SOME STUDIES ON FROBENIUS ALGEBRAS, II
Masaru OSIMA

This note is a continuation of the previous paper [11]. In §§1
and 2 we shall give by a slightly modified method of original one
simpler proofs of some results obtained in [4], [8], and [9]. We shall
then discuss the connection between a Frobenius algebra and its
basic algebra. In §3 a characterization of Frobenius algebras is given.
As an application, we can prove Theorem 1 [12] in general case.
We shall study, in the same section, the connection between Naka-
yama automorphisms of a Frobenius algebra and those of its basic
algebra. In §4 we obtain a new proof of Theorem 5 [3]. This gives
an alternative proof of Theorem 4.1 [2]. §5 deals with some proper-
ties of quasi-Frobenius algebras.

1. Let A be a ring with minimum condition for left and right
ideals. Let IV be the radical of A and let us assume that A =% N.
AIN=A=A + A, + - + A, is a direct decomposition of A into
simple two-sided ideals A, and let f(x), e.;, ¢.=é.,, €., and

E, = z,e,‘ . have the same meaning as in [5]; namely e,,, are mutu-

ally orthogonal primitive idempotent elements whose sum is a princi-
pal idempotent element E of A:

ko (k)
(1) E=3>e..
Ke] fem)
Hence
(2) A= 2 %JAe‘,f +UE) (=X 'Ee‘.;A + 7(E))

is a direct decomposition of A into directly indecomposable left (right)
ideals Ae, , (e..;4) and I(E) (#(E)), where /(E) (r(E)) denotes the
left (right) annihilator of EV. Ae,,; and Ae, ; are isomorphic if and

only if x = 2. For'each «, ¢,,4; 4,7 =1,2, - , f(£)) are a system of
matric units with ¢, ,; = e.,; and ¢,,; satisfy :
(3) Ce,15Ch,im = 0¢ 205 1Cc im

The residue class E, = E,(mod N) is the unit element of simple ring
A,.

1) We denote by Z(*) (r(*)) the left (right) annihilator in A.
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Theorem 1 ([4]). If in a ring A with minimum condition for left
and right ideals the duality 1(r(1)) =1 is valid for every nilpotent
simple left ideal and zero, then A possesses the unit element and there
exists a permultation = of (1,2, -+ , B) such that for each «:

(i) the largest completely reducible right subideal of e A is a
direct sum of simple right ideals isomorphic 0 e.,A[e.oN,

(ii) Ae.. has a unique simple left subideal which is isomorphic
to Ae.[Ne,, and

(ii) if fln(x)) > 1 then the largest completely reducible right sub-
ideal of e A is simple.

Proof. We proceed stepwise :

1) I(0) =1(A) =0 implies A% N.

2) I(r(1)) = for every non-nilpotent simple left ideal (see [5]).

3) R = RE, where R denotes /(N) (see [9).

4) Since ¢, R is the largest completely reducible right subideal,
¢.R=%0 for each x. e R = ¢ RE implies that there exists at least
one E, such that ¢ RE,==0.

5) We denote »(N) by L. For each 4, Le, is the largest com-
pletely reducible left subideal of Ae,. Let | be any simple left subideal
of Le,. Since | =le,, 7(I) € NUu(E — e)A. Then | =I(r(l)) 2 Re,.
Hence if Re, &0 then Le, = Re, and Re, is simple. According to 4)
e.Re, &= 0 and hence we have Re, =~ Ae,[Ne,. This implies ¢,Re, =0
(2 %= x). Consequently if we set 4 = n(x) then =(x) is uniquely deter-
mined by » and = is a permutation of (1, 2, ------ , B). Thus we have

ERE., &0, ERE, =0 (2= r(x).

Moreover Le, = Re, for every . These facts show the validities of
(i) and (ii).

6) It follows from Re,,, =~ Ae,[Ne, that ERe.. = Re..,,
whence ERE = ER = RE = R. We then have r(E) n R = r(E) n ER
=0 and hence 7(E) =0. Then A= EA + r(E)= EA. Finally we
have A = AE since I/(E) = [(4) = 0. Thus E is the unit element of
A. We denote E by 1. According to 5) we have R = L. We denote
this by M.

