SOME STUDIES ON FROBENIUS ALGEBRAS, II

Masaru OSIMA

This note is a continuation of the previous paper [11]. In §§1 and 2 we shall give by a slightly modified method of original one simpler proofs of some results obtained in [4], [8], and [9]. We shall then discuss the connection between a Frobenius algebra and its basic algebra. In §3 a characterization of Frobenius algebras is given. As an application, we can prove Theorem 1 [12] in general case. We shall study, in the same section, the connection between Nakayama automorphisms of a Frobenius algebra and those of its basic algebra. In §4 we obtain a new proof of Theorem 5 [3]. This gives an alternative proof of Theorem 4.1 [2]. §5 deals with some properties of quasi-Frobenius algebras.

1. Let A be a ring with minimum condition for left and right ideals. Let N be the radical of A and let us assume that $A \neq N$. $A/N = \bar{A} = \bar{A}_1 + \bar{A}_2 + \cdots + \bar{A}_k$ is a direct decomposition of \bar{A} into simple two-sided ideals \bar{A}_{κ} and let $f(\kappa)$, $e_{\kappa,i}$, $e_{\kappa} = e_{\kappa,1}$, $c_{\kappa,ij}$, and $E_{\kappa} = \sum_{i=1}^{f(\kappa)} e_{\kappa,i}$ have the same meaning as in [5]; namely $e_{\kappa,i}$ are mutually orthogonal primitive idempotent elements whose sum is a principal idempotent element E of A:

$$(1) E = \sum_{\kappa=1}^{k} \sum_{i=1}^{f(\kappa)} e_{\kappa,i}.$$

Hence

(2)
$$A = \sum_{\kappa} \sum_{i} A e_{\kappa,i} + l(E) \quad (= \sum_{\kappa} \sum_{i} e_{\kappa,i} A + r(E))$$

is a direct decomposition of A into directly indecomposable left (right) ideals $Ae_{\kappa,i}$ $(e_{\kappa,i}A)$ and l(E) (r(E)), where l(E) (r(E)) denotes the left (right) annihilator of E^{ij} . $Ae_{\kappa,i}$ and $Ae_{\lambda,j}$ are isomorphic if and only if $\kappa = \lambda$. For ϵ ach κ , $c_{\kappa,ij}$ $(i,j=1,2,\dots,f(\kappa))$ are a system of matric units with $c_{\kappa,ii} = e_{\kappa,i}$ and $c_{\kappa,ij}$ satisfy

$$(3) c_{\kappa,ij}c_{\lambda,lm} = \delta_{\kappa,\lambda}\delta_{j,l}c_{\kappa,lm}.$$

The residue class $\bar{E}_{\kappa} = E_{\kappa} \pmod{N}$ is the unit element of simple ring \bar{A}_{κ} .

¹⁾ We denote by l(*)(r(*)) the left (right) annihilator in A.

Theorem 1 ([4]). If in a ring A with minimum condition for left and right ideals the duality l(r(1)) = 1 is valid for every nilpotent simple left ideal and zero, then A possesses the unit element and there exists a permutation π of $(1, 2, \dots, k)$ such that for each κ :

- (i) the largest completely reducible right subideal of $e_{\kappa}A$ is a direct sum of simple right ideals isomorphic to $e_{\kappa(\kappa)}A/e_{\kappa(\kappa)}N$,
- (ii) $Ae_{\pi'\kappa}$ has a unique simple left subideal which is isomorphic to Ae_{κ}/Ne_{κ} , and
- (iii) if $f(\pi(\kappa)) > 1$ then the largest completely reducible right subideal of $e_{\kappa}A$ is simple.

Proof. We proceed stepwise:

- 1) l(r(0)) = l(A) = 0 implies $A \neq N$.
- 2) l(r(1)) = 1 for every non-nilpotent simple left ideal (see [5]).
- 3) R = RE, where R denotes l(N) (see [9]).
- 4) Since $e_{\kappa}R$ is the largest completely reducible right subideal, $e_{\kappa}R \neq 0$ for each κ . $e_{\kappa}R = e_{\kappa}RE$ implies that there exists at least one E_{λ} such that $e_{\kappa}RE_{\lambda} \neq 0$.
- 5) We denote r(N) by L. For each λ , Le_{λ} is the largest completely reducible left subideal of Ae_{λ} . Let \mathfrak{l} be any simple left subideal of Le_{λ} . Since $\mathfrak{l}=\mathfrak{l}e_{\lambda}$, $r(\mathfrak{l})\subseteq N\cup (E-e_{\lambda})A$. Then $\mathfrak{l}=l(r(\mathfrak{l}))\supseteq Re_{\lambda}$. Hence if $Re_{\lambda}\neq 0$ then $Le_{\lambda}=Re_{\lambda}$ and Re_{λ} is simple. According to 4) $e_{\kappa}Re_{\lambda}\neq 0$ and hence we have $Re_{\lambda}\cong Ae_{\kappa}/Ne_{\kappa}$. This implies $e_{\mu}Re_{\lambda}=0$ ($\mu\neq\kappa$). Consequently if we set $\lambda=\pi(\kappa)$ then $\pi(\kappa)$ is uniquely determined by κ and π is a permutation of $(1,2,\dots,k)$. Thus we have

