^*)^* = (AB + AC)^* = (A(B + C))^* = A \cap (B + C)^* = A \cap (B \cup C)$.

Theorem 2¹⁾. The set consisting of all radical ideals in a ring R forms a distributive lattice, where the join and meet are defined as in the above lemma.

Proof. Let C be a radical ideal. Then $(\overline{AB}) \subseteq C$ implies $AB \subseteq C$. For any prime divisor P of C, $AB \subseteq C$ implies A or $B \subseteq P$, accordingly \overline{A} or $\overline{B} \subseteq P$. Hence, we have $\overline{A} \cap \overline{B} \subseteq P$, that is, $\overline{A} \cap \overline{B} \subseteq C$. This fact shows that our operation: $A \to \overline{A}$ satisfies the condition a) of the lemma.

Next, we prove the following theorem which has been proved in the commutative case by S. Mori [4, Satz 1]:

Theorem 3. The maximum condition is satisfied for radical ideals in R if and only if the following conditions are satisfied:

- 1) The maximum condition is satisfied for prime ideals in R.
- 2) Every radical ideal is represented as the intersection of a finite number of prime ideals in R.

Proof. Necessity: As 1) is a special case of our assumption it is desired only to prove 2).

Let $C = \cap P_{\sigma}$ be a radical ideal, where P_{σ} is a minimal prime divisor of C. Here, we may assume that C is not a prime ideal. Then, there exist two ideals A, B not contained in C such that $AB \subseteq C$. We can easily see that $R \supset C_1 = CB^{-1\,2} = \cap (P_{\sigma}B^{-1}) = \cap P_{\sigma}$, $\supset C$, where $\{P_{\sigma'}\}$ is a subset of $\{P_{\sigma}\}$. Clearly C_1 is a radical ideal.

¹⁾ Theorem 2 has been proved for commutative rings by J-C. Herz [1].

²⁾ $CB^{-1}[B^{-1}C]$ is defined as the totality of elements x such that $xB \subseteq C[Bx \subseteq C]$. The following properties of quotients are easily verified (see [5]):

⁽¹⁾ $(AB^{-1})C^{-1} = A(CB)^{-1}$.

⁽²⁾ $(\bigcap A_{\sigma})B^{-1} = \bigcap A_{\sigma}B^{-1}$.

⁽³⁾ For any prime ideal P, $PA^{-1} = P$ or R itself in accordance with $A \not\equiv P$ or $A \subseteq P$ respectively.

If C_1 is not prime, then we repeat the above procedure for C_1 instead of C and obtain $C_2 = CB_1^{-1}$, and so on. From our assumption, our procedures must terminate after a finite number of steps. Hence we have a prime ideal $(R \supset) C_n = CB_{n-1}^{-1}$, where B_{n-1} is not contained in C_n as C is a radical ideal. We now consider all different prime ideals $P'_{\mu}(\subset R)$ of the form: $P'_{\mu} = CU'_{\mu}^{-1}$. As C is a radical ideal U'_{μ} is not contained in P'_{μ} , and P'_{μ} is a minimal prime divisor of C. If $\mu \neq \lambda$, then $U'_{\mu} \subseteq P'_{\lambda}$. For, if not, $U'_{\mu} \not = P'_{\lambda}$ and $P'_{\mu}U'_{\mu} \subseteq C \subseteq P'_{\lambda}$ imply that $P'_{\mu} \subseteq P'_{\lambda}$. As P'_{λ} is a minimal prime divisor of C, $P'_{\mu} = P'_{\lambda}$, contradicting with our assumption. The fact proved now shows that the representation $D_1 = \cap P'_{\mu}$ is irredundant. The maximum condition for radical ideals implies that the set $\{P'_{\mu}\}$ is finite.

By the same manner as in the above, we can see that the set of all different prime ideals $P''_{\nu} = U''_{\nu}^{-1}C$ with $U''_{\nu} \not\equiv P''_{\nu}$ is finite, and we set $D_2 = \cap P''_{\nu}$.

