ON SOME RIEMANN SPACES

Tominosure OTSUKI

In the present paper, we shall investigate the existence of #-
dimensional Riemann spaces V, whose Ricci tensors K/“ (5,7 =1,2,
------ , ) satisfy the following conditions :

1

(a) KK = =1 KK/,
and

where a semicolon “;” denotes the covariant differentiation of V.
If # > 2, Einstein spaces? are characterized by

1
KKl = - -K K/,

for the relation implies K/ = %KISB{ , from which we get K/ ,=0

as is well known. Accordingly, we may formally regard spaces whose
Ricci tensors satisfy the condition (a) or the conditions (a), (b) as
analogues for Einstein spaces. In a previous paper®, the author
proved that e Riemann space V, whose Ricci tensor salisfies the con-
ditions (a), (b) can be imbedded, as a hypersurface, in a Riemann
space V.. which has the following property :

The group of holonomy of the space with a normal projective con-
nexion corresponding to V,., fixes a hyperquadric and V, is ils image
in V..., that is, the locus of points lying on the parallel displaced
hyperquadrics, regarded as points in the tangent projective spaces.

In Part I, we shall prove the existence of Riemann spaces V,
whose Ricci tensors satisfy the condition (a) and are of non trivial
types.

In Part II, we shall investigate spaces whose Ricci tensors satisfy
the conditions (a), (b) and prove the existence of such spaces with
some additional properties.

1) L.P. Eisenhart, Riemannian geometry, p.22.

2) ibid. p.92.

3) T. Otsuki, On the spaces with normal projective connexions and some imbedding
problem of Riemannian spaces II, Math. J. of Okayama University, Vol.2, No.1, 1952,
Theorem 2.
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Part 1

§1. Preliminaries

Let V, be an n-dimensional Riemann space with positive definite
line element

ds* = g,x)dx‘dx’ G, F=1,2 +oeenr , 1)

in each of its coordinate neighborhoods. Let ri, be the Christoffel
symbols made by g;,.

ar, ar:,
‘KJ'{M: = axj: - ax';;r

th = Kjkh.k’ K = g“-[{lj

are the components of the curvature tensor, the Ricci tensor and the
scalar curvature of V.

+ M — Tl

In a suitable coordinate neighborhood «!, x2, --...- , XYLy =x™,
the line element may be represented by the form
(1) ds’ = g%, y)dx dx* + (Y(x, y)dy)? @Rn=1,2, - ,n—1).

Let V.., (» be an (» — 1)-dimensional subspace of V, on which y
is constant and whose line element is ds® = g,.(x, y)dx*dx*. Let
Ryvs s R\, R be the components of the curvature tensor, the Ricci

tensor in the coordinates x', x% ------ , XY, the scalar curvature of
V._.(»). Then we have the following relations
0
Ty-gab = —z‘l’hab-
1
(2) rgc = {gc}r T',’,‘;, = Thahs r’gn = —-\ll‘h‘,,‘,
» 1 a n 1 9y
ran = ,‘1, ‘!".a': Pnn = ""Il’gab‘#.b’ rnn = T ay ’

@b c=1,2, - 1 —1)

~where {3} are the Christoffel symbols made by g,. In the follow-
ing, we shall denote the covariant differentiation in V,_,(y) by a
comma “,”. Making use of Gauss-Codazzi equations® of V,
Kakca = Rabcd - hachbd + karlhbc s
iI"‘Ifaﬂbc = kab.c - hac,b

1) J.A. Schouten and D.]J. Struik, Einfuhrung in die neueren Methoden der Dif-
ferentialgeometrie, 1953, Vol. 2, p.121.
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and
Kl = —p e+ Bl — — Vs
we have
Kp = = B+ R~ =g,
Kf = yVe, Kr = =T,
DA P e~ B = g
K = —57—3-% —hh - BB+ R — —i—gwp_m,

where we put

Vazha—k;:x\! k:h';:,
4 . s
(4) { "= hh,— B K, — R:.

Now, let us suppose that the space V, satisfies the condition (a).
Then, we can easily see that rank of matrix (K/) is 0 or n —1
according to KX =0 or ==0. If K=0, it follows X/ = 0. Hence, we
have a theorem.

Theorem 1, #n-dimensional Riemann spaces whose Ricci tensors
satisfy the condition (a) and whose scalar curvatures are zero are Ein-
stein spaces (n > 2) or locally euclidean spaces (n > 2).

