SOME THEOREMS ON A SYSTEM OF MATRICES
AND
A GEOMETRICAL APPLICATION

Tominosuke OTSUKI

In this paper, we shall prove some theorems on a system of
(n, m)-matrices' and apply them to the proof of a theorem on iso-
metrical imbedding of Riemann spaces in Euclidean spaces.

1. Let M, .. be the set of (n, 7m)-matrices. We define a multi-
plication as follows:

gﬁn.m E] M1l M-.a MOMJ = MM(E m‘}n,n)’

where M, denotes the transposed matrix of M,. Let us denote the
full linear group and the orthogonal group in # variables by L(n) and
O(n) respectively. We will say that M, and M, is commutative if
MM, = M,cM,.

Lemma 1. If M, and M, in M, ., is commutative, then AM,B
and AM,B is also commutative for any A€ L(n), B€ O (n).

The proof is evident from the definition of the multiplication of
M, and M..

Let ¢ ,5: D, n—> M, . (A€ Ln), Be L(m)) be a linear transfor-
mation of I, , onto itself such that ¢, (M) = AMB, MeM, ..
Then we have a corollary.

Corollary. ¢, , (A€ Ln), Be O(m)) is a linear homeomorphism
on M, ., presérving the commutativity with respect to the multiplication
M- M,.

Now, we will say that a linear subspace M of ™M, , is an a-
system if any two elements of ¢ are commutative. Our main theo-
rem is as follows:

Theorem 1. If N is an a-system in WM, .., then dim N m.

Proof. We shall prove inductively the theorem. In order to prove
the theorem, it is sufficient that if we can prove the following pro-
positions depending on positive integers , m.

(@n.m): Let N be any a-system in I, ... If M,, M,, .- , M, e,
h < m, are linearly independent, then
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M, (om =1,2,3, ),

(On,n): The dimension of any a-system in M, < m.

Since M, ,, is an m-dimensional vector space and our product of
M,, M,e I, , is the inner product of M,, M,, the propositions (g,,n)
Dim)s m=1,2,3, -+ are evident. We suppose that the propositions
@G5.m)s Dym) T=1,2, - ,n—1,m=1,2, - are true.

Since M, ,, is an n-dimensional vector space, it is evident that the
propositions (g,,,), (., hold good.

Now, we suppose that the propositions (¢.,,), (£..)), =+ s (Duymar)s
(@».n) have already been proved.

Proof of Proposition (p,, ). Let N be an a-system in M, . Let
M, M,, - s M,, M,,., be a set of elements of N such that any m
elements of them are linearly independent. We shall prove that M,
M,, - ., M,,M,,, are linearly dependent.

Taking any transformation

m+1l

Ns:ECUMJ, z'=1,2, ...... ’m_l_]_,
J=1

where | ¢; | &0, we may investigate the linear dependency of N,,
------ ,N,,N,. instead of the one of M,, M,, ------, M,.,. Accord-

ingly, we may consider that M,,, is of the form (0 * 0). The

relation M,eM,,, =M, ,, M, (i=1, 2, ------ , m) implies that if we
consider each row of any element of 9, , indicates a vector in an
m-dimensional Euclidean vector space, then the first rows of M,
------ , M, are orthogonal to each rows of M,,,. Since M,,, =0, the
first rows of M,, .- , M, lie in an (m — 1)-dimensional linear sub-
space in the m-dimensianal Euclidean vector space. Hence, we may
also put the first row of M, is the zero vector. The first rows of
M, - » M, _, are orthogonal to each rows of M,, M,,, by the same
reason above. By virtue of (g,,.), rang (%"H) > 2. Accordingly,
the first rows of M, , M, _, lie in an (m — 2)-dimensional linear
subspace in the (m — 1)-dimensional Euclidean vector space above.

Hence, we may also put the first row of M, _, is the zero vector.
By virtue of (¢,,.), we can repeat this process, hence we may con-
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sider the first rows of M,, -~.--, M,,, are the zero vector. If we
perform inductively the same consideration with respect to n, we
see that we may put M, ., = 0. This contradicts to M,,,, &=0. The
proof of (p, .) is complete.

Proof of Proposition (g, m+). Let N be any a-system in M, ...
Let us suppose that M, ------ yM, €N, h<{m + 1, are linearly inde-
pendent and

M A}
rank ) =r<h
M, /

Then, if we take a suitable Be O(m + 1) and we transform N to
¢, sN) =N B, then we may put M,B= IV, 0) where N,e M, ,. Hence
we may put M, = (N, 0) from the beginning. Then, N,, ------ ,» IV, be-
long to an a-system in MM, .. Since r<m, the proposition (p,.,)
holds good by induction and the proposition (p,,,) which has been
proved above. Accordingly, it follows that N,, N,, -« , N, are linear-
ly dependent. Hence M,, M., ------, M, must be also linearly depen-
dent. This contradicts to the assumption above. Thus Proposition
(g, ms1) holds good. The proof of Theorem 1 is complete.

2. Let B be a vector space over the real field f. An exterior

.
form of order 2 on ¥ is defined by a form >l e #, A u;, where
i.J=1

a;= —a, €V and u, are real variables. We define Sa,; u. Au, =

B v Ay IEou, =S agr, a, €f, .' Qi ! 0 and >« i@y = By,
i.J

hhk=1,2,- ,7. Then, we have a lemma as a simple generaliza-

tion of the ordinary one as follows.

