SOME THEOREMS ON A SYSTEM OF MATRICES AND

A GEOMETRICAL APPLICATION

TOMINOSUKE ŌTSUKI

In this paper, we shall prove some theorems on a system of (n, m)-matrices and apply them to the proof of a theorem on isometrical imbedding of Riemann spaces in Euclidean spaces.

1. Let $\mathfrak{M}_{n,m}$ be the set of (n,m)-matrices. We define a multiplication as follows:

$$\mathfrak{M}_{n,m} \ni M_1$$
, M_2 , $M_1 \circ M_2 = M_1 M_2' (\in \mathfrak{M}_{n,n})$,

where M_2' denotes the transposed matrix of M_2 . Let us denote the full linear group and the orthogonal group in n variables by L(n) and O(n) respectively. We will say that M_1 and M_2 is commutative if $M_1 \circ M_2 = M_2 \circ M_1$.

Lemma 1. If M_1 and M_2 in $\mathfrak{M}_{n,m}$ is commutative, then AM_1B and AM_2B is also commutative for any $A \in L(n)$, $B \in O(n)$.

The proof is evident from the definition of the multiplication of M_1 and M_2 .

Let $\varphi_{A,B}: \mathfrak{M}_{n,m} \to \mathfrak{M}_{n,m}$ $(A \in L(n), B \in L(m))$ be a linear transformation of $\mathfrak{M}_{n,m}$ onto itself such that $\varphi_{A,B}(M) = AMB, M \in \mathfrak{M}_{n,m}$. Then we have a corollary.

Corollary. $\varphi_{A,B}$ $(A \in L(n), B \in O(m))$ is a linear homeomorphism on $\mathfrak{M}_{n,m}$ preserving the commutativity with respect to the multiplication $M_1 \circ M_2$.

Now, we will say that a linear subspace \mathfrak{M} of $\mathfrak{M}_{n,m}$ is an α -system if any two elements of \mathfrak{M} are commutative. Our main theorem is as follows:

Theorem 1. If \Re is an α -system in $\Re_{n,m}$, then dim $\Re \leqslant m$.

Proof. We shall prove inductively the theorem. In order to prove the theorem, it is sufficient that if we can prove the following propositions depending on positive integers n, m.

 $(q_{n,m})$: Let \Re be any α -system in $\mathfrak{M}_{n,m}$. If $M_1, M_2, \dots, M_n \in \Re$, $h \leq m$, are linearly independent, then

$$rankigg(egin{array}{c} M_1 \ M_2 \ dots \ M_h \ \end{pmatrix} \geqslant h,$$
 on of any assistance in \mathfrak{M} of $m=1,2,3,\cdots$.

 $(p_{n,m})$: The dimension of any α -system in $\mathfrak{M}_{n,m} \leq m$.

Since $\mathfrak{M}_{1,m}$ is an m-dimensional vector space and our product of M_1 , $M_2 \in \mathfrak{M}_{1,m}$ is the inner product of M_1 , M_2 , the propositions $(q_{1,m})$, $(p_{1,m})$, $m=1,2,3,\cdots$ are evident. We suppose that the propositions $(q_{j,m})$, $(p_{j,m})$ $j=1,2,\cdots$, n-1, $m=1,2,\cdots$ are true.

Since $\mathfrak{M}_{n,1}$ is an *n*-dimensional vector space, it is evident that the propositions $(q_{n,1})$, $(p_{n,1})$ hold good.

Now, we suppose that the propositions $(q_{n,1}), (p_{n,1}), \dots, (p_{n,m-1}), (q_{n,m})$ have already been proved.

Proof of Proposition $(p_{n,m})$. Let \mathfrak{N} be an α -system in $\mathfrak{M}_{n,m}$. Let $M_1, M_2, \dots, M_m, M_{m+1}$ be a set of elements of \mathfrak{N} such that any m elements of them are linearly independent. We shall prove that $M_1, M_2, \dots, M_m, M_{m+1}$ are linearly dependent.