From now on, we assume that K==0, that is, rank (K}) = #— 1.
Under the circumstances above-mentioned, we can rewrite (a), by
means of quantities of V,_,(y), as

1

(5) K:K,?+V,,V”=7_—1KK;’,
(6) v, = (FEk-K)V.,
() v = (i K- KD)K:.

We distinguish two cases as follows.
Case (I): V,V* = 0.
If K =0, we get from (5)
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(8) K, = n—}_TKgab’
since K=K}30. If Kr==0, from (7) we get (r — 2)K} = K}.
Hence, if z > 2, we get

1 n 1 o
n—1 K = K = 5 g K0

and then (5) becomes

1
n—2

This is the condition (a) replaced » with # — 1. If » = 2, the case
is regarded as the case K? = 0 since K! = 0.

Case (II): V,V*=0.
" il K — K® and V, are an eigen value and an eigen vector of

KK} =

R K; .

this value of square matrix (K?) of order # — 1. Choosing a suitable
orthonormal frame at any point in V,_,(»), we may put

0 0 ............ 0 v
0 [ E 0
(K2 = , (Vo) = ,
0
0 ceovevens 0 o, 0
1

‘Then, we get from (5) the relations

01(01 —%__]_K) +ov = —p K} +vv = 0,

"2("2: FoTK) = 0

: 1
pn—l(ﬂn-1 —_ 7_2———- il K) = Q.
{7) becomes

vy = (TIZTK_ K,:‘)K,’: = p,K5.



ON SOME RIEMANN SPACES 69

Since rank (KJ) = n — 1, it follows that

1
pz — ps = eseses =— pn_l = mK,

that is, with respect to the frame, (X/) is of the form

1 n 1
—n_—-_l_K_K’ (| ST 7
1
0 n—lK ............... 0
(K) = T
1
0 n—lKO
v (| JERTSTTOT 0 Kr

By virtue of these relations, with respect to a natural frame of
Vs (3), we get
1 .

Y

(9) K} = ﬁKﬂa—WVaVD.

§2. Systems of differental equations
In the paragraph, we shall derive systems of differential equations
for our construction of spaces stated in the introduction from the

formulas obtained in §1.
In Case (I), we may put K;=K;=K}=0 and K, = %_1Kga,, .
Accordingly, making use of (3), we obtain the relations

1 » 1 0 b b 1
FoTER = gy B b+ R =g,

Vm = h.a_hfl)z\..h = 0,

0
By h VR — g = 0.
On the other hand, we get by (3) and the last equation above

2 2
v 0y

0
= Z(Zoh—pIth: — ) + R - hE + R

K = h—hh— WE + R — %g“‘«lr,m
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that is,
(10) K= —-Q = —hh+ Wi +R
Hence, we obtain
0 I
A1) By = (hB: — R — 5t 03k — B — R) + g%,

which is represented only by 7%, 4 and K.
In Case (II), since we get from (3) K = 2K* — @, (7) becomes

28 &+ T QKD+ ViV = 0.
If 753, it follows

12 K = 55-5(-Q+V@Q— 4~ D — V") = F,

hence K is a function of %, R? and V,. Accordingly, we get
7l
a—yh = (bl + F) + g™y e
On the other hand, we get also from (3) and (12)

0 2F— F
A8) ok = vk — R + g + ¥ (G0 — VeV

which derives the relation above.
If =3, (7) becomes

QK +2V,V* = 0.

By the assumption V,V*Z=0, it must be @ 3=0. Hence we get from
3)
v,V

a i
Sy k= VRE A+ g — 20—

and

4V, V*
K=2K-Q=—(= 5 + Q).
Accordingly we get the equation

0
(13") oy

B, = Aphhy — R + g™V

+ Z\P{%(VGV“ A ag}



ON SOME RIEMANN SPACES 71
which derives the differential equation above.

§3. Constructions of spaces

In the following, we replace » with # + 1. Let V, be a given
n-dimensional Riemann space with line element

ds* = gl\n(x)dxkdx“ Z! My oooeer = 1) 2’ """ ’ nl)

is each of its coordinate neighborhoods. We shall construct an (= + 1)-
dimensional Riemann space V,., satisfying the condition (a) whose
line element is

ds* = g,.(x, y)dx*dx* + (P (%, y)dy)

in coordinates %%, «----- , % ¥ and g,.(%) = [ (¥, 2]y -
In Case (I), by means of (2), (11), if we have a solution g,(x, ),
hq(x, ¥) of the system of differential equations
0

——gab = —211”'121177!
(14) oy

n

:y B = y(hh, — R} — v o hh — BB, — R) + g an

under the condition
(15) Va=h,— k=0

and the initial condition gu,(%¥) = [gw(¥, ¥)],-0, then V,,, with line
element ds® = g,.(x, y)dx*dx* + (¥ (x, ¥)dy)’ is a space which satisfy
the condition (a).

