A CONSTRUCTION OF CLOSED SURFACES
OF NEGATIVE CURVATURE IN E*

ToMmiNosuke OTSUKI

Introduction. The author recently proved a theorem®” as follows.
Theorem.. Let

Amljxixj = 02): Aatj = Actji’

be a system of quadratic equations in x*. If
S (AsanAup — AvpAsi) X'y 5"y <L 0

o

for any %%, ¥, it has a non-irivial real solution in x‘, when N < n.
This gives the corollary® :
Corollary. Let

7,(x, X) = Amijxdxj; Ay = Ausis

be N quadratic forms of x*. If
2 (Auirv.Acejk - AmikAmm)xiijhyk < 0

for any two linearly independent vectors x = (x*), y = (3'), then
N>n—1

Proof. Let us suppose that N<(# — 2. By virtue of the theo-
rem above, there exists a vector ¥ = (x?) such that ¥ =0 and

Tu(x, %) = 0, a=1,2 -, N.
For a system of linear equations in »' such that
xiyi = 0,
Tm(x:y) = 09 a = 1, 2, ...... ,N

there exists a non-trivial solution y = (3*). For the %', 3%, we have

1) T.Otsuki, On the existence of solutions of a system of quadratic equations and
its geometrical application, Proc. Japan Acad., Vol. 29 (1953), pp. 99 - 100.

2) The summation convention of tensor analysis is used throughout.

3) The author was informed by Prof. S. S. Chern of this corollary.
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g(AuihAujk - Aw{kAasm) x‘ijh'yk‘ = 0,

this contradicts to the assumption.
As a geometrical application of the corollary, we have a theo-
rem as follows.

Theorem. An n-dimensional Riemann manifold with the property
that at least at a point, the sectional curvatures for all plane elements
are negalivé cannol be isometrically imbedded in an Euclidean space
of dimension 2n — 2.

Proof. Let V, be a Riemann manifold with the property stated
in the theorem. Assume that V, can be isometrically imbedded in
an Euclidean space of dimension # + N. Let the line element of V,
be given by ds® = g;(#)du'du’ in a coordinate neighborhood () of
the point. Let
or/, _ ory,

S =
Ien Ik a uh azlk

- rimhrlmjk + rtmkrlm»jh,

be the components of the Riemann-Christoffel tensor of V,, where
I'J, denote the Christoffel symbols of the second kind made by g,.

Let #, = A, dutdu', Ayy= Azp, a=1,2, .- , N, be the second
fundamental forms of V,. As is well known, we have the equations
szm: = _'% (Ad«ihijk - Anﬁﬂ:Acﬂjh)'

By the assumption, it follows that
Em: (AmihAka - Awikijh) xiij’byk < 0

for any two linearly independent tangent vectors x!, 3 to V, at the
point. Hence, by means of the corollary above, it must be N>#» — 1.

Furthermore, we have the theorem:

Theorem. A compact n-dimensional Riemann manifold with the
Droperty that at any point, the sectional curvatures for all plane ele-
ments are non-positive cannot be isometrically imbedded in an Euclidean
space of dimension 21 — 1°.

Pooof. Let V, be a Riemann manifold with the property stated
in the theorem. Let us suppose that V, can be isometrically im-
bedded in an Euclidean space of dimension 2z — 1. Let O be a fixed
point of the space and let P be a point of V, whose distance from

1) This is another proof of a special case of Theorem 1 in the paper cited in
Footnote 1), p. 95.
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O is maximum. We may consider that the second fundamental form
¥, = A,;;du'du’ is correspond to the normal direction 6}’ to V, at
P. Since dist (O, P) is maximum on V,, we have O-ZB-dP= 0,
dP-dP + OP-d*P<0 at P, hence e,,, d*P = —A,,,du*du’ < 0, where
a dot indicates the inner product and e,., is the unit vector of the
direction OP. Accordingly, ¥, is positive definite at P. We must
have the following relation

(A A — ArnA ) 395"y > 0

for any two linearly independent tangent vectors xf, »* to V, at P.
Hence we obtain from the assumption

n-1
Ig’ (AﬂmAﬂik — ApncAﬂjn,) xtylxy* < 0.