7) Suppose that f(z(x)) > 1. Let 1, and 1, be any two simple
right ideals of e M. Since 1; = €yyA /N (E=1,2), €1,€x,,+0
and €,T,6.,:==0. Let d, € €160, and d, € e1:6,,,: be non-zero ele-
ments. Then d,A =1, and d.A=1.. We set dy=d, +d.. Since
die.y, = d, and die,,,. = d,, Ad,== Ad, (i =1,2). We see that
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Ad, = Ae./Ne, @=1,2,3).

Since Ad; is a simple left ideal, 7(Ad) =17(d) (o2 NU (1 — €, —
€ro,e) A) is a maximal right ideal of A. Then d,A =~ A/r({d,) implies
that d,A is simple. Now d,A =d,e,,, A c d,A and similarly 4,4 c
d A, whence d A =d,A = d,A. This completes the proof of (ii).
We consider a ring with unit element and with minimum condi-
tion for left and right ideals. The subring A= eAe with unit ele-
ment e = 3le, is called the basic ring of A. As was shown in [13],

the basic r;ng of A is determined by A up to an inner aptomorphism
of A. We denote by I°%+) (°(+)) the left (right) annihilator in A"
Let A be a two-sided ideal of A. A° =ANA" = eUe is the two-sided
ideal of A" and ‘

A =3 Zcx,usllucx,u-

x4 Ay J

Thus A — A° gives a (1-1) correspondence between the two-sided
ideals of A and those of A'. We see easily that

(4) (D) = (A, @R = IAY).

Corollary. Under the assumptions of Theorem 1, the two-sided
tdeal M’ of A° is a principal left ideal: M" = A'd" (d"e A").

Proof. M'= MnA°’=>e.Me,,,. We choose a non-zero ele-
ment d! of M'e,, = e,:Mem; and set d'"= > d!. Then d'e,,, =ed"
= d! and )

(5) M = SAd = Ad

2. In what follows we consider an algebra A with a finite rank
over a field F.

Theorem 2 ([8). An algebra A is a Frobenius algebra if (and
only if) A possesses a right unit element and L = r(N) is a principal
left ideal: L = Ad.

Proof. L = Ad is left-homomorphic to 4 by E—d (E being the
right unit element) and indeed, to A/N, since Nd =0. L =3Le, ,
and each Le,,, is the largest completely reducible left subideal of
Ae,,;, whence L is a direct sum of at least 3] f(x) simple left ideals.

Hence we have necessarily L == A/N, and each Le, ; must be simple.
Since Le. .= Le, ; and Ae,,,[Ne. = Ae,, ;/Ne, ; for r==2, there
must exist a permutation = of (1, 2, ------ , k) such that
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Le,, i = Aeh—(x)’ ‘/]Ve.,‘-m’ 1

and f(z) = f(n(x)). Let U, (V.) be the directly indecomposable repre-
sentations of A belonging to Ae, (e.A). Since Ae, has a unique
simple left subideal Le,, we have by Lemma 1l [5]

# 0
(6) V’!T(K) = (* U)

and hence (4e, : F) < (€, A : F). Since A = EA + r(E)
(A:F) = 5if() (Ae,: F) = Sf(n(e)) @nA : F) + (r(E) : F).

This implies (Ae,: F) = (¢,,,A: F) and (E) = 0. Thus E is the unit
element of 4 and U, =~ V,,.

Corollary 1 ([8]). A#n algebra is a quasi-Frobenius algebra if (and
only if)y A possesses a right unit element E and for each « left ideal
7(N)e, is simple and isomorphic to Ae,.|Ne..,, where = is a permu-
tation of (1,2, ------, k). '

Proof. We denote »(N) by L. L=LE=3Le. ;. As Le is
simple and isomorphic to Aeé,/Ne,., we have ELE = EL =LE = L.
Hence 7 EYnL = 7(E)nEL = 0. Then 7(E) = 0 since 7(E) is a two-
sided ideal of A. Thus E is the unit element of A. Let A" = eAe
be the basic algebra of A as before. By Corollary to Theorem 1 we
have L'= A'd° (d"e A"). Hence A" is a Frobenius algebra and then
A is a quasi-Frobenius algebra. '

From Corollary to Theorem 1 and Theorem 2 we obtain readily
the following

Corollary 2 ([4]). An algebra A is a quasi-Frobenius algebra if
(and only if) the duality 1(r(l)) =1 is valid for every nilpotent simple
left ideal and zero.