Now, let y+(x,y) be a scalar of V, depending on y which we
shall restrict in future. Let g,(x, %), 7%(x, ) be any solution of the
system (14), construct the vector V, by them. Then, by means of
2), (14), (15) we get

_687V“ = (‘z%h)-a —( aay hﬁ).x + (P h) B — (PR, LB

= YRR\ + VaR™a + R — (R~ SR

+ %#ﬂ,aQ + —:’z—wlr(Zkh.a — 28K . — R,
that is

1) In this paragraph, indices take the following values:
a b, c, oo SO ¥,y e = 1,2, ceeens , M.
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(n

(16) sy Ve = whV B 1+ Ly q.

If n > 2, it is written as

0 —2 Az n—2
By Va = VhV.~— 2n #, Q¥ )

If gu(x, ), F.(x, y) satisfy (15), the following relation must hold good

(17) 7= Q—o(MN¥E =0,

where o(y) is a suitable function of y. Hence, if we put f = p(y)ll’?z’_?,
then we get

0
0y
. [/
—2ht{y it — BY) — 2-Qak + g™}
—2{\V R 4 g (o + 29 R, + R,

0
=V B = 29BN, — B} — a{,

1 = 2k {$ Ml + gl

that is

) 2 2 o
S = b — 4ba VA — 298V + (VRS — )

Accordingly, if g,(x, ), 2 (x, y) satisfy (15), it must hold good

(18)

0
(19) o = .

On the other hand, if g.(x, ), 4 (%, ) and f(x, ) are any solution
of the system of differential equations (14), (19) and if we put

Cu = f\[’ﬁ)ﬂl ’

then we get

i} (2 z 2 T2 O

By e = (7“1" Thf — g S oy )'“’
that is
0 2 2
(20) —Ca = Ca -—h’\”‘_ 2 ay lOg 11’)
2 2
+ f«,b-"--( 75 1og «lr)
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Accordingly, if gm(¥, ), 2%, ¥) satisfy (15), it must hold good also
0 n

oy -

-2
n b+ AP

where P(y) is a suitable auxiliary function depending only on y.
Thus we obtain a closed system of differential equations.

In conclusion, to solve (14) under the condition (15) and the initial
condition above is equivalent to solve the differential equations

b
By 8w = —2vY R,

By = V(I — R — anhh — B~ R) + £,
7] 2
oy S = S

9
\ 0y

(ar)

b= 22 pyr s gp

where P(y) is a given function depending only on y, under the con-
ditions

Vu h,a_h’g.)t = 09
(8) 7 hh — ik, —R—f = 0,

¢ = (f¥7). =0

and the initial condition [g.(%, ¥)],-0 = Zu(X).

If gulx, ), Bix,y), f(x,9), ¥v(x,» is any solution of (a;) and
V., 7, . are the vectors and the scalar made by these tensors and
scalars, then we have from (16), (18), (20) the relations

%Va = phV, - ALyt {(w_) + G

] 2

By 7 = g Pk =4V = 29gM TV,
i) 2

Byt = Tzt

Hence (8;) holds good, if it does so for y = 0. Accordingly, in order
to solve our problem, it is sufficient that we can take Z,(x), f(x) &= 0,
Jr (%) in the space V, such that

=B =0 hh—RE-R—f=0 (f477).=0,
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where f(x) =0 is derived from (10). We can take such /.,(x),
f(x) =0, ¥ (x).

Now, we investigate the excluded case # = 2. (16) becomes
7] ! 1 ‘
oy Ve = VhVe+59.0Q.

Hence, if g,(x, y), A (», y) satisfy (15), it follows the relation
V@ =0. By virtue of (10), it must be 4~ , =0 and @ = —K 3=0.
We may put v = 1 without loss of generality. Then, we can easily
see that if we can take 7,/(x) in the space V, such that % ,— 7} ;= 0,
we can obtain a solution g,,(x, ), A2(x, ¥) of (14) under the condition
(15) and the initial condition [g.(%, )],- = Zu(%).