$$E_{\kappa}RE_{\pi(\kappa)} \neq 0$$
, $E_{\kappa}RE_{\mu} = 0$ $(\mu \neq \pi(\kappa))$.

Moreover $Le_{\kappa} = Re_{\kappa}$ for every κ . These facts show the validities of (i) and (ii).

- 6) It follows from $Re_{\pi(\kappa),i} \cong Ae_{\kappa}/Ne_{\kappa}$ that $ERe_{\pi(\kappa),i} = Re_{\pi(\kappa),i}$, whence ERE = ER = RE = R. We then have $r(E) \cap R = r(E) \cap ER$ = 0 and hence r(E) = 0. Then A = EA + r(E) = EA. Finally we have A = AE since l(E) = l(A) = 0. Thus E is the unit element of A. We denote E by 1. According to 5) we have R = L. We denote this by M.
- 7) Suppose that $f(\pi(\kappa)) > 1$. Let \mathfrak{r}_1 and \mathfrak{r}_2 be any two simple right ideals of $e_{\kappa}M$. Since $\mathfrak{r}_i \cong e_{\pi(\kappa)}A/e_{\pi(\kappa)}N$ (i=1,2), $e_{\kappa}\mathfrak{r}_1e_{\pi(\kappa),1} \neq 0$ and $e_{\kappa}\mathfrak{r}_2e_{\pi(\kappa),2} \neq 0$. Let $d_1 \in e_{\kappa}\mathfrak{r}_1e_{\pi(\kappa),1}$ and $d_2 \in e_{\kappa}\mathfrak{r}_2e_{\pi(\kappa),2}$ be non-zero elements. Then $d_1A = \mathfrak{r}_1$ and $d_2A = \mathfrak{r}_2$. We set $d_3 = d_1 + d_2$. Since $d_3e_{\pi(\kappa),1} = d_1$ and $d_3e_{\pi(\kappa),2} = d_2$, $Ad_3 \neq Ad_i$ (i=1,2). We see that

$$Ad_i \cong Ae_{\kappa}/Ne_{\kappa} \qquad (i=1,2,3).$$

Since Ad_3 is a simple left ideal, $r(Ad_3) = r(d_3)$ ($\supset N \cup (1 - e_{\pi(\kappa), 1} - e_{\pi(\kappa), 2})A$) is a maximal right ideal of A. Then $d_3A \cong A/r(d_3)$ implies that d_3A is simple. Now $d_1A = d_3e_{\pi(\kappa), 1}A \subseteq d_3A$ and similarly $d_2A \subseteq d_3A$, whence $d_1A = d_2A = d_3A$. This completes the proof of (iii).

We consider a ring with unit element and with minimum condition for left and right ideals. The subring $A^c = eAe$ with unit element $e = \sum_{\kappa} e_{\kappa}$ is called the basic ring of A. As was shown in [13], the basic ring of A is determined by A up to an inner automorphism of A. We denote by $l^0(*)$ $(r^0(*))$ the left (right) annihilator in A^o . Let $\mathfrak A$ be a two-sided ideal of A. $\mathfrak A^o = \mathfrak A^o = e\mathfrak A e$ is the two-sided ideal of A^o and

$$\mathfrak{A} = \sum_{\kappa, i} \sum_{\lambda = i} c_{\kappa, i} \mathfrak{A}^{0} c_{\lambda, ij}.$$

Thus $\mathfrak{A} \to \mathfrak{A}^{\circ}$ gives a (1-1) correspondence between the two-sided ideals of A and those of A° . We see easily that

$$(4) (r(\mathfrak{A}))^{\mathfrak{o}} = r^{\mathfrak{o}}(\mathfrak{A}^{\mathfrak{o}}), (l(\mathfrak{A}))^{\mathfrak{o}} = l^{\mathfrak{o}}(\mathfrak{A}^{\mathfrak{o}}).$$

Corollary. Under the assumptions of Theorem 1, the two-sided ideal M° of A° is a principal left ideal: $M^{\circ} = A^{\circ} d^{\circ}$ ($d^{\circ} \in A^{\circ}$).

