SOME REMARKS ON RADICAL IDEALS

Hisao TOMINAGA

Let R be a (non-commutative) ring. As is well known, every
ideal A in R decides a uniquely determined ideal A called the radical
of A, which is defined as the intersection of all (minimal) prime
divisors of A. Clearly, the operation: A —» A defined in the set &
consisting of all ideals in R possesses the following properties:

1) Ac A,

2) A=A,

3) Ac B implies A c B, where A, BeX.

In this note, we consider several properties of ideals A with
A = A, which are called radical ideals by N. H. McCoy [3]".

Theorem 1. Let C be an ideal in R. Then the following con-
ditions are equivalent lo each other:

a) C is a radical ideal.

b) If an ideal A is nilpotent modulo C, then A is contained in C.

¢) ABc C implies AnBc C, where A, B are ideals.

d) C is an inlersection of some prime ideals.

Proof. Cor. 4 to Th. 2 of [2] shows that the intersection of all
the prime ideals of a ring is {0} if and only if the zero ideal is the
only nilpotent ideal of the ring. Hence, the equivalence between a)
and b) may be easily seen.

Let C be a radical ideal. Then, for each prime divisor P of C,
ABcC implies P2 A or B. Hence AnBc P, accordingly, AnBcC.
This shows that a) implies ¢). Conversely, C be not a radical ideal.
Then, by b), there exists an ideal A< C such that A*c C. Thus, ¢)
does not hold.

The equivalence of d) to a) is also easy.

In general, let A — A* be a operation defined in & which satis-
fies the following axioms: ‘

1) Ac A%,

2) (A%)* = A%,

3) Bc A implies B*¥c A%, where A, B are in .

For arbitrary ideals A, B in R we define the join Ay B as the ideal

1) Numbers in brackets refer to the references cited at the end of this note. The
term “ideal” will maen a two-sided ideal.
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(A + B)*, and the meet AN B as the intersection of A and B. We
set €= {AeX| A* = A}.

Lemma. € forms a distributive lattice with respect to the above-
defined join and meet if one of the following (frivially equivalent) con-
ditions is satisfied:

a) For any Ce G, (AB)*c C implies A* n B*c C, where A, BEXJ.

by (AB)* = A* n B*, where A,B33J.

Proof. As our operation » satisfies the axioms 1), 2) and 3') we
have (A* + B*)* = (A + B)*. Let A, B and C be in €, then (AnB)
UANC)=((AnB)+ (AnC))* =((AB)* + (AC)*)* = (AB + AC)*
=(AB+CH*=AnNB+C)*=AnBu0).

Theorem 2V. The sel consisting of all radical ideals in a ring R
forms a distributive lattice, where the join and meet are defined as in
the above lemma.

Proof. Let C be a radical ideal. Then (AB)c C implies ABcC.
For any prime divisor P of C, ABc C implies A or Bc P, accordingly
A or Bc P. Hence, we have AnBc P, that is, AnBcC. This fact
shows that our operation: A — A satisfies the condition a) of the
lemma. '

Next, we prove the following theorem which has been proved in
the commutative case by S. Mori [4, Satz 1]:

Theorem 3. The maximum condition is satisfied for radical ideals
in R if and only if the following conditions are satisfied:

1) The maximum condition is satisfied for prime ideals in R.

2) Every radical ideal is represented as the intersection of a finite
number of prime ideals in R.

Proof. Necessity: As 1) is a special case of our assumption it
is desired only to prove 2).

Let C= NP, be a radical ideal, where P, is a minimal prime
divisor of C. Here, we may assume that C is not a prime ideal.
Then, there exist two ideals A, B not contained in C such that
ABcC. We can easily see that RoC, = CB'? = n(P,B™") = nkFP,
5C, where {P,) is a subset of {P,}. Clearly C, is a radical ideal.

1) Theorem 2 has been proved for commutative rings by J-C. Herz [1].
2) CB-L[B-!'C) is defined as the totality of elements x such that xBcC[BxCl.
The following properties of quotients are easily verified (see [5]):
(1) (AB-)C-! = A(CB)-.
(2) (nAo‘]B_l = NA;B-1.
(3) For any prime ideal P, PA-1= P or R itself in accordance with A¢ Por
A < P respectively. :
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If C, is 'not prime, then we repeat the above procedure for C, instead
of C and obtain C, = CB;}, and so on. From our assumption, our
procedures must terminate after a finite number of steps. Hence
we have a prime ideal (R>)C, = CB;},, where B,_, is not contained
in C, as C is a radical ideal. We now consider all different prime
ideals P;(c K) of the form: P, = CU;"'. As C is a radical ideal U}
is not contained in P, and P, is a minimal prime divisor of C. If
#==2, then U;c P{. For, if not, U.< P{ and P,U.c Cc P} imply
that Pic P{. As P is a minimal prime divisor of C, P, = P{, con-
tradicting with our assumption. The fact proved now shows that
the representation D, = n P, is irredundant. The maximum condition
for radical ideals implies that the set {P.} is finite.

By the same manner as in the above, we can see that the set
of all different prime ideals P) = U] -'C with U/ P/ is finite, and
we set D,= nP).

Clearly, D= D, nD, contains C. We shall prove now that D= C.
If DoC, as U'DcC and U/ <C, we can construct a prime ideal
R>)P' = CU'? with U’ <P/, c D by using the same argument as
in the first part of the proof. Hence, for some #, P’ = P,. On the
other hand, U’ c D implies that U’c P/ = P’. This is a contradic-
tion.

Sufficiency : We assume now the conditions 1) and 2). Let C,c
C,c -eenet be an infinite ascending chain of radical ideals, where C,
has a short representation P,, 0 ----.- n P,-,,i with its minimal prime
divisors P,,’. Then each P, (j =1, ------ , 1) Is a divisor of some
P, k=1, ,#,._). Now, we call an ascending chain (R==)Q,
c@,c - of which each @, is some P,; or R itself a branch of the
chain C,cC,c -----. , and @, the starting point of the branch. In
case @, c@Q,c ------ c@.cQ,., =R we say that the length of the
branch is #. In the other case, it is infinite. A prime divisor P,, of
C, is called trivial if P, is some P, for each 2 > i If the lengths
of all branches with the starting point P;; of the sub-chain C,cC,,,
C e are bounded, we say that P, is finite, and in the other case
it is infinite.

Here, without loss of generality, we may assume that each P,
is non-trivial. As C,c C,c ------ is infinite, there exists at least one
infinite P,, for each 7.

1) If an ideal is represented as the intersection of a finite number of prime ideals,
then there exists a unique short representation [5, Theorem 3].
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Let P, be infinite. Then there exists a branch @, = -+ = Qu
c Q,,,lg ...... with the starting point P”l such that le=i=R- As
P, .. is a minimal prime divisor of le’ for each branch Qjc @;c
------ with the starting point @ = Pu,’ we have Qc Q:,.l. Hence,
there exists at least one infinite P, ., properly containing P, .
We can repeat the above argument for Pml,,z instead of P,; and
obtain an infinite P, ,,, properly containing P, ,,, and so on. Thus,

we obtain an infinite ascending chain of prime ideals P, c P, ©
P,,.z,,ac ------ . But this is a contradiction.
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