In Case (II), as in Case (I}, by means of (2), (12), (13), we .have
the system of differential equations

Fy ‘ ‘
o By 8w = — 2V Ry,
0 2F — F :
a5 = w0~ RY + g + (G~ v,
where

when # > 2, and

0
'a—y‘gm, = _zq’hab:
21 Tay_hg = Y(B — RY) + g™
+ 2y d 5 - vy —Fai

when # = 2, with the initial condition [g..(¥, 3)],-0 = Zu(¥). We can
solve the system of differential equations above. Putting together
these results in the paragraph, we obtain the following theorems.

Theorem 2. Let V, be an n-dimensional Riemann space with non-
2ero scalar curvature, whose Ricci tensor satisfies the condition (a).
Then, at each point in V,, the Ricci tensor has a null direction.

Accordingly, in such a space, the field of null directions of Ricci
tensor determines a family of curves whose tangent directions are
null directions of the Ricci tensor and which simply covers the space
V..
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Theorem 3. Any n-dimensional Riemann space V, can be imbed-
ded in a suitable (n + 1)-dimensional Riemann space V.., whose Ricci
tensor satisfies the condition (a) and whose scalar curvature == 0, as a
hypersurface. Furthermore, we can do this imbedding as the hyper-
surface above is one of a family of hypersurfaces with properties as
follows :

(i) At each point in V..., the null direction of the Ricci tensor
of V.., is orthogonal to the tangent n-direction of the hyper-
surface through the point.

(ii) In the n-dimensional tangent linear subspace, the Ricci form
of V... is proportional to the fundamental form of V,.,.

As we have proved above, (i) implies (ii).

‘Corollary. There exist n-dimensional Riemann spaces whose Ricci
tensors satisfy the condition (a).

Part 11l
8§4. Spaces whose Ricci tensors satisfy (a) ,(b)

In this paragraph, we shall use the notations in §§1,2. Let V,
be an n-dimensional Riemann space whose Ricci tensor satisfies the
conditions (a) and (b), that is,

. 1
(a) KK, = —7KK{,

(b) Ki, =0 (Gd h=1,2, e , 7).

By virtue of (b), it follows that K — K is a constant. 'As in §1,
in a suitable coordinate neighborhood x°', -..--. » X", ¥ = 1" the line
element of V, may be represented as

ds* = g%, y)dxrdxt + (¥ (%, y)dy)*.

Now, making use of quantities of the spaces V,_,(y), by means of
(2), (b) becomes,

K. = K, — h V> — RV, =0,

) 1 1, 1 1 B
Kio = (G Ve)o = ek + S K2 + bV = 0,
Icr?;a = K??.a + 2h2V.\ = 0,

Ky = 2 K~ WIRE — g™\ Ve— %,V + WK = 0,

oy
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K, = (‘PV)+¢«J»K* MVE ‘I'+h3VA
_Tp—‘p,uKn = 0,
b
Ky, = WKZ' + 2gMP\V, =
If we put

(22) K, = Tz, Ky = S,

these relations are written as follows:

(23) &, = T, — hV° — BV, = 0,

(24) Nar = Vu,b - abS + Tabw = 0,

(@) 5 T = FURTY — BT + baV" + g™V,
9

(26) By Va = —V¥aTe - VYhiVy + ¥,.S

and
S,. + 2RV, =0,

0
558 = —2¥aV

which show that 7 + S = K is constant.
Now, let us consider Case (I) in §1, in which V, =0, S=0
‘Then, the relations (23), (24), (25), (26) become

Tuh e — 0:
Ta)\ k)\b = 0’
0
5y T2 = $URT: — IXTY),
PvaTs = 0.
In §1, we have seen that if rank (K?)==# — 1, then the space

V. is an Einstein space with scalar curvature zero (# > 2} or a locally
euclidean space (#>>2). Saving for the case, we may put rank

(K)) =% — 1. Then, from the relations above we obtain %, =0,
Y, =0, hence T} = T2 (%), T,,, =0 and we may put ¢ =1 Ac-
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cordingly, by means of (a,) and (8,) replaced » with # — 1, we get

the relations g,, = gu(%), K. = p i T Rd%, f = —R = constant, P=0.

Furthermore, in the case, we get K? = R’, K= R by (3). Hence,
V.-, is an Einstein space (# > 3) or a 2-dimensional Riemann space
of constant curvature (3=0). Thus we obtain the following theo-
rem.