Taking any transformation

$$N_i = \sum_{j=1}^{m+1} c_{ij} M_j$$
, $i = 1, 2, \dots, m+1$,

where $|c_{ij}| \neq 0$, we may investigate the linear dependency of N_1 , \cdots , N_m , N_{m+1} instead of the one of M_1 , M_2 , \cdots , M_{m+1} . Accordingly, we may consider that M_{m+1} is of the form $\binom{0 \dots 0}{*}$. The relation $M_i \circ M_{m+1} = M_{m+1} \circ M_i$ $(i = 1, 2, \dots, m)$ implies that if we consider each row of any element of $\mathfrak{M}_{n,m}$ indicates a vector in an m-dimensional Euclidean vector space, then the first rows of M_1 ,, M_m are orthogonal to each rows of M_{m+1} . Since $M_{m+1} \neq 0$, the first rows of M_1, \dots, M_m lie in an (m-1)-dimensional linear subspace in the m-dimensianal Euclidean vector space. Hence, we may also put the first row of M_m is the zero vector. The first rows of M_1 ,, M_{m-1} are orthogonal to each rows of M_m , M_{m+1} by the same reason above. By virtue of $(q_{n,m})$, rang $\binom{M_m}{M_{m+1}} \gg 2$. Accordingly, the first rows of M_1, \dots, M_{m-1} lie in an (m-2)-dimensional linear subspace in the (m-1)-dimensional Euclidean vector space above. Hence, we may also put the first row of M_{m-1} is the zero vector. By virtue of $(q_{n,m})$, we can repeat this process, hence we may consider the first rows of M_1, \dots, M_{m+1} are the zero vector. If we perform inductively the same consideration with respect to n, we see that we may put $M_{m+1} = 0$. This contradicts to $M_{m+1} \neq 0$. The proof of $(p_{n,m})$ is complete.

Proof of Proposition $(q_{n, m+1})$. Let \mathfrak{N} be any α -system in $\mathfrak{M}_{n, m+1}$. Let us suppose that $M_1, \dots, M_h \in \mathfrak{N}, h \leq m+1$, are linearly independent and

$$rank \left(egin{array}{c} M_1 \ dots \ M_h \end{array}
ight) = r < h.$$

Then, if we take a suitable $B \in O(m+1)$ and we transform \Re to $\varphi_{1,B}(\Re) = \Re B$, then we may put $M_1B = (N_1 \ 0)$ where $N_1 \in \Re_{n,r}$. Hence we may put $M_1 = (N_1 \ 0)$ from the beginning. Then, N_1, \dots, N_k belong to an α -system in $\Re_{n,r}$. Since $r \leqslant m$, the proposition $(p_{n,r})$ holds good by induction and the proposition $(p_{n,m})$ which has been proved above. Accordingly, it follows that N_1, N_2, \dots, N_k are linearly dependent. Hence M_1, M_2, \dots, M_k must be also linearly dependent. This contradicts to the assumption above. Thus Proposition $(q_{n,m+1})$ holds good. The proof of Theorem 1 is complete.

2. Let $\mathfrak B$ be a vector space over the real field $\mathfrak f$. An exterior form of order 2 on $\mathfrak B$ is defined by a form $\sum\limits_{i,j=1}^r \alpha_{ij} \ u_i \wedge u_j$, where $\alpha_{ij} = -\alpha_{ji} \in \mathfrak B$ and u_i are real variables. We define $\sum \alpha_{ij} \ u_i \wedge u_j = \sum \beta_{ij} \ v_i \wedge v_j$ if $u_i = \sum a_{ik} v_k$, $a_{ik} \in \mathfrak f$, $|a_{ik}| \neq 0$ and $\sum\limits_{i,j} \alpha_{ij} \ a_{ik} a_{jk} = \beta_{kk}$, $h, k = 1, 2, \dots, r$. Then, we have a lemma as a simple generalization of the ordinary one as follows.

Lemma 2. Let k be the minimum of numbers of variables such that an exterior form $\sum_{i,j=1}^{r} \alpha_{ij} \ u_i \wedge u_j$ of order 2 can be expressed by them, then r-k is the dimension of the set of solutions of the system of linear equations over $\mathfrak B$ with respect to real variables x_1, \dots, x_r ; $\sum_{j=1}^{r} \alpha_{ij} \ x_j = 0, \ i = 1, 2, \dots, r.$

We can easily prove the lemma in the same manner as the ordinary case in which $\mathfrak B$ is $\mathfrak f$.

Now let $\mathfrak{M} \subset \mathfrak{M}_{n,m}$ be a linear subspace. Let M_1, \dots, M_r be a base of \mathfrak{M} and put $N_{ij} = M_i \circ M_j - M_j \circ M_i$ ($\in \mathfrak{M}_{n,n}$). We construct

an exterior form of the vector space $\mathfrak{M}_{n,n}$ over the real field \mathfrak{k} such that

$$\theta(\mathfrak{M}, u) = \sum N_{ij} u_i \wedge u_j$$

This form is dependent on $\mathfrak M$ but independent on the choice of bases. For, we have

$$(\sum x_i M_i) \circ (\sum y_j M_j) - (\sum y_i M_i) \circ (\sum x_j M_j) = \frac{1}{2} \sum N_{ij} (x_i y_j - x_j y_i).$$

We call the exterior form $\Phi(\mathfrak{M}, u)$ the exterior form associated with \mathfrak{M} .