By virtue of the corollary, we must have N =# — 2 >#» — 1, which
is a contradiction.

It is well known that there exists no closed surface with non-
positive curvature at every point in a 3-dimensional Euclidean space.
According to the argument above, for any compact #-dimensional
Riemann manifold V, with the property that at any point, the
sectional curvatures for all plane elements are non-positive, the mini-
mum of the dimensions of the Euclidean spaces in which V, can be
isometrically imbedded is not smaller than 2n. Can such V, be always
isometrically imbedded in en Euclidean space of dimension 2r? As is
well known, any zn-dimensional Riemann manifold can be locally and
isometrically imbedded in an Euclidean space of dimension #(xz + 1)/2.
For n=2,3, we have n(nz +1)/2<2n. Especially, can a compact
2-dimensional V, everywhere with non positive curvature be always
isometrically imbedded in an Euclidean space of dimension 4?7 The
author don’t know any literatures on this question. In the present
paper, we shall show that there exist closed orientable surfaces every-
where with negative curvature in an FEuclidean space of dimension 4.
This will show that the question above is reasonable.

Let V. be a compact, orientable Riemann manifold of dimension
2. Let ds® = 0,0, + 0,0, be the line element of V,. Let K be the
Gaussian total curvature of V,. Then, as is well known, we have
the equation

1
2r Srﬁ_;le Ao = 2(V)
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where x(V.) denotes the Euler-Poincaré characteristic of V,. If we
put the genus of V, = p», we have

1
o |, Kou Ao = 20— 2).

Hence, if K< 0, it must be 1<p and if K0, K==0, it must be
2 < p. This shows that the only compact, orientable and flat Riemann
manifold of dimension 2 is a topological torus.

1. Tubiform surfaces in an Euclidean space of dimension 4.

Let % be a curve of class C’? in a 3-dimensional hyperplane of
an Euclidean space E of dimension 4. For any point Pe %, let
{P,e},i=1,2,3, 4, be the Frenet frame of %, that is

{dP = due,,
de, = o(u)du e,
(1) de, = —o(u)du e, +7(w)du e,
de, = —c(@)du e,
de, =0

where # denotes the parameter which represents the arc length
measured from a fixed point of ¥ to P(x#) on ¥, o(x) and =(z) de-
note the first and second curvatures of the curve respectively.

Making use of a positive function R(#), let us construct a tubi-
form surface M as

(2) P, 0) = Pwu) + R(u)(cos 0 e; + sin 8 e)®.

If we take a suitable R (%), M is a regular submanifold in E. Since
we have

P, = —?;% = e, + R(cos 0 e, + sin 0 e) — Rrcost e,
P, = _%]ai = R(— sinf e; + cos 0 e,

1) As for the differentiability assumptions we suppose that the class r of >4 and
the one of R(x) > 2.
2) P, P denote also their position vectors.



A CONSTRUCTION OF CLOSED SURFACES ETC. 99

E = P,-P, =1+ R+ R cos?0,
(3) F = PM'Pg = 0,
G = Pg‘Pg = R2

where the dotes indicate derivatives with respect to #, the line ele-
ment of M is written as

(4) ds = (1 + R* + R’:* cos®0)du® + R*dox
Let us put
W: = EG— F* = R*1 + R* + R*%*cos*0),

then, according to the well-known formula on the Gaussian total
curvature :

EEE -, F,. & F,—G
= _____._5_~_J: e 9 %
K= —qwr|F BBl i35 —w o W}’
G Gu Gﬂ
we have
1 o E, 2 G, }
K = __WT{_W Wt e W
1 1 . . 1 .
= W W EGB - T(W‘)GEB + W-Guu - _Z—(W“)u Gu .
Since we have E, = —2R**cosd sin 8, E, = —2Rr*(cos’ § — sin?8),
we get
2WK = — {GEEw —5 GE,Ey + GG E — 5 GE, + G,E)G.}
= 2R*t*(1 + R® + R®z* cos®6)(cost 8 — sin® 6)
+ 2R cos® § sin’ 9
— 2R*(RR + R)(1 + R* + R*z*cos® 0)
+ 2RR{RR(1 + RY) + R*RR + (2R*R+* + Rri)cos* 6}
= — 2R%{R + R*c*(1 + R}
+ 2R* {*(2 + 3R*) + RR<% — *RR} cos* 6 + 2R** cos' b,
that is

R'(l + R* + R*r*cos*0)* K
(5) = — 2R3 {R + R=*(1 + R¥}
+ 2R* {*(2 + 3RY) + RR<t — =*RR} cos* § + 2R*r* cos, f.
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When r =0 and R = 0, we have X = 0 by the equation above. Es-
pecially, if ¥ is a closed curve, it must be R = constant. Thus we
have the following theorem.