Proof. $M^{\scriptscriptstyle 0}=M\cap A^{\scriptscriptstyle 0}=\sum_{\kappa}e_{\kappa}Me_{\pi(\kappa)}$. We choose a non-zero element $d^{\scriptscriptstyle 0}_{\kappa}$ of $M^{\scriptscriptstyle 0}e_{\pi(\kappa)}=e_{\kappa}Me_{\pi(\kappa)}$ and set $d^{\scriptscriptstyle 0}=\sum_{\kappa}d^{\scriptscriptstyle 0}_{\kappa}$. Then $d^{\scriptscriptstyle 0}e_{\pi(\kappa)}=e_{\kappa}d^{\scriptscriptstyle 0}=d^{\scriptscriptstyle 0}$ and

$$M^{\circ} = \sum A^{\circ} d_{\kappa}^{\circ} = A^{\circ} d^{\circ}.$$

2. In what follows we consider an algebra A with a finite rank over a field F.

Theorem 2 ([8]). An algebra A is a Frobenius algebra if (and only if) A possesses a right unit element and L = r(N) is a principal left ideal: L = Ad.

Proof. L=Ad is left-homomorphic to A by $E\to d$ (E being the right unit element) and indeed, to A/N, since Nd=0. $L=\sum Le_{\kappa,i}$ and each $Le_{\kappa,i}$ is the largest completely reducible left subideal of $Ae_{\kappa,i}$, whence L is a direct sum of at least $\sum_{\kappa} f(\kappa)$ simple left ideals. Hence we have necessarily $L\cong A/N$, and each $Le_{\kappa,i}$ must be simple. Since $Le_{\kappa,i}\cong Le_{\kappa,j}$ and $Ae_{\kappa,i}/Ne_{\kappa,i}\cong Ae_{\lambda,j}/Ne_{\lambda,j}$ for $\kappa \doteqdot \lambda$, there must exist a permutation π of $(1, 2, \dots, k)$ such that

$$Le_{\kappa,i} \cong Ae_{\pi(\kappa),i}/Ne_{\pi(\kappa),i}$$

and $f(\kappa) = f(\pi(\kappa))$. Let U_{κ} (V_{κ}) be the directly indecomposable representations of A belonging to Ae_{κ} ($e_{\kappa}A$). Since Ae_{κ} has a unique simple left subideal Le_{κ} , we have by Lemma 1 [5]

$$(6) V_{\pi(\kappa)} \cong \begin{pmatrix} * & 0 \\ * & U_{\kappa} \end{pmatrix}$$

and hence $(Ae_{\kappa}:F) \leq (e_{\pi(\kappa)}A:F)$. Since A = EA + r(E)

$$(A:F) = \sum_{\kappa} f(\kappa) (Ae_{\kappa}:F) = \sum_{\kappa} f(\pi(\kappa)) (e_{\pi(\kappa)}A:F) + (r(E):F).$$

This implies $(Ae_{\kappa}: F) = (e_{\pi(\kappa)}A: F)$ and r(E) = 0. Thus E is the unit element of A and $U_{\kappa} \cong V_{\pi(\kappa)}$.

Corollary 1 ([8]). An algebra is a quasi-Frobenius algebra if (and only if) A possesses a right unit element E and for each κ left ideal $r(N)e_{\kappa}$ is simple and isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$, where π is a permutation of $(1, 2, \dots, k)$.

Proof. We denote r(N) by L. $L = LE = \sum Le_{\kappa,i}$. As Le_{κ} is simple and isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$, we have ELE = EL = LE = L. Hence $r(E) \cap L = r(E) \cap EL = 0$. Then r(E) = 0 since r(E) is a two-sided ideal of A. Thus E is the unit element of A. Let $A^0 = eAe$ be the basic algebra of A as before. By Corollary to Theorem 1 we have $L^0 = A^0 d^0$ ($d^0 \in A^0$). Hence A^0 is a Frobenius algebra and then A is a quasi-Frobenius algebra.

From Corollary to Theorem 1 and Theorem 2 we obtain readily the following

Corollary 2 ([4]). An algebra A is a quasi-Frobenius algebra if (and only if) the duality l(r(1)) = 1 is valid for every nilpotent simple left ideal and zero.

Theorem 3. An algebra with unit element is an almost symmetric (or weakly symmetric) algebra if and only if its basic algebra A^0 is almost symmetric (or weakly symmetric).

