NOTES ON BASIC RINGS, II

Masaru OSIMA

Let R be a ring with unit element. In §1 we study the R-endomorphism ring of an R-module. In §2 we consider an algebra with a finite rank over a field K and discuss the connection between an algebra and its basic algebra.

1. Let V be a left R-module. We denote by $E_{V}(R)$ or simply by E(R) the R-endomorphism ring of V. We consider E(R) as right operator system of V. Evidently E(R) has the unit element 1' and V is faithful as a right E(R)-module. If $a \in R$, $a' \in E(R)$, $v \in V$ then

$$a(va') = (av)a'.$$

Let $V=V_1+V_2$ denote the decomposition of V into a direct sum of left R-modules V_1 and V_2 . If $v=v_1+v_2$, $(v_1 \in V_1, v_2 \in V_2)$ then the mapping e' defined by $ve'=v_1$, is an R-endomorphism of V. We see that e' is idempotent and $V_1=Ve'$, $V_2=V(1'-e')$:

$$(2) V = Ve' + V(1' - e').$$

Lemma 1. An idempotent element e' of E(R) is primitive if and only if Ve' is indecomposable as a left R-module.

Lemma 2. Let e' and f' be two idempotent elements of E(R). If $e' \cong f'$ then $Ve' \cong Vf'$, and conversely.

Proof. If $e' \cong f'$ there exist two elements a', b' such that e' = a'b' and f' = b'a' ($a' \in e'E(R)f'$, $b' \in f'E(R)e'$). Hence Va' = Vf'. Then $Ve' \cong Vf'$ under the correspondence $ve' \to va'$. Conversely suppose $Ve' \cong Vf'$ under the correspondence $ve' \to (ve')^\sigma \in Vf'$. There exist two elements a', b' of E(R) such that

$$(ve')a' = (ve')^{\sigma}, \qquad (v(1'-e'))a' = 0,$$

 $(vf')b' = (vf')^{\sigma^{-1}}, \qquad (v(1'-f'))b' = 0.$

We then see that e' = a'b' and f' = b'a'.

Lemma 3. $E_{V'''}(R) = e'E(R)e'$ for any idempotent element e' of E(R).

In what follows we assume always that a left R-module V satisfies the following condition:

(**) V is decomposed into a direct sum of a finite number of indecomposable R-modules and this decomposition is unique up to an R-isomorphism.

Let

$$V = \sum_{r=1}^{m} \sum_{\mu=1}^{\varphi(\kappa)} V_{\kappa,\mu}$$

denote the decomposition of V into a direct sum of indecomposable R-modules $V_{\kappa,\mu}$, where

$$(4) V_{\kappa,1} \cong V_{\kappa,2} \cong \cdots \cong V_{\kappa,\varphi(\kappa)}$$

and $V_{\kappa,\mu} \cong V_{\lambda,\nu}$ for $\kappa \neq \lambda$. Corresponding to the decomposition (3) we have the decomposition of the unit element 1' of E(R) into mutually orthogonal primitive idempotent elements:

$$1' = \sum_{\kappa} \sum_{k} e'_{\kappa,\mu}.$$

Here $V_{\kappa,\mu} = Ve'_{\kappa,\mu}$ and

$$(6) V = \sum_{\kappa} \sum_{\mu} V e_{\kappa,\mu}^{\prime}.$$

It follows from Lemma 2 that if V satisfies the condition (**) then E(R) satisfies the condition (*) [4, p. 106], and conversely.

We set $e'_{\kappa,1} = e'_{\kappa}$, $e' = \sum_{\kappa} e'_{\kappa}$. $e'E(R)e' = (E(R))^0$ is a basic ring of E(R) and if $\{c'_{\kappa,\mu\nu}\}$ is a system of matrix units corresponding to the decomposition (5) then

(7)
$$E(R) = \sum_{\kappa,\lambda} \sum_{\mu,\nu} c'_{\kappa,\mu,1} (E(R))^{n} c'_{\lambda,1\nu}.$$

The left R-module Ve' is called the reduced module of V. We have by Lemma 3 the following

Lemma 4.
$$E_{Ve'}(R) = (E(R))^0$$
.

