NOTES ON BASIC RINGS, 1I

Masaru OSIMA

Let R be a ring with unit element. In §1 we study the R-endo-
morphism ring of an R-module. In §2 we consider an algebra with
a finite rank over a field K and discuss the connection between an
algebra and its basic algebra.

1. Let V be a left R-module. We denote by E,(R) or simply
by E(R) the R-endomorphism ring of V. We consider E(R) as right
operator system of V. Evidently E(R) has the unit element 1’ and
V is faithful as d right E(R)-module. If ¢€ R, a'€ E(R), ve V then

(1) a{va’) = (av)a'.

Let V=V, + V, denote the decomposition of V into a direct
sum of left K-modules V, and V,. If v =v, + v., (v,€ V,, v,€ V) then
the mapping ¢' defined by ve’ = »,, is an R-endomorphism of V. We
see that ¢ is idempotent and V, = Ve, V.= V{1’ — ¢):

(2) = Ve + V(' —é).

Lemma 1. Awn idempotent element e of E(R) is primitive if and
only if Ve' is indecomposable as a left R-module. _

. Lemma 2. Let ¢ and f be two idempotent elements of ER). If
e x~f' then Ve' = Vf’, and conversely.

Proof. If ¢ ~ f’ there exist two elements a',  such that e =
ab and f'=0ba (a'e€e eER)f', b'ef'E(R)e). Hence Va' = Vf'. Then
Ve =~ Vf’' under the correspondence we’ — va’. Conversely suppose
Ve’ = Vf’ under the correspondence ve’ — (ve')"€ Vf'. There exist.
two elements ', & of E(R) such that

(veYa = (ve')°, @@’ —e)a = 0,
@b = @f ), A" —fNY = 0.
We then see that ¢ = &'b’ and f' = b'a’.

Lemma 3. E,.(R)=¢ER)e for any idempotent element ¢ of
E(R).

In what follows we assume always that a left R-module V-
satisfies the following condition :
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(#+) V is decomposed into a direct sum of a finite number of
indecomposable R-modules and this decomposition is unique up to an
R-isomorphism.

Let

m @k

(3) V=233V

k=1l p=1

denote the decomposition of V into a direct sum of indecomposable
R-modules V, ., where

(4) Ve =2 Ve

e

eve ~
= x, ¢(x)

and V,,,=xV,, for £ 4 Corresponding to the decomposition (3)
we have the decomposition of the unit element 1’ of E(R) into
mutually orthogonal primitive idempotent elements:

(5) T = Z %ei.n-
Here V,,,. = Ve/,, and
(6) V=3 XVe,,.

It follows from Lemma 2 that if V satisfies the condition (xx)
then E(R) satisfies the condition () [4, p. 106], and conversely.
Weset e, =¢., ¢ =3e.. ¢ER) = (E(R))" is a basic ring of

E(R) and if {c., .} is a sysEem of matrix units corresponding to the
decomposition (5) then
(7) mm==§;ymwmwan.

The left R-module Ve’ is called the reduced module of V. We
have by Lemma 3 the following

Lemma 4. E,.(R) = (E(R))"

We assume that V is a faithful left R-module. Denote by E(E(R))
the E(R)-endomorphism ring of V (considered as a right E(R)-module).
If € E(R), a’€ E(E(R)), ve V then

{8) (@'v)a = a’'a).
Since V is a faithful left R-module it follows from (1) that
(9) R c E(E(R)).
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Further we see easily that
(10) E(R) = E(E(E(R))).

We assume hereafter that R satisfies the condition (#) and e ,,
€, €, > 0o R' = ¢Re have the same meaning as in [4). Moreover
we assume that lv = » for any element » in V. We then have
AV =7V and

(11) V = izei,mV = iECa,.uV.

where ¢,V = ¢,...V and ¢, ., V¢, .,V for i ;.
Lemma 5. If E(E(R)) = R then the right E(R)-modules e,V (i =
1,2, - , 1) are indecomposable.
Lemma 6. FE, (R") = E(R).
Proof. The mapping a* defined by (ev)a* = (ev)a’ (@' € E(R)) is
an R"endomorphism of ¢V since -
eael(ev)a®) = eae((ev)d’) = (eaev)a = (eaev)a*.
‘We have
(ev)d = e(va)eeV,
(€1,aV)8 = €5, (20) €C,aiV.
Hence, if @ 5= there exists at least an element v€ V such that
(ev)@’ == (ev)d’. This implies a* =b*. Conversely let a* € E, . (R". We
set (e,v)@d = (e.v)a*, (¢, ,,,0)a = ¢;,q4.((€,9)a*). We then have
€5,818C1,12 (€1, 0)8) = €5,5/06,,,0 (G, 0 (€10)0%)
= ¢;,p1(e;ae) ((e,v)a*) = c;, 5, ((e;ae;,v)a*)

= (¢;,p:06:0)@ = (€;,5.8C, 14Ct, 0,0
Similarly '
€;5,810C;,,4((C: 0, 0)@) = (€),510C; 1y(C; 01V))0
=0 (r == a),
€5,810Ck, 14 ((C;, a1 V)@) = (€5,5,8C,,14(Ci,0.,0))0
=0 (B=£1)

Hence a’ € E(R) and E, (R" = E(R).
Lemmas 4 and 6 are also valid for a right R-module V:

a2 E..(R) = (ER)),
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(13) E,.(R"Y = E(R).

Theorem 1. E,.(E..i(R)) = E(E(R)).
Proof. Applying (13). to the right E(R)-module V, we have
Ey. ((E(R))") = E(E(R)). Lemma 4 yields Ey. ((E(R))") = Eyo (Eyo(R)).