Theorem. Let ¥ be a differentiable closed Jordan curve of class
C" on a plane E* in E*. Let M be a tubiform surface which is the
locus of circles with constant radius, lying in the normal planes to E*
through all the points of € and whose centers are these poinis. Then
M has zero Gaussian tlotal curvature.

We can easily see that any locally Euclidean, closed, orientable
2-dimensional Riemann manifold can be isometrically imbedded in E°.

Now, since the right hand side of (5) is a quadratic form with
respect to cos?#, in order that K<{0 for 0<{ 0 < 2n, it is necessary
and sufficient that

(6) R+ R=1+R) >0,

and
— 2R*{R + Rc*(1 + RY)
+ 2R {*(2 + 3RY) + RRr# — °RR} + 2R
= — 2R3 + R*) R + 2R*z*(1 + 2R? + 2R Rr# + 2R*x* L 0,

that is

1 2 » L L) a s
(7) R > 17 R *R1 + 2R*) + r#R*R + *R%,
putting cos & = 0, 1 respectively in the right hand side of (5). Es-
pecially, in order that K< 0 for 080 2r, it is necessary and
sufficient to take only the signs of inequality in (6) and (7).

2. A constrution of surfaces of negative curvature.

The genus of a closed orientable surface everywhere with nega-
tive Gaussian total curvature > 2. Making use of argument stated
in the last section, we will construct such a surface of genus 7 in
E* as follows.

We take a fixed rectangular coordinate system in E* and let E®
be the 3-dimensional subspace spanned by the first three axises of
the coordinate system.

Firstly we shall constitute a figure composed of curves as indi-
cated in Fig. 1 which has the properties as follows:
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Fig. 1.

1) The part indicated by full lines lies in E® and is symmetric
with respect to the point O.
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2) The line segments I A, I D, the arc I/IF?L lie on a plane,
OB, is tangent to the arc 1B, at B, and / OID <=/2. LD, IB/;
I D], I,B” are obtained from I,D,, I, B, by rotating these through
angles of 2#/3, 4x/3 around the axis OA, respectively in E°.

3) The curve A,A;A, lies on a plane which contains the line
A,A; and is parallel to the fourth axis of the coordinate system.
The curve A, A;A, osculates of a suitable order with the straight line
A A at A and A..
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4) The curves B, B;B., E{EE;, B!’B;’B;,’ are related to the
straight lines B,B,, B{B;, B/'B,’ in the same manner as A4,4;4, is
related to the straight line A, A, as stated above.

5) The curve D D,D, lies in the 3-dimensional subspace which
contains the plane (D,D,I, 1) and is parallel to the fourth axis of the
coordinate system. The curve D,D,D, is spiral and osculates of a
suitable order with the lines I, D,, I.D, at D,, D, respectively. /OD, I,
is an obtuse angle.

6) The curves @, D!'DyD; have the same property as
D,D;D,.

7) These curves does not intersect each other save for the points
I, I,.

In the next place, we shall constitute surfaces %,, §. around the
points /,, I, in E® as indicated in Fig. 2 which have the properties
as follow :

1) They have everywhere negative curvature.

2) The sections of the surfaces by the normal planes in E* to
the curves at A,, B,, B/, B, C., D,, D/, D;”, i = 1, 2, are circles with
centers at these points. Along these circles the surfaces are approxi-
mately surfaces of revolution.

Lastly, we shall constitute tubiform surfaces everywhere with
negative curvature around the curves A,A,A,, B B,B., B!BB],
B/'B!Bl', D,D,D,, D|D,D;, D{D!’D; and I, I, by the manner stated
in Section 1.