Theorem 4. Let V, be an n-dimensional Riemann space with non
zero scalar curvature whose Ricci lensor satisfies the condition (a), (b).
If the curves whose langent directions are null directions of the Ricci
tensor of V, are orthogonal lrajectories of a family of hypersurfaces,
then V, is a product space of an Einstein space with non zero scalar
curvature (n > 3) or a surface with non zero constant curvature and a
straight line. The converse is also true.

§5. Basic relations in Case (Il)

Let V, be an (z + 1)-dimensional Riemann space whose Ricci tensor
satisfies the conditions (a) and (b). In a suitable coordinate neigh-
borhood x%, -----. , ¥, ¥, the line element of V,,, may be written as

ds' = gu(¥, y)dx dx* + (¥ (%, 9)dy)* @, s, -eeee =12, , B)°.

As in §1, let V,(») be an #-dimensional subspace of V,., on which y
is constant, and whose line element is ds* = g,.(x, ) dx¥*dx*. We shall
denote the components of the curvature tensor, the Ricci tensor and
the scalar curvature of V,(») by R,}., R,., R=R}@ b, ¢, -~ =1,
2, ereren , n) respectively as in §1. From now on we assume that
2.V V¢ %0, where V, = ¥+ K7*. Then, making use of quantities of
the space V,(»), by means of (2), (3), (25), (26) we have

7]
'ﬁy_gab = _2"I"habs
sy = Y~ R+ T + g™,
(@) A
o T2 = YT = T + ..V + g, V.,

0
\ 0y

Vo = —¥aTa — Vi + (K= T)¥,.,

1) In this paragraph, indices take the following values:
a, b’ Cy ey Ay p, B, e == ]_, 21 ...... , 7.
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where T? = K?, T = T}. By (7), (9), we have

b 1 S h
T’ ———n—KBf; + WV“V = 0,
1

SS — -FKS + VKVA = 0.

Since V,\V*==0, it follows that S=K — T=0, %K, and the first
relation may be replaced with '

@7) (z - L ga)(r-22LK) + v = o,

which implies the second relation above by contraction.
From (3), (a;) we get

0
—67]2 = (Ml +S) + g%\ = Yk — R+ T) + g¥¥.,
hence
hh —hihy — R+ T—8S =

Thus, we obtain a system of relations

o= (1 ——Kah)(T_ -
Oa = Ve — k.(n + h’(/),)\ = 0,
B ed = T2, - WV~ V. = 0,
Tar = Va,o + Tolaw — (K —T) =
¢ = hh—h —R—K+2T = 0.

By the argument above, we can easily see that (a), (b) are equivalent
o (ay), (By), K = constant when g,,V*V*3=0.

Let galx, ), Hi(x,3), Ti(x,¥), Va.r,y) be any solution of the
system of differential equation (ay), and <, p,, &, %a, & be the
quantities made by them according to the left hand side of (5,)).

By means of (2), (a;), we get the relations as follows:

0 = = Td = VIV + oK — T) = ua(bh — R + T)

— Y @hh,e— R o+ T0) — Ve + Yalhhz — R + To)
+ "l"(hth: + kké.,\ - R{Z\,/\ + Té\,x) + ".I".Aa.\ .
e RN 2 Y /TN P SV o e S VY

= —PYhRV,— va(Q — K+ 2T) — vh(h . — k)
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(0. + T T2))
that is
(28) %pa = —,.l+ Pvho, — %P_C,a, + Préln .
a—""yg — 2h{whh— R+ T) + v
— 2B (e (BB — R} + TN + ¥ N}
— 2{W R} + 4 N+ 29BN + RN}
+ 200 B 29 3B B+ A,V
= 20h(Q + T) — 2V A T2 — 4oy (B} — B*,) + 4V
- Z#ﬁ(]Z,)‘A — IZM"\,/\}L)!
. that is

2
(29 55 ¢ = 29 R + 48700 + 298 (000 — M-

_aay—fg = 2«,'»,AV*(T: - %Kﬁﬁ)

+ (T - m L K){xf»(hkT;‘ — BT} + 9 V" + Vi)

+ VP {—P T — vV + (K — T),.} + 290V, Vy
+ I,’a{_,'l’,ATAb - \[l'h'”‘V,\ + (K ko T)"I"'b}

= yri(r - 25 Lr)T2 + v

—¢MKT—

1 1
29 V(T2 — oK) 4 KWV + ¥,V
— VT sy — VTV,

L K)T,{’ + V"VA}

that is

0
B0y eh = PO — BT
1

+ W {21!’.AVA7?: - Va‘l",)\TZg'\“ _ Vb\ll")‘?.';}.
T on
2
By T = —VnTd = Ty — Wi Va — RV,