Theorem 3. Awn algebra with unit element is an almost symmetric
(0or weakly symmetric) algebra if and only if its basic algebra A" is
almost symmetric (or weakly symmetric).

Proof. Denote by C the center of A. A is called almost sym-
metric if L = 7(N) = Ad (de C)>. If A is almost symmetric then

L' = ele = A'de

where de lies in the center C" of A° Conversely suppose A’ is

1) See[l]. Cf.also[11].
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almost symmetric: L'= A"d" (d'€eC"). We set d=3)¢,ad%,, .-
y ki
For any element @' in A® we have

CA,‘,,a"Cp’ud = C,\’_,-laoepd"cp'u = C‘\,Jldna"cp.u = d(,‘_\‘,_,a"(,‘p‘”.
Since for any element ¢ in A
a= 3 121 Cr, 1(Cr, 1580, 1) Ca (€r,15aC,,1, € A"
P »

d lies in C. Evidently Adc L. On the other hand e¢Ade = Ad* = L".
Hence L = Ad and so A is almost symmetric.

Since A is weakly symmetric if and only if L = Ad, where
E.d = dE, for every E», we see easily that our theorem is valid for
a weakly symmetric algebra.

3. Let us denote by A x A the Kronecker product of an alge-
bra A. :

Theorem 4. An algebra A with unit element is a Frobenius
algebra if and only if there exists a pair of bases (a), (@) of A such
that

(7) iéaa;xdz =§Ja,xd,-,a (a€ A).
=1 -1

Proof. We denote by S(@) (R(a)) the left (right) regular repre-
sentation of A defined by the basis (a)):

a(a) = (a)S@, (a)e = Ra)(a).
If we set S(a) = (si;(a@)) then
; aa; x G; = %J (%_‘, Su;a) X @) = IZ (a, x (? 8:5G5))-

This implies @,¢ = 3> s;;a;, whence a— S(@) is the right regular re-
J

presentation of A defined by the basis (@). Let (@) = P(a). We
then have :

(8) S(@) = PR(a)P™! (ac A).

Thus A is a Frobenius algebra. Conversely suppose A4 is a Frobenius
algebra: S(@) = QR@)Q™". If we set (@) = Q(a), then (a), (@) satisfy
the condition (7).

1) See[11], Corollary to Theorem 14.
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We say that (e¢) and (@) in Theorem 4 are dual bases. If (a),
(@;) are dual then (a,), (bd;) are also dual for any regular element b
in A. Moreover if (@), (@¢;) are dual then there exists a regular ele-
ment b such that ¢/ =ba, (1=1,2, - -- , 7). It is also easily seen
that for any basis (x,) of a Frobenius algebra A, there exists a basis
(%%;) such that (), (%) are dual. It follows from (8) that P’'R(a)(P’)™*
= S(@*) (@€ A), where P’ denotes the transpose of the matrix P.
The mapping a — ¢® forms an automorphism of A which is called
Nakayama automorphism. We see that (af) = (P’) (@) = (P’)"'‘Pla,).
If (@), (@) are dual then (@), (¢f) are also dual:

(9) MNaa; x af = D4, x afa.
2 i

Further we have

(10) >Mata; x a, = > a, X a.a.
1 i

Theorem 5. An algebra A with wunit element is a symmetric

algebra if and only if there exists a pair of bases (a,), (@) such that
Slaa;, x @, = D>a, X &;a,

{11) i i

Ea&; X a, = Zég X d;d.
i i

(@), (@) in Theorem 5 are called quasi-complementary bases. If
(@), (@) are quasi-complementary then (@), (@) are also quasi-comple-
mentary. For any basis (#;) of a symmetric algebra A, there exists
a basis (#,) such that (%), (%) are quasi-complementary.

Let A" be. the basic algebra of an algebra A and let us take a
basis (#,,,,) of A° in accord with the decomposition

(12) A" = e Ae,.