We shall show in the following section that we can, in fact,
construct a surface as stated above.

3. Spiral curves and inequalities (6), (7).

We can join D,, D, by a suitable helix such that the straight lines
I.D, I,D, are tangent to it at D,, D). respectively. While the torsion
of a helix is a constant 4= 0 and the one of a straight line is zero-
Accordingly, making use of the curve, the metric of tubiform sur-
face constituted as in Sections 1, 2 around it becomes discontinuous at
each point of the circles corresponding to D,, D, by (4). Hence it is
necessary {0 compensate it so that the continuity of metric and also
Gaussian total curvature is preserved at the joints.

Let us consider a spiral curve ¥ in E* as follows:
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. ]
(8) x=aop(@)cosd, y=aop(®)sing, z=atan 351/p—ﬁ+,,rsdg,
0

where the dash denotes the derivative with respect to 4, 3 = /0D, 1,
—n/2, a>0, atan B X(m/p* + p'2d0 = h =D, D, and p(0) is a function
of class C"** as follows: For small positive constants ¢, 6,

e(0) = 0,
: 1+ ¢ 1 5
(9) p(0) = cosb for —7n<0<0, 2n<0<7n,
e(0) =1 for 8, L0L2n—0,.

By the method of construction of the figure, we can take any
positive angle near 0 for A.
Let us put
MaXogo<ar? P07 + 0/ (6)F = M.

Then, for the length 2/ of the subarc (0<{0<2xn) of ¥, we have
easily

(10) ! < raMsech,
h = lsinp < naMtanb.
The torsion of the curve ¥ is given by the equation
x/ yl zl
r = xl/ yll ZH /{(y/zll — yllz!)g + (zlxll — lexl)2 + (x'yll — xlly’)?}
x/ll y/ll Z”I

as is well known. Putting = = ¢ (6, 8)/a, ¢(0, B) is of class C' with
respect to 6, 8 and especially analytic with respect to 3. Further-
more it has the properties:

e, B =0 for 6<0, 6 >2mr,
(0, B) = cosB sinB for 0, <KL 0L2n — 6,.

Since ¢ (8, 0) = 0, there exists a positive constant N, for 3, > 0 such
that

{11) le@, B)| < N,B for 0<R3LA,.

On the other hand, for the arclength x of the curve ¥ we have
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du = a secBvp* + o'* do,
hence
dr cos 3 1 9¢ (g, B)

= T =

du @ Ve+ o't 80

Accordingly, there exists a positive constant N, such that

12) el DB < DE for 0B By

Now, by means of (6), (7), it is sufficient to verify that we can
choose a function R(z) > 0 such that

(6) R >0,
(7) @+ R*HR > *R(1 + 2R + <t R*R + *R3
for 0<Cu <4, R©0) =0 and R(J) is a suitably small positive number.

Furthermore, since we have R(x) > 0 for 0 < # </, making use of
(11), (12), it is more sufficient to replace (7) by the inequality

N.:‘ﬁ N B N()N B

13) R > ‘R +

R + 2Ry +

+—RR.

Now, putting R = b, + b,e%, by, b, > 0, we shall verify that we
can choose the constants &,, b, such that R satisfies the condition
(13) and the requirements stated above are fulfilled.

Substituting R = &, + b,2%, R = 2b,u, R = 2b, in (13), we get

N" by + b, 2>y (1 + 8b%2*) + *"Bi by + b ud)

+ — 2NN 2NN, B (b, + b,u°)2b,u.

2b, >

By means of (10), it is sufficient for our purpose if we can determine
b,, b, so that

N(,B N‘

: s— by + b,u) (1 + 8biw’) +

27:N.,N1MB sec f8
ag

20, >

(Do + b,u%)?

We write the inequality above as

B, — Bu:— B,u* — Bu > 0

where
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N N.8t 2= N,N, M & sec B

B, = 2, — b, — B — - B3,

JBL _ N:;i?” b, + {3I\f43’ bﬂ‘+4(21\2“;192 + nJV"NII:zlzﬁ’gsecﬁ)bl}’
14) B - {31\24454 b+ Z(QVE;,Qi + nN.,N,I:zl?ﬁﬁseCB )bl}bf

5 - N,

To simplify the evaluation, we shall make the function
f(v) = B,— Byv — B,v* — B,»®
has no extreme value. The condition is evidently
B —3B;B; < 0.