- ‘,WZQVA,;, - ".!",aT,b + (K — T)‘!",ab
— Vilv (= Fay — B2 o) +  hay — Yok — B}
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+ b (W (BT — BETY) + PV + 4,2 Va}
+ T (Rl — 2R R — Ry + Ta) + Y0}
—(K-T) ‘H"(kkab — 2R — Ry + Ty) + ‘]".ab}
+ 2k 2V,
that is
0

(31) a_ypab = _"If.)\g(lz\.h - 1!",415,\,\?» - ‘!"h‘;v:\b

— Y[ Valla,* — B .0) — T2 (@n + To) + (K= T)(Qur + Ta)]-
S Ede = P URTE — ISTY)
+ v, Te + BT — k. TR — TR,
+ YV A+ oV + P2 Ve + ) Vs,
+ Ta e (Bre,” — B3, — BL0) + V2 I — Y B — a0}
— T hae,® — Ri,e — Bia) + Y oo — Vol — o B3}
— V(bR — 2R3R — Ree + To)) + Yroa} — 20 Re RV,
— hae {= P T — BV, + (K — T)¥"}
— Vol (RA; — R} + T3) + ¥.%}
— B = T3 = RV + (K — T)Yal,
that is

e = BUREL — B + £ e + VTl
(82) + AT g, = B23) = T3k » — 1)
— V(Qu + To) — V(@ + T
Furthermore, we have
T ne,” — B22) — TPhae* — 1) — V*(Qas+ Tud) — Val @ + T)

= :_I,—,,lri;{—{ff: (re,> — B2, — 2B — 12,0)}
e :
1 n—1 R
- g [V =+ (TR @+ T
n b \
+ V[ Vale— ey + (T - 2L K)@u + T, 3
C . 'ac 5 72 ac ac.
and
V)\ (htzb,)‘ - h}\h.a) - T;;\ (Q)\h + T:\b) + (I{_ T) (Qa,b +' Tab)
1
= — T—,,._l—K‘TQ(Qm + Tw)

n
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81
[ Vit - i) = (T -7 + T
1
+ = VeV Qu + T
T -1k

Since we have analogously
1 1
VAT, = _n‘KVb + }?,TK(VATQ — ViV

u

1 Ir
(T% A b)
—1 . ? l
T n F(

the right hand side of the second relation above becomes
= 1 h (@ + T 1 Va(mp Vi — 2 V)
= T . n—1.,,a\wn Ab —1 3 Valln VA — b
T-* n K (T - nTK)
-1

+[ Vil — 0 = (T- 75
1
+ Va{Vb + 'T—_T_—IEVAQAb}:I

Accordingly, we see that if g, AL, 77, V, satisfy also the relation
{(By), then the following relation must hold good

+ Tw)

Pav

= VA(hg.a_ ha-b,)‘) + (T—
(33) V(V 1 Vo )
— Vol Vo + = V'@u) =
T-2—K

an)

Now, making use of ¢, , we have the relation

T\(h)\c - p,A) T)\ (hac hc a.) - Vb(Qau + Tag)
——'1——{r He? = 1) — (e,

— V@2 + 1))
h? a) -
2

1
_— VaVbl:Vc + 1= VAQM]'
1 1

T-2—K T-—-"—K
follow

Accordingly, if g.., A, T, V, satisfy also the relation (8;), it must

(34) (:r _=r

a (0 - Vb Gﬁuc}

O =0
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since g£,,V*V*=0. Hence, under this circumstance, we get from (33),

(34) the relation

n_

1
7 K) (Qaiﬁ + Tah) = 0.

(35) Oy = V,\(k;‘,b - hab,)\) + (T"
Furthermore
Oy — Opy = Vx(hé.b — h{»‘,a) = 0,
and
V}‘aha = VA V“(h)\u.,u - hAa,u)
n—1 1
+ (T L K)(VKQ;: + 7KV,,)
4V, — V,,(r - (T—K)(T— L L K))
= V“(am - 0au) + TQV)‘ - TVa

+ (1 220 (1= 252KV + v

which shows that (34) and (33) can be derived from (35) and (8;)).
Returning to the assumption in the beginning of this paragraph,

in the following, we shall denote equalities mod %, g5, &% s Tavs T»

9., and their covariant derivatives by “ ~”. Then, we get from the

definition of 7,

Yo, = a,me1 T Tr:, rokzm + Ta:hhfb.c} - a[b,c](K_ T) + haabT.cJ

~ — 5 RAT (T = 2 K)o + halb Vs,
hence
@) (T~ 22K oo — hu) + Vilhalit — huchi) = ViR, = 0.