Corollary. If E,, (E,.(R)) =R then E(E(R)) = R, and conversely.
Lemma 7. If E(E.(R") = R" then E(E(R)) = R, and conversely.
Proof. By Lemmas 6 ‘a_md 3

EFV(E‘R)) = EEV(EeV(Ru))s

¢E(E(R))e = E..(E(R),

whence eE(E(R))e = E,,(E.(R")). Suppose E,(E,R"))=R" We
then have eE(E(R))e = R" and ,

CEE[R) = 3 36,0, €EER))OC;, 15

tye J,B

= 31 3¢, o1 R Cig = R.

1o j,8
Conversely if E(E(R)) = R then eRe = R’ = E,(E(RY)).

Theorem 2. E; (R") = (E(R))’, where V, = eVe'.

Proof. Applying Lemma 4 to the left R'-module eV, we have
E, (R") = (E,(R")", whence E, (R") = (E(R))* by Lemma 6.

Theorem 3. If E, (E.(R") =R" then E(E(R)) =R, and con-
versely. ' ‘

Proof. Suppose E (E,(R")) = R" By Corollary to Theorem 1,

E(E..(R%) = R’ and hence E(E(R)) = R by Lemma 7. The converse

may be proved easily.

As is well known, if V=R (conmdered as a left R-module) then

(14) EV(EV(R)) = R.
By Corollary to Theorem 1, we obtain
(15) ERe(ERz(R)) =

Generally we have the following

Theorem 4. Let V be a direct sum of any left R-module V, and
V,= Re. Then E,(E,(R)) =

Proof. eV = eV, + ¢eRe = eV + R". We then have E(E.(R")
= R" by Theorem Il - E [3]. Hence E,(E,(R)) = R by Lemma 7.



NOTES ON BASIC RINGS, II 125

2. We consider always an algebra :with:a finite rank over a
field K and with unit element. Denote by A" a basic algebra of an-:
algebra A. Then

= 2 LC{ w1 A Cj 1B+

i, j.B

Let B be a second algebra over the same field K. A and B are
called similar if A" >~ B". We write then A ~ B. This is a reflexive,
symmetric, and transitive relation, by means of which algebras over
K are classified into disjoint classes.

Lemma 8. A x B~ A° x B".
Proof. Let 1’ = Ze’ denote the decomposition of the umt ele-

ment 1’ of B into mutually orthogonal primitive idempotent elements.
We set as usual ¢, ,=¢), >¢;j=¢€. Then B"=¢Be, The idem-
potent elements e; , x ej,5 of A x B are not necessarily primitive..
Since ¢, % €),5 = ¢, X €5, € x ¢ may be decomposed into two mutually
orthogonal idempotent elements ¢’ and f’: e x ¢ =e¢" + f”, where
¢" is the sum of a maximal system of ‘rﬁutually orthogonal, mutually
non-isomorphic primitive idempotent elements of A x B. We then
have

(A x B = &'(A x Be' = ¢e((exe)yAx B xe)e
= é'(ede x €Be')e’ = ¢'(A" x B’ = (A" x B"Y.

Theorem 5. If A~B, C~ D then A x C~B x D.
Let A, denote the complete matric algebra of degree = with
coefficients from A. We see easily that 4, ~ A.

Theorem 6. If A~ B then A,~ B, for any extension field L of K.

Proof. Let A° = eAe. Evidently ¢, >~e¢, , in A, since ¢, = ¢, , in
A. Then e = e* -+ f* (e*f* = f*e* = 0), where ¢* is the sum of a
maximal system of mutually orthogonal, mutually non-isomorphic
primitive idempotent elements of A,. We have

(A)° = e*A,et = e*(eA.0)e* = e*((A"))e* = ((A))"

We consider an A-B-module V such that lv =91 =» (e V),
where 1’ denotes the unit element of B. Let {¢ .} and {c, .} be
the system of matrix units of A and B respectively. Then
(16) V = 2: z_ct,mVCx i1ve

t,8 x, ¥
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Denote by N and N’ the radicals of A and B. We set A = A/N,
B=BIN. I

Ve, = Ve, o V,e, > ---ee- o> V,e. o0
is a composition series for Ve, considered as a left A-module, then
eVe., = eVie, o eV,e. o -~ seVe,. 00

is a composition series for the left A°-module eVe; and if V,e./V,..e.
~ Ag, then eV, é)/eV,. .. ~ & Ag,.

Now we assume that V is finite-dimensional over K. Let %, be
the number of the factor groups = Aé¢, in a composition factor group
series of the left A-module Ve, and let k., be the number of the
factor groups =~ &, B in a composition factor group series of the right
B-module ¢,V. We can prove in a similar manner as Theorem 3 [1]
the following .

Theorem 7. "k, (Rank ¢,A4é) = k., (Rank &.Be.).

If K is algebraically closed then A, = k). We denote by 2 the
representation of A defined by the left A-module V. Let F, be the
irreducible representation of A defined by Aé, and let U, be the re-
presentation of A defined by Ve.. Similarly we define 2, F/, and
U! of B. Then

17 U = ShiF, Ul — >hF.,

where the sign — indicates that we have the same irreducible .con-
stituents on both sides and so

A — %, Z;}f’(m)h,,cFl , W — %} }K;‘.f(i)h,,F,{.

This shows that the multiplicity of F; in U is the degree of U] and
the multiplicity of F, in %’ is the degree of U,.

If Vis a left A-module then ¥V may be considered as an A - E(A)-
module. Hence above arguments are valid for the A-E(A)-module
V.
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