Now let $(x_{i(\lambda)})$, $\lambda = k + 1, \dots, r$ be a base of the system of solutions of the following linear equations in r variables

$$\sum N_{ij}x_j = 0, \qquad i = 1, 2, \dots, r.$$

Then, $K_{\lambda} = \sum x_{i(\lambda)} M_i$, $\lambda = k+1, \dots, r$, are linearly independent. For otherwise, there exist constants c_{λ} , $\lambda = k+1, \dots, r$, such that they are not all zero and $\sum c_{\lambda} K_{\lambda} = 0$. This implies $\sum c_{\lambda} x_{i(\lambda)} M_i = 0$. Since M_1, \dots, M_r are linearly independent, it follows $\sum_{\lambda} c_{\lambda} x_{i(\lambda)} = 0$. This contradicts to the fact that $(x_{i(\lambda)})$, $\lambda = k+1, \dots, r$ are linearly independent.

On the other hand, we have

$$K_{\lambda} \circ K_{\mu} - K_{\mu} \circ K_{\lambda} = (\sum x_{i(\lambda)} M_i) \circ (\sum x_{j(\mu)} M_j) - (\sum x_{i(\mu)} M_i) \circ (\sum x_{j(\lambda)} M_i)$$
$$= N_{i,i} x_{i(\lambda)} x_{j(\mu)} = 0.$$

Hence, K_{k+1} ,, K_r become a base of an α -system in \mathfrak{M} . We denote the α -system by α -(\mathfrak{M}) and call it the α -system associated with \mathfrak{M} . We prove the appropriateness of this notation.

Let $\overline{M}_i = \sum M_j a_{ji}$, $|a_{ji}| \neq 0$, be another base of \mathfrak{M} . Let us put $\overline{N}_{ij} = \overline{M}_i \circ \overline{M}_j - \overline{M}_j \circ \overline{M}_i = N_{kk} a_{kl} a_{kj}$. Then, the system of linear equations $\sum \overline{N}_{ij} \overline{x}_j = 0$, $i = 1, 2, \dots, r$, becomes $\sum\limits_{k,j} N_{ik} a_{kj} \overline{x}_j = 0$, $i = 1, 2, \dots, r$. Accordingly, we may put $x_{i(\lambda)} = \sum\limits_j a_{ij} \overline{x}_{j(\lambda)}$. It follows that $K_{\lambda} = \sum x_{i(\lambda)} M_i = \sum a_{ij} \overline{x}_{j(\lambda)} M_j = \sum \overline{x}_{j(\lambda)} \overline{M}_j = \overline{K}_{\lambda}$. This shows that the above stated α -system α -(\mathfrak{M}) is independent of the choice of base of \mathfrak{M} .

Thus, by means of Theorem 1, Lemma 2 and the argument above, we obtain a theorem as follows.

Theorem 2. Let \mathfrak{M} be a r-dimensional linear subspace in $\mathfrak{M}_{n,m}$ and k be the minimum of numbers of variables such that $\mathfrak{O}(\mathfrak{M})$ can be expressed by them. Then dim α - $(\mathfrak{M}) = r - k \leq m$.

3. In this section, we shall apply Theorem 3 to a geometrical problem.

Let V_n be a Riemann manifold of dimension n whose line element is given by

$$ds^2 = \sum_{i=1}^n g_{ij}(x) dx_i dx_j$$

in local coordinates x_1, x_2, \dots, x_n . Let us put

$$\sum g_{ij}(x) dx_i dx_j = \sum_{i=1}^n \omega_i(x, dx) \omega_i(x, dx),$$

$$d\omega_i = \sum \omega_j \wedge \omega_{ji},$$

$$d\omega_{ij} = \sum \omega_{ik} \wedge \omega_{kj} + \Omega_{ij},$$

where Q_{ij} are the curvature forms of V_n as is well known.

Let k(p) be the minimum number of linear differential forms in terms of which the curvature forms at $p \in V_n$ can be expressed, and let $k = \max_{p \in V_n} k(p) = k(V_n)$. According to S. S. Chern and N. H. Kuiper, n - k(p) is called the *index of nullity at p*.