We assume that V is a faithful left R-module. Denote by E(E(R)) the E(R)-endomorphism ring of V (considered as a right E(R)-module). If $a' \in E(R)$, $a'' \in E(E(R))$, $v \in V$ then

$$(8) (a''v)a' = a''(va').$$

Since V is a faithful left R-module it follows from (1) that

$$(9) R \subseteq E(E(R)).$$

Further we see easily that

$$(10) E(R) = E(E(E(R))).$$

We assume hereafter that R satisfies the condition (*) and $e_{i,\alpha}$, e_i ,

$$(11) V = \sum_{i,\alpha} e_{i,\alpha} V = \sum_{i,\alpha} c_{i,\alpha} V,$$

where $e_i V \cong c_{i,\alpha_1} V$ and $c_{i,\alpha_1} V \cong c_{j,\beta_1} V$ for $i \neq j$.

Lemma 5. If E(E(R)) = R then the right E(R)-modules e_iV ($i = 1, 2, \dots, n$) are indecomposable.

Lemma 6. $E_{eV}(R^0) = E(R)$.

Proof. The mapping a^* defined by $(ev)a^* = (ev)a'$ $(a' \in E(R))$ is an R^0 -endomorphism of eV since

$$eae((ev)a^*) = eae((ev)a') = (eaev)a' = (eaev)a^*.$$

We have

$$(e_i v)a' = e_i(va') \in e_i V,$$

 $(c_{i,\alpha_1} v)a' = c_{i,\alpha_1}(va') \in c_{i,\alpha_1} V.$

Hence, if $a' \neq b'$ there exists at least an element $v \in V$ such that $(ev)a' \neq (ev)b'$. This implies $a^* \neq b^*$. Conversely let $a^* \in E_{ev}(R^0)$. We set $(e_iv)a' = (e_iv)a^*$, $(c_{i,\alpha_1}v)a' = c_{i,\alpha_1}((e_iv)a^*)$. We then have

$$c_{j,\beta_1}ac_{i,1\alpha}((c_{i,\alpha_1}v)a') = c_{j,\beta_1}ac_{i,1\alpha}(c_{i,\alpha_1}(e_iv)a^*)$$

$$= c_{j,\beta_1}(e_jae_i)((e_iv)a^*) = c_{j,\beta_1}((e_jae_iv)a^*)$$

$$= (c_{j,\beta_1}ae_iv)a' = (c_{j,\beta_1}ac_{i,\alpha_1}c_{i,\alpha_1}v)a'.$$

Similarly

$$c_{j,\beta_1}ac_{i,1\gamma}((c_{i,\alpha_1}v)a') = (c_{j,\beta_1}ac_{i,1\gamma}(c_{i,\alpha_1}v))a'$$

$$= 0 (r \neq \alpha),$$

$$c_{j,\beta_1}ac_{k,1\gamma}((c_{i,\alpha_1}v)a') = (c_{j,\beta_1}ac_{k,1\gamma}(c_{i,\alpha_1}v))a'$$

$$= 0 (k \neq i).$$

Hence $a' \in E(R)$ and $E_{ev}(R^n) = E(R)$.

Lemmas 4 and 6 are also valid for a right R-module V:

(12)
$$E_{e'V}(R) = (E(R))^n,$$

(13)
$$E_{Vc}(R^{0}) = E(R).$$

Theorem 1. $E_{Ve'}(E_{Ve'}(R)) = E(E(R))$.

Proof. Applying (13) to the right E(R)-module V, we have $E_{re'}((E(R))^0) = E(E(R))$. Lemma 4 yields $E_{re'}((E(R))^0) = E_{re'}(E_{re'}(R))$.

Corollary. If $E_{Ve'}(E_{Ve'}(R)) = R$ then E(E(R)) = R, and conversely.

Lemma 7. If $E_{ev}(E_{ev}(R^0)) = R^0$ then E(E(R)) = R, and conversely. *Proof.* By Lemmas 6 and 3

$$E_{eV}(E(R)) = E_{eV}(E_{eV}(R^0)),$$

 $eE(E(R))e = E_{eV}(E(R)),$

whence $eE(E(R))e=E_{eV}(E_{eV}(R^0))$. Suppose $E_{eV}(E_{eV}(R^0))=R^0$. We then have $eE(E(R))e=R^0$ and

$$E(E(R)) = \sum_{i,\alpha} \sum_{j,\beta} c_{i,\alpha,1}(eE(E(R))e)c_{j,\beta}$$
$$= \sum_{i,\alpha} \sum_{j,\beta} c_{i,\alpha,1}R^{\mu}c_{j,\beta} = R.$$

Conversely if E(E(R)) = R then $eRe = R^0 = E_{ev}(E_{ev}(R^0))$.