Proof. Denote by C the center of A. A is called almost symmetric if L = r(N) = Ad $(d \in C)^{1}$. If A is almost symmetric then

$$L^0 = eLe = A^0 de$$

where de lies in the center C^{\shortparallel} of A° . Conversely suppose A^{\shortparallel} is

¹⁾ See [1]. Cf. also [11].

almost symmetric: $L^0=A^nd^n$ $(d^n\in C^n)$. We set $d=\sum_{\kappa,\,n}c_{\kappa,\,n}d^nc_{\kappa,\,n}$. For any element a^n in A^n we have

$$c_{\lambda_{1},j_{1}}a^{0}c_{\rho_{1},l_{1}}d = c_{\lambda_{1},j_{1}}a^{0}e_{\rho}d^{0}c_{\rho_{1},l_{1}} = c_{\lambda_{1},j_{1}}d^{0}a^{0}c_{\rho_{1},l_{1}} = dc_{\lambda_{1},l_{2}}a^{0}c_{\rho_{1},l_{1}}.$$

Since for any element a in A

$$a = \sum_{\lambda,\rho} \sum_{J,l} c_{\lambda,J1}(c_{\lambda,J1}ac_{\rho,l1})c_{\rho,ll} \qquad (c_{\lambda,JJ}ac_{\rho,l1} \in A^{0})$$

d lies in C. Evidently $Ad \subseteq L$. On the other hand $eAde = A^0d^0 = L^0$. Hence L = Ad and so A is almost symmetric.

Since A is weakly symmetric if and only if L = Ad, where $E_{\kappa}d = dE_{\kappa}$ for every $E_{\kappa}^{(1)}$, we see easily that our theorem is valid for a weakly symmetric algebra.

3. Let us denote by $A \times A$ the Kronecker product of an algebra A.

Theorem 4. An algebra A with unit element is a Frobenius algebra if and only if there exists a pair of bases (a_i) , (\bar{a}_i) of A such that

(7)
$$\sum_{i=1}^{n} aa_i \times \bar{a}_i = \sum_{i=1}^{n} a_i \times \bar{a}_i a \qquad (a \in A).$$

Proof. We denote by S(a) (R(a)) the left (right) regular representation of A defined by the basis (a_i) :

$$a(a_i) = (a_i) S(a), (a_i) a = R(a) (a_i).$$

If we set $S(a) = (s_{ij}(a))$ then

$$\sum_{j} a a_{j} \times \bar{a}_{j} = \sum_{j} \left(\sum_{i} s_{ij} a_{i} \right) \times \bar{a}_{j} = \sum_{i} \left(a_{i} \times \left(\sum_{j} s_{ij} \bar{a}_{j} \right) \right).$$

This implies $\bar{a}_i a = \sum_j s_{ij} \bar{a}_j$, whence $a \to S(a)$ is the right regular representation of A defined by the basis (\bar{a}_i) . Let $(\bar{a}_i) = P(a_i)$. We then have

$$S(a) = PR(a)P^{-1} \qquad (a \in A).$$

Thus A is a Frobenius algebra. Conversely suppose A is a Frobenius algebra: $S(a) = QR(a)Q^{-1}$. If we set $(\bar{a}_i) = Q(a_i)$, then (a_i) , (\bar{a}_i) satisfy the condition (7).

¹⁾ See [11], Corollary to Theorem 14.

We say that (a_i) and (\bar{a}_i) in Theorem 4 are dual bases. If (a_i) , (\bar{a}_i) are dual then (a_i) , $(b\bar{a}_i)$ are also dual for any regular element b in A. Moreover if (a_i) , (a'_i) are dual then there exists a regular element b such that $a'_i = b\bar{a}_i$ $(i = 1, 2, \dots, n)$. It is also easily seen that for any basis (u_i) of a Frobenius algebra A, there exists a basis (\bar{u}_i) such that (u_i) , (\bar{u}_i) are dual. It follows from (8) that $P'R(a)(P')^{-1} = S(a^{\varphi})$ $(a^{\varphi} \in A)$, where P' denotes the transpose of the matrix P. The mapping $a \to a^{\varphi}$ forms an automorphism of A which is called Nakayama automorphism. We see that $(a^{\varphi}_i) = (P')^{-1}(\bar{a}_i) = (P')^{-1}P(a_i)$. If (a_i) , (\bar{a}_i) are dual then (\bar{a}_i) , (a^{φ}_i) are also dual:

$$(9) \qquad \qquad \sum_{i} a \bar{a}_{i} \times a_{i}^{\varphi} = \sum_{i} \bar{a}_{i} \times a_{i}^{\varphi} a.$$

Further we have

(10)
$$\sum_{i} a^{\varphi} \bar{a}_{i} \times a_{i} = \sum_{i} \bar{a}_{i} \times a_{i} a.$$