Lemma 2. Let k be the minimum of numbers of variables such

that an exterior form > a;; u,N\u; of order 2 can be expressed by
i, =1

them, then r — k is the dimension of the set of solutions of the system
of linear equations over ¥ with respect to real variables x,, -----
Eaux,=0,i=1,2, """ ,f.
=1

We can easily prove the lemma in the same manner as the
ordinary case in which 9B is f.

Now let Mc M, ,, be a linear subspace. Let M, .- .M. be a
base of M and put N;; = M,oM; — M,e M, (e M, ,). We construct

3 r?
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an exterior form of the vector space M, , over the real field t such
that

O, u) = SN,y u A\ uy.

This form is dependent on I but independent on the choice of bases.
For, we have

1
M) o (Zy;M) — (S yM)e S x;M) = 7 SIN (%35 — %,

We call the exterior form o (M, u) the exterior form associated with
am.

Now let (x), A=k + 1, - .7 be a base of the system of
solutions of the following linear equations in 7 variables

E-NinJ = 0, Z.:]_, 2' ...... ,7_

Then, K, = D %o,M, 2=k + 1, - , 7, are linearly independent.
For otherwise, there exist constants ¢,, 2 =% + 1, «---.- , 7, such that
they are not all zero and 3¢, K, = 0. This implies 3 %M, = 0.
Since M,, ---++-, M, are linearly independent, it follows %c,\x,m =0.
This contradicts to the fact that (v,,), A=%2+1, ----- , 7 are linearly
independent.

On the other hand, we have

KoK, — KoK, = S x,M)o (X %i0M,) — (30 Xy M) o (35 %50, M)
= Ny%n¥w = 0.

Hence, K., - , K, become a base of an a-system in 9. We de-
note the a-system by «-(M) and call it the a-system associated with
M. We prove the appropriateness of this notation.

Let M, = SM,a,, | a, | &0, be another base of M. Let us put
N,y = M,> M, — M;>M, = N,,a,a,;. Then, the system of linear equa-
tions IN,;%; =0,7=1,2, -+ , 7, becomes EMtah,x, =0,:i=12,

------ , 7. Accordingly, we may put ¥, = Zatjxj(lt) It follows that

= XM, = 3 ay% 0 M; = 20 %M, = K,. This shows that the
above stated a-system «-(M) is independent of the choice of base of
an.
Thus, by means of Theorem 1, Lemma 2 and the argument above,
we obtain a theorem as follows.
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Theorem 2. Lot M be a r-dimensional linear subspace in M, .
and k be the minimum of numbers of variables such that (M) can be
expressed by them. Then dim a-(M) =r — k< m.

3. In this section, we shall apply Theorem 3 to a geometrical
problem.

Let V, be a Riemann manifold of dimension # whose line element
is given by

ds® =!§ng,g'”(x)dx£dzvcJ
in local coordinates x,, x,, «-+-- ,%,. Let us put

S1gi(x)dxdx; = 12 w (%, dy)w(x, dx),
=1
dwl = 2 w}/\wﬂ ’
doy = Do, Nogy + 2y,
where £;; are the curvature forms of V, as is well known.
Let k(p) be the minimum number of linear differential forms in
terms of which the curvature forms at p€ V, can be expressed, and

let k= max, . v, k(p) = (V). According to S.S.Chern and N. H.
Kuiper, # — k(p) is called the index of nullity at p.

Theorem 3. A compact Riemann manifold V, of dimenison n
can not be isometrically imbedded in an Euclidean space of dimension
2rn — kR(V,) — L.

Proof. We suppose that such an imbedding of V, in E*-*!
exists. Let (p, e, ------ s @us Cueys torie s Em—1x-,) be a field of orthonormal
frames of E*-*-! defined on a coordinate neighborhood of V, such
that ¢,, e,, +----- , &, are tangent vectors at p to V,. Then we have

dp = g“’iei’ de, = g“’uej'*‘ D) D08y,
(-3
dear = Emaiei + E("mﬂeﬁs
i B

and ds* = dpdp = S} w,0;,. These relations give
0= Ei]dwae; - ;wt/\det = ;(dwi - ;wk/\wmm - }L_ka/\wmem,
that is,
doy =§wk/\wu, %‘.wk/\ww = 0.
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The second equation implies
@pn = > Al\-ijwj ’ AMJ’ = AM! ] A=1,2 »n—k—1.

The quadratic differential forms 0, = 31A,v,0;, 2 =1, 2, - ,
# — k — 1, are the so-called second fundamental forms of V,. We
have analogously

0'= Sdoye, + Sido.e, — Slo, Nde, — 3w, Nde,
= 3oy — Box Aoy — S o Aog)e
+ 2 Ao — 300 N\ 0w = 300 N\ 0pa)a-
It follows that
2 = doy —SlopNoy = o Noy = =3 Ay Ay 0 No,.
Accordingly, k(p) is the number of linearly independent forms of

; (Aquxjh - AAch.\na) )y, »

Let M, be the (n, n — B — 1)-matrix whose (i, 4)-element is A,,,. Then,
E (A.\ir,A.\j,r; - Al\j&Az\Un) iS (i, j}'element Of MOM - MLO M = Mn .

Hence #n — k(p) is the dimension of solutions (y,, «----- » ¥, of linear
equations

ZN“,y;h = 0. t:l, 2, ceeeee M.

h
On the other hand, M,, ------ » M, are linearly independent at a point

p, since V, is compact and V,c E*-*-%, By Theorem 3, we must
have, at the point p, # — 2(p) <#n — k2 — 1. This contradicts to the
definition of k(p). The proof is complete.
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