Theorem 2. $E_{V_0}(R^0) = (E(R))^0$, where $V_0 = eVe'$.

Proof. Applying Lemma 4 to the left R^n -module eV, we have $E_{V_n}(R^n) = (E_{eV}(R^n))^n$, whence $E_{V_n}(R^n) = (E(R))^n$ by Lemma 6.

Theorem 3. If $E_{v_0}(E_{v_0}(R^0)) = R^0$ then E(E(R)) = R, and conversely.

Proof. Suppose $E_{V_0}(E_{V_0}(R^n)) = R^n$. By Corollary to Theorem 1, $E_{eV}(E_{eV}(R^n)) = R^n$ and hence E(E(R)) = R by Lemma 7. The converse may be proved easily.

As is well known, if $V \cong R$ (considered as a left R-module) then

$$(14) E_{\nu}(\dot{E}_{\nu}(R)) = R.$$

By Corollary to Theorem 1, we obtain

$$(15) E_{Re}(E_{Re}(R)) = R.$$

Generally we have the following

Theorem 4. Let V be a direct sum of any left R-module V_1 and $V_2 = Re$. Then $E_V(E_V(R)) = R$.

Proof. $eV = eV_1 + eRe = eV_1 + R^n$. We then have $E_{cv}(E_{ev}(R^n)) = R^n$ by Theorem II - E [3]. Hence $E_v(E_v(R)) = R$ by Lemma 7.

2. We consider always an algebra with a finite rank over a field K and with unit element. Denote by A° a basic algebra of an algebra A. Then

$$A = \sum_{i,\alpha} \sum_{j,\beta} c_{i,\alpha} A^{0} c_{j,\beta}.$$

Let B be a second algebra over the same field K. A and B are called similar if $A^{\circ} \cong B^{\circ}$. We write then $A \sim B$. This is a reflexive, symmetric, and transitive relation, by means of which algebras over K are classified into disjoint classes.

Lemma 8. $A \times B \sim A^{\circ} \times B^{\circ}$.

Proof. Let $1' = \sum_{j,\beta} e'_{j,\beta}$ denote the decomposition of the unit element 1' of B into mutually orthogonal primitive idempotent elements. We set as usual $e'_{j,1} = e'_{j}$, $\sum e'_{j} = e'$. Then $B^0 = e'Be'$. The idempotent elements $e_{i,\alpha} \times e'_{j,\beta}$ of $A \times B$ are not necessarily primitive. Since $e_{i,\alpha} \times e'_{j,\beta} \cong e_{i} \times e'_{j,\beta}$ exe' may be decomposed into two mutually orthogonal idempotent elements e'' and f'': $e \times e' = e'' + f''$, where e'' is the sum of a maximal system of mutually orthogonal, mutually non-isomorphic primitive idempotent elements of $A \times B$. We then have

$$(A \times B)^{0} = e''(A \times B)e'' = e''((e \times e')(A \times B)(e \times e'))e''$$

= $e''(eAe \times e'Be')e'' = e''(A^{0} \times B^{0})e'' = (A^{0} \times B^{0})^{0}$.

Theorem 5. If $A \sim B$, $C \sim D$ then $A \times C \sim B \times D$.

Let A_m denote the complete matric algebra of degree m with coefficients from A. We see easily that $A_m \sim A$.