Furthermore, covariantly differentiating (36), we get

(T = 252 K)o — o) + 2 Vil (s — )

-1
_ (T L K)h (Fran Pt — haoI2})
L1
T n ;; lK
+ VA(Izubh:‘,e + hab,elzé - kac,ehg - hac]l;}’e)

VA Vp. h’: (hab h: - kac hb}‘)
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n—1
”

+(T—

1
‘n_-q V4\ Vy. h: Ralbc - Vo\ Ra}‘bc e = 0’

K) R,

T

n

hence by virture of (36)

7
1
T _n—1g VAV Be Frye — ViR e
n

+ Vk(habh:,e + ]Zab.nl.zé - kn‘tc.eh;L - hachg,g) =~ Or

(T - m 1 K) (hah.ce - hac,be + he)t aAbc)

37 +

where we put
(38) Fubce = Ra?:ce - hmohbe + hac kbc .

Now we have by (ay,)

%Qab >~ 29 {hhh, — hhyhy + By R R}

+ YV { (T — R) — B (Top — R)) — B (Tar — Rap) + B(Top —

- ‘;",a Vb - 1!",?: Va + 1p.k{(h2,b - hab,)\) + (hg‘,u - hub,)‘)} ’
/
+ {0 — Boan) + U na — Fh00)
+ (hm)\,b)\ - hab,h)‘) + (hb)\,u.'\ - hba,AA)
+ ROk — RMMAL + Ry — RF AR

On the other hand, we get from (37), (38) the relations

—1
(T = 257 K) B — e + 70 Q)
1
+ T VWG + VARL,
T-21g
+ Valhshy,. + By, By — R By — RE)) ~ 0,

-1
(T = 257 K) has,2 = e i + BFD)
1
+ —1 VAVFhMI?aI\pc - VARaA“c,M.
T-*"K

+ Va(Reh),, + bt 1) — hoo, M — R ) ~ 0

and

83

Ra)}
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g'\MFmbu = Qub'

Making use of these relations and putting M =1/7T —
get

n—1
n

K, we

_867‘Qab ~ 2"1’/' {hhkab i Zkh:hu + h;hm,,h‘b‘}
3
+ ‘I"{hab(T - R) - ht};(TM - TRM\>
3
— B(Tur = 5 Ra) + 5(Tw — Ra)}

— Vo — FaVa + S MVLViB + Vild) — 41 R
- %ME V)\h;}, Vp (Fbpﬂa + FaPMb) + M'\P“)\V#(Fa)m), "" Fbp)‘a
+ L 1 Qu — MQu — 2MEV,V, Q) — MV, (RS, + RE)

C B(FAy + Fra) — MEVVARE (Fre + F)

+ MV}‘ (Rg,”lb,p. + Rbma,u) '

— MV {ht (B o + B + Be(h,, + B,
- h(hc}:,b + k;,a) - 2habhm,u}]-

Now, we can easily see that the relation (36) is, in fact, an
equality mod é,,, 7.., 7k, hence

(7 - 252 R)Vati, — 10 = O (mod &% 7aus 78)-

Accordingly, we may put anew

%=L K) @ + Ta

B9 0w = 5 Vil + Wo— 200 + (T =

Thus we obtain the following relations

0
(31/) 3y e == 0,
32) %e;y ~ 0.

Now, by means of (2), (ay), the definitions of =}, 0., €5 ass O
bap, We get

ot = () s (h).
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bl
- 2(‘07”«» N Ak, ,

I A A
+haay1" +kbay — 2k

. ay re,

+ 2g% h,,,LWy—r';p + ZgAPh,,,L—ay—rgp:I

0
b g By + i — 2R ) Vi 29,V @ + T
0 7}
5 Lo + WQ.;:;)

1
o Vila(@ + T2) + 9, (@ + T2
+ vy (rodd + hokh — RN, — RA )
(Vi + Vilih + 2V ko) — b, (R, + R
— 292 (Qay + Ton) — 2¥r (B} gy, — Ra,,,)‘ + V.hy + V)
+ (BB + RERY) — 249 F B R,
- «J»h(T -z )
34
(T — 2 K) U@+ T) + 1 Que + T}
— M«,b‘V,\h V., F,,",,” + V. ErH
“’ VA(h“h*,,& + Iz;:h; y— 2B )
)w = PRV,