Theorem 5. An algebra A with unit element is a symmetric algebra if and only if there exists a pair of bases (a_i) , (\bar{a}_i) such that

(11)
$$\sum_{i} aa_{i} \times \bar{a}_{i} = \sum_{i} a_{i} \times \bar{a}_{i} a,$$
$$\sum_{i} a\bar{a}_{i} \times a_{i} = \sum_{i} \bar{a}_{i} \times a_{i} a.$$

 (a_i) , (\bar{a}_i) in Theorem 5 are called *quasi-complementary bases*. If (a_i) , (\bar{a}_i) are quasi-complementary then (\bar{a}_i) , (a_i) are also quasi-complementary. For any basis (u_i) of a symmetric algebra A, there exists a basis (\bar{u}_i) such that (u_i) , (\bar{u}_i) are quasi-complementary.

Let A^0 be the basic algebra of an algebra A and let us take a basis $(u_{\kappa\lambda}, \alpha)$ of A^0 in accord with the decomposition

$$A^{\circ} = \sum_{\kappa,\lambda} e_{\kappa} A^{\circ} e_{\lambda}.$$

Here $u_{\kappa\lambda,\alpha} \in e_{\kappa} A e_{\lambda}$, that is, $e_{\kappa} u_{\kappa\lambda,\alpha} e_{\lambda} = u_{\kappa\lambda,\alpha}$. Then the elements

$$(13) c_{\kappa,i_1} u_{\kappa\lambda,\alpha} c_{\lambda,i_2}$$

form a basis of A which is called a Cartan basis. Let us take a Cartan basis (13) of a symmetric algebra A and let $(\overline{c_{\kappa,11}}u_{\kappa\lambda,\alpha}c_{\lambda,1j})$ be a quasi-complementary basis. It follows from (11) that

$$(14) \overline{C_{\kappa,i1} u_{\kappa\lambda,\alpha} C_{\lambda,1j}} = C_{\lambda,j1} v_{\lambda\kappa,\alpha} C_{\kappa,1i},$$

where the elements of $(v_{\lambda\kappa,\alpha})$ form a basis of A'' and $v_{\lambda\kappa,\alpha} \in e_{\lambda}Ae_{\kappa}$.

Theorem 6. An algebra is symmetric if and only if its basic algebra is symmetric.

Proof. Suppose that A is symmetric. It follows from (11), (14) that for any element a in A

(15)
$$\sum_{\kappa,\lambda,\alpha} a^{n} u_{\kappa\lambda,\alpha} \times v_{\lambda\kappa,\alpha} = \sum_{\kappa,\lambda,\alpha} u_{\kappa\lambda,\alpha} \times v_{\lambda\kappa,\alpha} a^{n},$$

$$\sum_{\kappa,\lambda,\alpha} a^{n} v_{\lambda\kappa,\alpha} \times u_{\kappa\lambda,\alpha} = \sum_{\kappa,\lambda,\alpha} v_{\lambda\kappa,\alpha} \times u_{\kappa\lambda,\alpha} a^{n},$$

whence A^0 is symmetric. Conversely we assume that A^0 is symmetric. Let us take a basis $(u_{\kappa\lambda},_{\alpha})$ of A^0 as before and let $(u_{\kappa\lambda},_{\alpha})$, $(\bar{u}_{\kappa\lambda},_{\alpha})$ be quasi-complementary bases of A^0 . We have $\bar{u}_{\kappa\lambda},_{\alpha} = v_{\lambda\kappa},_{\alpha}$, where $v_{\lambda\kappa},_{\alpha} \in e_{\lambda}Ae_{\kappa}$. We then see that

$$(c_{\kappa,i_1}u_{\kappa\lambda,\alpha}c_{\lambda,i_j}), (c_{\lambda,j_1}v_{\lambda\kappa,\alpha}c_{\kappa,i_j})$$

satisfy the condition (11), that is, A is symmetric. Observe that for any element a in A

$$\sum_{\kappa,\lambda,\alpha,i,j} (c_{\mu,l_1} a^0 c_{\nu,l_m}) c_{\kappa,i_1} u_{\kappa\lambda,\alpha} c_{\lambda,l_j} \times c_{\lambda,j_1} v_{\lambda\kappa,\alpha} c_{\kappa,l_1}$$

$$= \sum_{\kappa,\lambda,\alpha,i,j} c_{\kappa,i_1} u_{\kappa\lambda,\alpha} c_{\lambda,l_j} \times c_{\lambda,j_1} v_{\lambda\kappa,\alpha} c_{\kappa,l_1} (c_{\mu,l_1} a^0 c_{\nu,l_m}),$$

$$\sum_{\kappa,\lambda,\alpha,i,j} (c_{\mu,l_1} a^0 c_{\nu,l_m}) c_{\lambda,j_1} v_{\lambda\kappa,\alpha} c_{\kappa,l_1} \times c_{\kappa,i_1} u_{\kappa\lambda,\alpha} c_{\lambda,l_j}$$

$$= \sum_{\kappa,\lambda,\alpha,i,j} c_{\lambda,j_1} v_{\lambda\kappa,\alpha} c_{\kappa,l_1} \times c_{\kappa,i_1} u_{\kappa\lambda,\alpha} c_{\lambda,l_j} (c_{\mu,l_1} a^0 c_{\nu,l_m}).$$