Theorem 6. If $A \sim B$ then $A_L \sim B_L$ for any extension field L of K. Proof. Let $A^0 = eAe$. Evidently $e_i \cong e_{i,\alpha}$ in A_L since $e_i \cong e_{i,\alpha}$ in A_L . Then $e = e^* + f^*$ ($e^*f^* = f^*e^* = 0$), where e^* is the sum of a maximal system of mutually orthogonal, mutually non-isomorphic primitive idempotent elements of A_L . We have

$$(A_{t})^{0} = e^{*}A_{t}e^{*} = e^{*}(eA_{t}e)e^{*} = e^{*}((A^{0})_{t})e^{*} = ((A^{0})_{t})^{0}.$$

We consider an A-B-module V such that 1v = v1' = v $(v \in V)$, where 1' denotes the unit element of B. Let $\{c_{\iota,\alpha\beta}\}$ and $\{c'_{\kappa,\mu\nu}\}$ be the system of matrix units of A and B respectively. Then

$$(16) V = \sum_{i,\alpha} \sum_{\kappa,\alpha_i} Vc'_{\kappa,\alpha_i} Vc'_{\kappa,\alpha_i}.$$

Denote by N and N' the radicals of A and B. We set $\bar{A}=A/N$, $\bar{B}=B/N'$. If

$$Ve'_{\kappa} = V_1e'_{\kappa} \supset V_2e'_{\kappa} \supset \cdots \supset V_te'_{\kappa} \supset 0$$

is a composition series for Ve'_{κ} considered as a left A-module, then

$$eVe'_{\mathbf{x}} = eV_1e'_{\mathbf{x}} \supset eV_2e'_{\mathbf{x}} \supset \cdots \supset eV_te'_{\mathbf{x}} \supset 0$$

is a composition series for the left A^{0} -module eVe'_{κ} and if $V_{u}e'_{\kappa}/V_{u+1}e'_{\kappa} \cong \bar{A}\bar{e}_{i}$ then $eV_{u}e'_{\kappa}/eV_{u+1}e'_{\kappa} \cong \bar{e}_{i}\bar{A}\bar{e}_{i}$.

Now we assume that V is finite-dimensional over K. Let $h_{\iota_{\kappa}}$ be the number of the factor groups $\cong \bar{A}\bar{e}_i$ in a composition factor group series of the left A-module Ve'_{κ} and let $h'_{\kappa i}$ be the number of the factor groups $\cong \bar{e}'_{\kappa}\bar{B}$ in a composition factor group series of the right B-module e_iV . We can prove in a similar manner as Theorem 3 [1] the following

Theorem 7. h_{is} (Rank $\bar{e}_i \bar{A} \bar{e}_i$) = h'_{sl} (Rank $\bar{e}'_s \bar{B} \bar{e}'_s$).

If K is algebraically closed then $h_{i\kappa}=h'_{\kappa i}$. We denote by $\mathfrak A$ the representation of A defined by the left A-module V. Let F_i be the irreducible representation of A defined by $\bar{A}\bar{e}_i$ and let U_{κ} be the representation of A defined by Ve'_{κ} . Similarly we define $\mathfrak A'$, F'_{κ} , and U'_i of B. Then

$$(17) U_{\kappa} \leftrightarrow \sum_{i} h_{i\kappa} F_{i}, U'_{i} \leftrightarrow \sum_{\kappa} h_{i\kappa} F'_{\kappa},$$

where the sign → indicates that we have the same irreducible constituents on both sides and so

$$\mathfrak{A} \leftrightarrow \sum_{\kappa} \sum_{i} f'(\kappa) h_{i\kappa} F_{i}$$
, $\mathfrak{A}' \leftrightarrow \sum_{i} \sum_{\kappa} f(i) h_{i\kappa} F_{\kappa}'$.

This shows that the multiplicity of F_i in $\mathfrak A$ is the degree of U'_i and the multiplicity of F'_{κ} in $\mathfrak A'$ is the degree of U_{κ} .

If V is a left A-module then V may be considered as an $A \cdot E(A)$ -module. Hence above arguments are valid for the $A \cdot E(A)$ -module V.

REFERENCES

- [1] T. NAKAYAMA, Some studies on regular representations, induced representations and modular representations, Ann. of Math., 39 (1938), 361-369.
- [2] C. Nessitt and W. M. Scott, Some remarks on algebras over an algebraically closed field, Ann. of Math., 44 (1943), 534 - 553.

- [3] C. Nesbitt and R. M. Thrall, Some ring theorems with applications to modular representations, Ann. of Math., 47 (1946), 551 567.
- [4] M. Osima, Notes on basic rings, Math. J. Okayama Univ., 2 (1953), 103 110.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received January 10, 1954)