Ky A
Here u,,, .€ e Ae,, that is, e.u,, .e, = #.,,. Then the elements
{13) Ce,tilher ,aCa 14

form a basis of A which is called a Cartan basis. Let us take a
Cartan basis (13) of a symmetric algebra A and let (¢.,u%.a,4C,1;) be
a quasi-complementary basis. It follows from (11) that

(14) Co,t1Uen,aCry15 = COx, 1Vre,aCi 10

where the elements of (v,,,.) form a basis of A" and v,,,,€ e, 4e,.
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Theorem 6. An algebra is symmetric if and only if its basic
algebra is symmetric®.

Proof. Suppose that A is symmetric. It follows from (11), (14)
that for any element ¢ in 4

2 a'nux.\.m X v)\x,a‘« = 2 ux)\,w X 'L’A,('m(l",

KA, @ Ky A,
(15) Bl ] Al }
Z dv}m.d X Upr,a = Z Ure,o X um\,aa‘v

KA, @ K,A, @

whence A" is symmetric. Conversely we assume that A° is symmet-
ric. Let us take a basis (#.,.) of A’ as before and let (¥ 4)s (Fer,a)
be quasi-complementary btases of A'. We have #,, , = v,,,, where
Urne,c €€,Ae,. We then see that

(Ce,t1%er ,aCr1j)s (Cx, Vs, aCr 1)

satisfy the condition (11), that is, A is symmetric. Obs,ei‘ve that for
any element ¢ in A

37 (€un@Cy i) Ce,un¥ern,6Cr1s X €, 5V, oCe .t

KA a,d,d
= 21 C.ulla,aCr1y X O, 1V, aCro0i (Cu0nG"Co 1)y
KA a@,6,]
\Ez j(c @ Cy ) a1V, wCi1s X Co,ullern € vy
©A@, 1,

= X jc.\.ﬂvu.acx,n X Conlben,aCr,1s(Cu @' Cy im)e

K,\,a,é,

Let ¢ be a Nakayama automorphism of a Frobenius algebra A.
If A" is the basic algebra of A, then (A% = e¢*Ae* is also the basic
algebra of A. Since there exists a regular element b such that
b~'e*b = ¢, the Nakayama automorphism ¢ — b'¢*d induces an auto-
morphism of A°.

Theorem 7. Let ¢ be a Nakayama automorphism of a Frobenius
algebra A such that ¢ induces an automorphism ¢, of the basic algebra
A’ Then ¢, is a Nakayema automorphism of A". Conversely let ¢, be
a Nakayama automorphism of A° then ¢, is extended to a Nakayama
automorphism of A.

Proof. We take a Cartan basis (13). as a basis of A. Let
(Cc,u¥, aCr,1y) De a dual basis. It follows from (7), (10) that

Co,ulber,aClayiy = €L, 5V, aCeyits

1) In case of algebras over an algebraically closed field this fact was proved in [10],

(12}
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where (v,.,.) is a basis of A" such that v, ,€ e{de, (e{Ae.c A", since
& =eefec A"). We see from (7), (10) that

2 a"ux)\,w X v)uc.a’: = 2 z‘x}t.a X va\n,aa"’

K A, a K A,
2 @)00 0 X ta,a = 2] Vre,a X Ua,alh
KyAy,@ XA,

whence ¢, is a Nakayama automorphism of A° determined by dual
bases (%), (Ua,q)- We shall prove the converse. Let (#a,), (Fa,q)
be dual bases of A" and ¢, be a Nakayama automorphism determined
by these bases. Here i, € e°de.. If we set (fa,.) = Q..
then (). = (@) Q... Since &l'e.. = &lee,,.= 0, e, .6 =
e ..ee)’ =0 for i >0,

(16) 1=36"+3 Se.

k=] x=1 4

-

is a decomposition of 1 into mutually orthogonal primitive idempotent
elements. Let Ael =~ Ae,,,, where = is a permutation of (1,2, ------ ,
k). Corresponding to the decomposition (16), we can construct a
system of matric units ¢} ;; such that

iy = e, € = €ngoi Z>1)
and
C¥ yCEm = %r"‘ﬂc‘f,m-
Thus we see that
(17) (Ce i Zer,oCr,15) (X, 1P aCe,u)

satisfy the condition (7), that is, (17) are dual bases of A. If we set
(Cr,nﬁx,\,acx,u) = P(Cx,uux,\.otc.\,lj)
then
((Ce, it ®er ,aCr ,13)°) = (P) ' P(Ce,ulen, 2 Cr19)s

where ¢ is a Nakayama automorphism of A determined by dual bases
(17). If we arrange the elements of basis (¢, %, «Cx,1;) SO that first
the elements #,,,. of A" appear then we have

P=(o )
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and hence

PP = ((Q')'.‘Q 0)

0 *

. . . 1’4
This implies #%,,, = %,r,o fOT €VEry %, .