Let φ be a Nakayama automorphism of a Frobenius algebra A. If A^o is the basic algebra of A, then $(A^o)^{\varphi}=e^{\varphi}Ae^{\varphi}$ is also the basic algebra of A. Since there exists a regular element b such that $b^{-1}e^{\varphi}b=e$, the Nakayama automorphism $a\to b^{-1}a^{\varphi}b$ induces an automorphism of A^o .

Theorem 7. Let φ be a Nakayama automorphism of a Frobenius algebra A such that φ induces an automorphism φ_0 of the basic algebra A^0 . Then φ_0 is a Nakayama automorphism of A^0 . Conversely let φ_0 be a Nakayama automorphism of A^0 then φ_0 is extended to a Nakayama automorphism of A.

Proof. We take a Cartan basis (13) as a basis of A. Let $(\overline{c_{\kappa,i1}}u_{\kappa\lambda,\alpha}c_{\lambda,ij})$ be a dual basis. It follows from (7), (10) that

$$\overline{c_{\kappa,i_1}u_{\kappa\lambda,\alpha}c_{\lambda,i_j}} = c_{\lambda,j_1}^{\varphi}v_{\lambda\kappa,\alpha}c_{\kappa,i_i},$$

In case of algebras over an algebraically closed field this fact was proved in [10],
 [12].

where $(v_{\lambda\kappa,\alpha})$ is a basis of A'' such that $v_{\lambda\kappa,\alpha} \in e^{\varphi}_{\lambda} A e_{\kappa} \subset A''$, since $e^{\varphi}_{\lambda} = e e^{\varphi}_{\lambda} e \in A''$. We see from (7), (10) that

$$\sum_{\kappa,\lambda,\alpha} a^{\mu} u_{\kappa\lambda,\alpha} \times v_{\lambda\kappa,\alpha} = \sum_{\kappa,\lambda,\alpha} u_{\kappa\lambda,\alpha} \times v_{\lambda\kappa,\alpha} a^{\mu},$$

$$\sum_{\kappa,\lambda,\alpha} (a^{\mu})^{\varphi_{\mu}} v_{\lambda\kappa,\alpha} \times u_{\kappa\lambda,\alpha} = \sum_{\kappa,\lambda,\alpha} v_{\lambda\kappa,\alpha} \times u_{\kappa\lambda,\alpha} a^{\mu},$$

whence φ_0 is a Nakayama automorphism of A^0 determined by dual bases $(u_{\kappa\lambda},\alpha)$, $(v_{\lambda\kappa},\alpha)$. We shall prove the converse. Let $(u_{\kappa\lambda},\alpha)$, $(\bar{u}_{\kappa\lambda},\alpha)$ be dual bases of A^0 and φ_0 be a Nakayama automorphism determined by these bases. Here $\bar{u}_{\kappa\lambda},\alpha\in e^{\varphi_0}Ae_{\kappa}$. If we set $(\bar{u}_{\kappa\lambda},\alpha)=Q(u_{\kappa\lambda},\alpha)$ then $(u_{\kappa\lambda},\alpha)=(Q')^{-1}Q(u_{\kappa\lambda},\alpha)$. Since $e^{\varphi_0}_{\lambda}e_{\kappa,i}=e^{\varphi_0}_{\lambda}ee_{\kappa,i}=0$, $e_{\kappa,i}e^{\varphi_0}_{\lambda}=e_{\kappa,i}e^{\varphi_0}_{\lambda}=0$ for i>0,

(16)
$$1 = \sum_{\kappa=1}^{k} e_{\kappa}^{\varphi_{i}} + \sum_{\kappa=1}^{k} \sum_{k \geq 1} e_{\kappa, t}$$

is a decomposition of 1 into mutually orthogonal primitive idempotent elements. Let $Ae_{\kappa}^{\varphi_0} \cong Ae_{\pi(\kappa)}$, where π is a permutation of $(1, 2, \dots, k)$. Corresponding to the decomposition (16), we can construct a system of matric units $c_{\kappa, ij}^*$ such that

$$c_{\kappa,11}^* = e_{\kappa}^{\varphi_0}, \qquad c_{\kappa,it}^* = e_{\pi(\kappa),i} \qquad (i > 1)$$

and

$$c_{\kappa,ij}^* c_{\lambda,im}^* = \delta_{\kappa\lambda} \delta_{jl} c_{\kappa,im}^*$$
.