If we can do so, f(v) is monotone decreasing, hence f(v) > 0 for
0 v ® when f(I®) > 0.

Now, from (14) we have
Ng gt 3N} 3 24N, !
at {— a’ &

322 - 3B1B3 = b(]bl
+ 4(4N, + =N, M sec B)%i}bf.
Since b,, N, 80, if

3N:E | 24N}8*
- a at

(15) b.b, + 44N, + 2N, M sec 3)*b} < 0,
f(v) becomes a monotone decreasing function.

On the other hand, from the circumstance which is described in
Sections 1, 2 we may put 8, = =/3, that is sec 3< 2. Inequality (15)
is satisfied by ,, b, such that

T4 02
LN, + 2N, Myb; < S8E
‘(16) 4 22 450
2R by < 2E 4+ 2N My,

-of which the first gives

V'3 NiB
an b < I@N, ¥ zN,0Da
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If f(v) is monotone decreasing, f(/®) >0 holds good when
fdn*a*M) > 0 since ! <zaMsecf < 2naM. The last inequality is
fulfilled furthermore if we have

2 il 4 1 2
25, — sz b, — ern B 4M.N M3 ME g
NEg® 3Nig N; 8 a N, N, M5 1 .
— { Z b, + Tbo + 8( @ + —ag_—)b)b"b‘j 2raM)

Nig ONiB  =N.N,ME\, ] .
— R b+ (S FRRE o bt eray

_ M'm—b“(ZTaM)“ > 0.

Thus, we see that the conditions (6’), (7) are satisfied by R =
b, + b,u* such that d,, b, satisfy the inequalities (16), (17), (18).

For a constant b, satisfying (17), a sufficiently small positive
constant b, satisfies (16). If we put b, =0 in (18), we have

2b, — 47*N; M*B3*b, — 64rn'a®* M*N, 5 (2N, + = N, M) b}

— 64 NI MGl > 25, [1 — 2 N2 M &

3N 3Nr) -
~ TN T N N — T Ny N M |,

making use of (17).

This relation shows that the left hand side of (18) in which we
put b, = 0 is positive for sufficiently small 3 > 0. In fact, the quantity
inclosed in the brackets in the right hand side of the inequality
above is rewritten as

1 22N, + =N, M)
+ 9N,

- 9N, {1 + 3@N, 1 NI CENeM? ‘9)}
Hence, this is positive for # such that
2N, + =N, M ~ ON, '
(19) b < 5[ 3TN MY ((1 + SN+ <NM))" 1)5

In conclusion, if we take B satisfying (19), in the next place b, satis-
fying (17) and lastly sufficiently small b, so that (16), (18) are fulfilled,
then R(z) = b, + b,u* satisfies (6), (7).
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On the other hand, from the manner in which the surface is
constructed, it may be desirable that R(/) is small. Let 7, m be
given positive numbers. We may -here require the following condi-
tions for R(x):

Ry <7, Rl < m.
They are sufficiently satisfied if we have

b, + 4@ M} < 7,
draMb* < m.
Hence the conditions above are satisfied by b,, b, such that
. m Vr
b, < min( 4207 eadd )"
b, < r— 47°a* M*b?

which clearly do not contradict to the circumstance under which
b,, b, have been determined so that (16), (17), (18), (19) hold good.
Now, since @ does not appear in (19), we may condier in our con-
struction of the surface that

OD, = h = Ising = atanﬁgy’m'Tda
can take any positive value.

Finally we call attention te the fact that when we take a curve
D,D, D, in Fig. 1 such that it is represented as (8), the direction of
the second vector of the Frenet frame at D, is the one of the fourth
axis of the coordinate system, which can be easily verified. This
shows that the surfaces @,, §. and the tubiform surface constructed
as above around the curve D,D,D, can be joined smoothly with one .
another.

From the argument above we obtain the theorem:

Theorem. There exist closed surfaces everywhere with negative
curvature and of genus 7 in Euclidean space of dimension 4.
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