4. We shall give a new proof for a characterization of a separ-
able algebra obtained in [3].

Theorem 8. A Frobenius algebra is separable if and only if there
exist dual bases (a)), (@) such that 5;—"&"&‘ = 1.

Proof. The set
(18) c(A) = { xa, | ¥ € A}

forms an ideal of the center C of A such that ¢(4)c»(N), where N
denotes as usual the radical of A [14, Theorem 1]. By our assump-
tion 1€ 7(V), whence N =0 and so A is semisimple. Since the con-
dition S'a.d, =1 is independent with the underlying field F, A is
separable?, Conversely let A be separable. Then A is a symmetric
algebra. To prove our theorem, we may assume without restriction
that A is simple. We consider first a division algebra & and let (#,),
(#,) be dual bases of & Since R is separable we have

a9 C(®) = ;3

where 3 is the center of £. Hence >Ju, (b#) =1 for dual bases
(2¢,), (b)) with a suitable element 440 in & Next let A be a total
matric algebra F,, with matric units (¢,). We can take the bases
(e.;), (e;;) as quasi-complementary bases of F,,. For an element ¢ =
Mae,, in F,, we have

P

; e ae; = (3] a,)l.
»J Q

If we choose a regular element ¢ such that >a, =1, then
\ e,,(ae,t) =1 for cual bases (¢;), (ae;). Then we can find easily
dual bases (a), (@) of a simple separable algebra A = §,, which
satisfy S a,a, = 1.

Corollary ([3]). An algebra with unit element is separable if and

1) Note that Ay is a Frobenius algebra for any extension field L of F.
2) See [14], Theorem 3.
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only if there exists a pair of bases (a), (@) such that
(20) }T}aa X @ = D4 X aa, Maa = 1.
{ i

By Hochschild [3], the conditions (20) are equivalent to vanishing
of one-dimensional cohomology group of A for every two-sided A-
module. Thus we have an alternative proof of the following

Theorem 9 ([2]). A mnecessary and sufficient condition for an alge-
bra to be separable is that one-dimensional cohomology group of A for
every two-sided A-module vanishes.

5. Let A be an algebra with unit element over a field F and
let L be any extension field of F. We consider the algebra A, over

L. Let [ be a left ideal of A. If we take a basis g, a,, -+---- , a, of
A such that | is spanned by a@,,,, Guoy -+ ,@,- Then [, is a left
ideal of A;. In a similar manner as Theorem 14 [6], we have

(21) r*() = #()z,

where 7*(+) denotes the right annihilator in A,. Similarly we have
for a right ideal r of A

(22) () = ().

Theorem 10. An algebra is a quasi-Frobenius algebra if and only
if A, is a quasi-Frobenius algebra.

Proof. If A is a quasi-Frobenius algebra then the basic algebra
A? is a Frobenius algebra and hence (4"); is also a Frobenius algebra.
Then the basic algebra ((A"%,)" of (A4%; is a Frobenius algebra. Since
((A"),) is also the basic algebra of A;, A, must be a quasi-Frobenius
algebra. Conversely suppose A, Is a quasi-Frobenius algebra. It
follows from (21), (22) that for any left ideal | of A

L= L) = (0 = 1),

whence [ = /(r(1)), and so A is a quasi-Frobenius algebra.

Let A be an algebra and let % be a two-sided ideal in A, we
have (A/N) = A"/A". This, combined with Theorem 2 [8], yields the
following

Theorem 11. Let A be a quasi-Frobenius algebra and let N be «
two-sided ideal in A. The residue class algebra A is a quasi-Frobe-
nius algebra if and only if the two-sided ideal I'(A") in A" is a princi-
pal ideal A"D" = A" (b€ A%).
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By Lemma 2 [7], we have

Theorem 12. If every residue class algebra A is a quasi-Frobe-
nius algebra then A is uni-serial, and conversely.

We see by the same way that Theorem 12 is also valid for a ring
with minimum condition for left and right ideals as was shown in

[4].
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