Thus we see that

$$(17) (c_{\kappa,\beta}, u_{\kappa\lambda,\alpha}c_{\lambda,\beta}), (c_{\lambda,\beta}^*, \bar{u}_{\kappa\lambda,\alpha}c_{\kappa,\beta})$$

satisfy the condition (7), that is, (17) are dual bases of A. If we set

$$(c_{\lambda_{-1}}^* i \bar{\iota}_{\kappa\lambda_{-\alpha}} c_{\kappa_{-1}}) = P(c_{\kappa_{-1}} u_{\kappa\lambda_{-\alpha}} c_{\lambda_{-1}})$$

then

$$((c_{\kappa,i_1}u_{\kappa\lambda,\alpha}c_{\lambda,1j})^{\varphi}) = (P')^{-1}P(c_{\kappa,i_1}u_{\kappa\lambda,\alpha}c_{\lambda,1j}),$$

where φ is a Nakayama automorphism of A determined by dual bases (17). If we arrange the elements of basis $(c_{\kappa,i_1}u_{\kappa\lambda,\alpha}c_{\lambda,i_j})$ so that first the elements $u_{\kappa\lambda,\alpha}$ of A" appear then we have

$$P = \begin{pmatrix} Q & 0 \\ 0 & * \end{pmatrix}$$

and hence

$$(P')^{-1}P = \begin{pmatrix} (Q')^{-1}Q & 0 \\ 0 & * \end{pmatrix}$$

This implies $u^{\varphi}_{\kappa\lambda,\alpha} = u^{\varphi_0}_{\kappa\lambda,\alpha}$ for every $u_{\kappa\lambda,\alpha}$.

4. We shall give a new proof for a characterization of a separable algebra obtained in [3].

Theorem 8. A Frobenius algebra is separable if and only if there exist dual bases (a_i) , (\bar{a}_i) such that $\sum a_i \bar{a}_i = 1$.

Proof. The set

$$c(A) = \{ \sum a_i x \bar{a}_i \mid x \in A \}$$

forms an ideal of the center C of A such that $c(A) \subset r(N)$, where N denotes as usual the radical of A [14, Theorem 1]. By our assumption $1 \in r(N)$, whence N = 0 and so A is semisimple. Since the condition $\sum a_i \bar{a}_i = 1$ is independent with the underlying field F, A is separable. Conversely let A be separable. Then A is a symmetric algebra. To prove our theorem, we may assume without restriction that A is simple. We consider first a division algebra \Re and let (u_i) , (\bar{u}_i) be dual bases of \Re . Since \Re is separable we have

$$c(\Re) = 3$$

where \mathfrak{F} is the center of \mathfrak{F}^2 . Hence $\sum u_i(b\bar{u}_i) = 1$ for dual bases (u_i) , $(b\bar{u}_i)$ with a suitable element $b \neq 0$ in \mathfrak{K} . Next let A be a total matric algebra F_m with matric units (e_{ij}) . We can take the bases (e_{ij}) , (e_{ji}) as quasi-complementary bases of F_m . For an element $a = \sum_{n,n} \alpha_{pq} e_{pq}$ in F_m , we have

$$\sum_{i,j} e_{ij} a e_{ji} = (\sum_{q} \alpha_{qq}) 1.$$

If we choose a regular element a such that $\sum \alpha_{qq} = 1$, then $\sum_{i,j} e_{ij}(ae_{ji}) = 1$ for dual bases (e_{ji}) , (ae_{ji}) . Then we can find easily dual bases (a_i) , (\bar{a}_i) of a simple separable algebra $A = \Re_m$ which satisfy $\sum a_i \bar{a}_i = 1$.

Corollary ([3]). An algebra with unit element is separable if and

¹⁾ Note that A_L is a Frobenius algebra for any extension field L of F.

²⁾ See [14], Theorem 3.

only if there exists a pair of bases (a_i) , (\bar{a}_i) such that

(20)
$$\sum_{i} aa_{i} \times \bar{a}_{i} = \sum_{i} a_{i} \times \bar{a}_{i} a, \qquad \sum_{i} a_{i} \bar{a}_{i} = 1.$$

By Hochschild [3], the conditions (20) are equivalent to vanishing of one-dimensional cohomology group of A for every two-sided A-module. Thus we have an alternative proof of the following

Theorem 9 ([2]). A necessary and sufficient condition for an algebra to be separable is that one-dimensional cohomology group of A for every two-sided A-module vanishes.