Clearly, $D=D_1\cap D_2$ contains C. We shall prove now that D=C. If $D\supset C$, as $U''_{i}D\subseteq C$ and $U''_{i}\nsubseteq C$, we can construct a prime ideal $(R\supset)P'=CU'^{-1}$ with $U'\nsubseteq P'$, $\subseteq D$ by using the same argument as in the first part of the proof. Hence, for some μ , $P'=P'_{\mu}$. On the other hand, $U'\subseteq D$ implies that $U'\subseteq P'_{\mu}=P'$. This is a contradiction.

Sufficiency: We assume now the conditions 1) and 2). Let $C_1 \subset C_2 \subset \cdots$ be an infinite ascending chain of radical ideals, where C_i has a short representation $P_{i_1} \cap \cdots \cap P_{i_{n_i}}$ with its minimal prime divisors P_{i_j} . Then each P_{i_j} $(j=1,\cdots,n_i)$ is a divisor of some $P_{i-1,k}$ $(k=1,\cdots,n_{i-1})$. Now, we call an ascending chain $(R \neq) Q_1 \subseteq Q_2 \subseteq \cdots$ of which each Q_i is some P_{i_j} or R itself a branch of the chain $C_1 \subset C_2 \subset \cdots$, and Q_1 the starting point of the branch. In case $Q_1 \subseteq Q_2 \subseteq \cdots \subseteq Q_n \subset Q_{n+1} = R$ we say that the length of the branch is n. In the other case, it is infinite. A prime divisor P_{i_j} of C_i is called trivial if P_{i_j} is some P_{nk} for each k > i. If the lengths of all branches with the starting point P_{i_j} of the sub-chain $C_i \subset C_{i+1} \subset \cdots$ are bounded, we say that P_{i_j} is finite, and in the other case it is infinite.

Here, without loss of generality, we may assume that each P_i , is non-trivial. As $C_1 \subset C_2 \subset \cdots$ is infinite, there exists at least one infinite P_{rs} for each r.

¹⁾ If an ideal is represented as the intersection of a finite number of prime ideals, then there exists a unique short representation [5, Theorem 3].

Let P_{1l_1} be infinite. Then there exists a branch $Q_1 = \cdots = Q_{m_1-1} \subset Q_{m_1} \subseteq \cdots$ with the starting point P_{1l_1} such that $Q_{m_1} \neq R$. As $P_{m_1,t}$ is a minimal prime divisor of C_{m_1} , for each branch $Q_1' \subseteq Q_2' \subseteq \cdots$ with the starting point $Q_1' = P_{1l_1}$, we have $Q_1' \subset Q_{m_1}'$. Hence, there exists at least one infinite P_{m_1,l_2} properly containing P_{1,l_1} . We can repeat the above argument for P_{m_1,l_2} instead of P_{1l_1} and obtain an infinite P_{m_2,l_3} properly containing P_{m_1,l_2} , and so on. Thus, we obtain an infinite ascending chain of prime ideals $P_{1l_1} \subset P_{m_1,l_2} \subset P_{m_2,l_3} \subset \cdots$. But this is a contradiction.

REFERENCES

- J-C. Herz, Sur les idéaux semi-primiers ou parfaits. Étude des propriétés latticelles des idéaux semi-primiers, C. R. Acad. Sci. Paris, 234 (1952), 1515-1517.
- [2] J. Levitzki, Prime ideals and the lower radicals, Amer. J. Math., 73 (1951), 25-29.
- [3] N. H. McCov, Prime ideals in general rings, Amer. J. Math., 71 (1949), 823-833.
- [4] S. Mori, Über kommutative Ringe mit der Teilerkettenbedingung für Halbprimideale, J. Sci. Hiroshima Univ., Ser. A, 16 (1952), 247-260.
- [5] H. Tominaga, On primary ideal decompositions in non-commutative rings, this Journal, 3 (1953), 39-46.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received January 25, 1954)