Theorem 3. A compact Riemann manifold V_n of dimension n can not be isometrically imbedded in an Euclidean space of dimension $2n - k(V_n) - 1$.

Proof. We suppose that such an imbedding of V_n in E^{2n-k-1} exists. Let $(p, e_1, \dots, e_n, e_{n+1}, \dots, e_{2n-k-1})$ be a field of orthonormal frames of E^{2n-k-1} defined on a coordinate neighborhood of V_n such that e_1, e_2, \dots, e_n are tangent vectors at p to V_n . Then we have

$$dp = \sum_{i} \omega_{i} e_{i}, \quad de_{i} = \sum_{j} \omega_{ij} e_{j} + \sum_{\alpha} \omega_{i\alpha} e_{\alpha},$$

$$de_{\alpha} = \sum_{i} \omega_{\alpha i} e_{i} + \sum_{\beta} \omega_{\alpha \beta} e_{\beta},$$

$$i, j = 1, 2, \dots, n; \quad \alpha, \beta = n + 1, \dots, 2n - k - 1$$

and $ds^2 = dp \, dp = \sum \omega_i \omega_i$. These relations give

$$0 = \sum_i d\omega_i e_i - \sum_i \omega_i \wedge de_i = \sum_i (d\omega_i - \sum_k \omega_k \wedge \omega_{kl}) e_i - \sum_k \omega_k \wedge \omega_{k\alpha} e_\alpha,$$
 that is,

$$d\omega_i = \sum_k \omega_k \wedge \omega_{ki}, \qquad \sum_k \omega_k \wedge \omega_{ka} = 0.$$

The second equation implies

$$\omega_{in+\lambda} = \sum A_{\lambda ij} \omega_j$$
, $A_{\lambda ij} = A_{\lambda ji}$, $\lambda = 1, 2, \dots, n-k-1$.

The quadratic differential forms $\Phi_{\lambda} = \sum A_{\lambda ij} \omega_i \omega_j$, $\lambda = 1, 2, \dots, n-k-1$, are the so-called second fundamental forms of V_n . We have analogously

$$0 = \sum d \omega_{ij} e_j + \sum d \omega_{i\alpha} e_{\alpha} - \sum \omega_{ij} \wedge de_j - \sum \omega_{i\alpha} \wedge de_{\alpha}$$

$$= \sum_{j} (d \omega_{ij} - \sum_{k} \omega_{ik} \wedge \omega_{kj} - \sum_{\alpha} \omega_{i\alpha} \wedge \omega_{\alpha j}) e_j$$

$$+ \sum_{k} (d \omega_{i\alpha} - \sum_{k} \omega_{ik} \wedge \omega_{k\alpha} - \sum_{k} \omega_{i\beta} \wedge \omega_{\beta \alpha}) e_{\alpha}.$$

It follows that

$$Q_{ij} = d\omega_{ij} - \sum \omega_{ik} \wedge \omega_{kj} = \sum \omega_{i\alpha} \wedge \omega_{\alpha j} = -\sum A_{\lambda it} A_{\lambda jh} \omega_{t} \wedge \omega_{h}$$

Accordingly, k(p) is the number of linearly independent forms of

$$\sum_{h} \left(A_{\lambda it} A_{\lambda jh} - A_{\lambda jt} A_{\lambda ih} \right) \omega_{h}$$
 .

Let M_h be the (n, n-k-1)-matrix whose (i, λ) -element is $A_{\lambda lh}$. Then, $\sum (A_{\lambda lt}A_{\lambda jh}-A_{\lambda jt}A_{\lambda lh})$ is (i, j)-element of $M_t \circ M_h-M_h \circ M_t=N_{th}$. Hence n-k(p) is the dimension of solutions (y_1, \dots, y_n) of linear equations

$$\sum_{k} N_{th} y_{th} = 0. t = 1, 2, \dots, n.$$

On the other hand, M_1, \dots, M_n are linearly independent at a point p, since V_n is compact and $V_n \subset E^{2n-k-1}$. By Theorem 3, we must have, at the point p, $n-k(p) \leq n-k-1$. This contradicts to the definition of k(p). The proof is complete.

References

- [1] S.S. CHERN, Differential geometry of fibre bundles, 1951.
- [2] and N. H. Kuper, Some theorems on the isometric imbedding of compact Riemann manifolds in Euclidean space, Annals of Math., Vol. 56, 1952, pp. 422-430.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVRESITY

(Received August 2, 1953)