5. Let A be an algebra with unit element over a field F and let L be any extension field of F. We consider the algebra A_L over L. Let I be a left ideal of A. If we take a basis a_1, a_2, \dots, a_n of A such that I is spanned by $a_{t+1}, a_{t+2}, \dots, a_n$. Then I_L is a left ideal of A_L . In a similar manner as Theorem 14 [6], we have

$$(21) r^*(\mathfrak{l}_L) = (r(\mathfrak{l}))_L,$$

where $r^*(*)$ denotes the right annihilator in A_{r} . Similarly we have for a right ideal r of A

$$(22) l^*(\mathfrak{r}_L) = (l(\mathfrak{r}))_L.$$

Theorem 10. An algebra is a quasi-Frobenius algebra if and only if A_L is a quasi-Frobenius algebra.

Proof. If A is a quasi-Frobenius algebra then the basic algebra A^0 is a Frobenius algebra and hence $(A^0)_L$ is also a Frobenius algebra. Then the basic algebra $((A^0)_L)^0$ of $(A^0)_L$ is a Frobenius algebra. Since $((A^0)_L)^0$ is also the basic algebra of A_L , A_L must be a quasi-Frobenius algebra. Conversely suppose A_L is a quasi-Frobenius algebra. It follows from (21), (22) that for any left ideal I of A

$$I_L = l^*(r^*(I_L)) = l^*((r(I))_L) = (l(r(I))_L,$$

whence l = l(r(1)), and so A is a quasi-Frobenius algebra.

Let A be an algebra and let \mathfrak{A} be a two-sided ideal in A, we have $(A/\mathfrak{A})^{\shortparallel} = A^{\shortparallel}/\mathfrak{A}^{\shortparallel}$. This, combined with Theorem 2 [8], yields the following

Theorem 11. Let A be a quasi-Frobenius algebra and let $\mathfrak A$ be a two-sided ideal in A. The residue class algebra $A/\mathfrak A$ is a quasi-Frobenius algebra if and only if the two-sided ideal $l^{\mathfrak a}(\mathfrak A^{\mathfrak a})$ in $A^{\mathfrak a}$ is a principal ideal $A^{\mathfrak a}b^{\mathfrak a}=b^{\mathfrak a}A^{\mathfrak a}$ ($b^{\mathfrak a}\in A^{\mathfrak a}$).

By Lemma 2 [7], we have

Theorem 12. If every residue class algebra A/\mathfrak{A} is a quasi-Frobenius algebra then A is uni-serial, and conversely.

We see by the same way that Theorem 12 is also valid for a ring with minimum condition for left and right ideals as was shown in [4].

REFERENCES

[1] G. AZUMAYA, On almost symmetric algebras, Jap. J. Math., 19 (1948), 329 - 343. [2] G. HOCHSCHILD, On the cohomology groups of an associative algebra, Ann. of Math., **46** (1945), 58 - 67. , On the cohomology theory for associative algebras, Ann. of Math., **47** (1946), 568 - 579. [4] M. IKEDA, Some generalizations of quasi-Frobenius rings, Osaka Math. J., 3 (1951), 227 - 238. [5] T. NAKAYAMA, On Frobeniusean algebras. I, Ann. of Math., 40 (1939), 611 - 633. [6] ——, On Frobeniusean algebras. II, Ann. of Math., 42 (1941), 1-21. —, Note on uni-serial and generalized uni-serial rings, Proc. Imp. Acad. Tokyo, 16 (1940), 285 - 289. —, Supplementary remarks on Frobeniusean algebras. I, Proc. Jap. Acad., 25 (1949), 45 - 50. - and M. Ikeda, Supplementary remarks on Frobeniusean algebras. II, Osaka Math. J., 2 (1950), 7 - 12. [10] C. Nesbitt and W.M. Scott, Some remarks on algebras over an algebraically closed. field, Ann. of Math., 44 (1943), 534 - 553. [11] M. Osima, Some studies on Frobenius algebras, Jap. J. Math., 21 (1951), 179 - 190. -, A note on symmetric algebras, Proc. Jap. Acad., 28 (1952), 1 - 4. [13] , Notes on basic rings, Math. J. Okayama Univ., 2 (1953), 103 - 110. [14] G. Shimura, On a certain ideal of the center of a Frobeniusean algebra, Sci. Pap. Coll. Gen. Educ., Univ. Tokyo, 2 (1952), 117 - 124.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received January 10, 1954)