+ My, V* VA](V,,F;”‘,, + V,Fphy)
+ 24 N (Qab + 7o)
(:r— )[ YT + B Ta) + VaVi + ¥, Vi)

N

+ (T - th
~ _%—VA["}’,G(Qg + T + Y, @+ TH + ‘l"(h B+ hyhY)
- QI,'(ZREA’D + ZRbA’a - 2 “b1A - ll I3 - Rb a, M)

— 29k} — Y MBLV,(F*, + Fpe)

+ M, VH(V,ER, + V,F)

+ 29 Qus + Tu) — MV, (2Q + 7@

b BB, + ) + 2hok™, — 2R,
— ke, — RS G)]
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+ & = T)(T = 252 K) ey — (T - 252 K)1Qu
(T2 [hﬁ(Qm, — 5 Ta) h#(Q,m ~ 5 T)]
+ 24 o — 2RI R + BA I )

+( [halT~R) + 5 BB + 5 hiRe — B0 ]

wp — h‘mh,\b + ha,,h,w + Rnlhy.]'

_1,,(

Making use of the identities R, .= R} .— R, derived from the
Bianchi identities Ryuea,e + Ravae,o + Rawes,a = 0, and 7%, — kg * =~
MV, F,, the last side of the relation above becomes

5 )
e = g Vilha(@ + T + 40 (@) + T + 29 @ + T

+ M VAV, (B + Fty)
- NI’MV (k“Ql\ + h‘uQa’) + '\”'(Qa » + Qb a):[
L K)IB @ + To) + 7(@uy + T

— 2(K — T)ha)

On the other hand, we get from (34)

a,b

Qﬁ,be + Q.}I‘V)\,b + (T“‘ i

hence
Qo Vi + (K— TR Qur — THR, Q5 + 2V, Vil
+(7-* w— T2 hw} =~ O.
Accordingly, by the relation above and (34) we get

0
0o = 5 Vila(@ + T + (@ + T + 292Qu + T
+ Mo VAV, (Fe + FP) — v MV, Q) + BQ))]

(40) — ip._MVAV""(IZMQz + hMQ:) — 1‘[,. V)‘(V h)t + ka)\)

)w» Vo BV + 4ra VA Qu + T

+ M, VIV B, + 7(«#,41/; T} + ¥ i To).
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We get easily

mﬁ:@u”

and by (36)
Vol , — 1,0) = MV, V,F**,.
Hence by (35) we get

_ (T— n + Ty ~ MV, V,F,.
Substituting this relation into (40), we get finally.
0
(41) —Wﬁab ~ 0.

Thus, by virtue of (28), (29), (30), (31"), (32") (41), we obtain a theorem.

Theorem 5. In order that a given n-dimensional Riemann space
V, with line element ds* = g,,(¥)dx*dx* can be imbedded in an (n -+ 1)-
dimensional Riemann space V,., with non zero scalar curvature K
satisfying the conditions (a), (b), as a@ hypersurface whose normal direc-
tion at each point to it is not the null direction of the Ricci tensor of
Vo, it is necessary and sufficient that a system of equations with un-
known quantities 1,, T?, V. (&, V' V*=0):

@ (TV———K.XT— =0,
Vi—bho+bin =0,

©23) T — h VeV, = 0,

(24) Veo+ Ty — ho(K— T) = 0,
Rh— Wil —R— K +2T = 0,

35" Vi, + B 2k
+(r-2 3@@%—mmr4m+ng=a

has a solution.

Remark 1. The system of equations are reduced to a system of
differential equations including only #,, and its covariant derivatives
of order 2 at most.
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Remark 2. If 7= 2”2; 1 K, (23) is derived from the others.

For, we get from the integrability condition of (24)

(

- kac,b) - V)\F‘a‘\bc = 09

hence

(h(};,b - hg.a) - V)\V}LFGA“?) = O'
Accordingly, (35') can be replaced with

V)\VAF aM'b -+ ( Q(me + Tab) =0

We get from (27)

(72 - ——Kﬁ") T+ (T2 )T:,c
+ {— T, + ho(K = T)) V" + Vi{— Ty + (K —T)} =0,

42)

hence it follows that

(T— KT, + (T

AV — 2R TEV, = 0,

We can easily prove the relation

Hence, we get from the above relation

(T— 2’272 K)(T — 2BV, =
2n

that is T, — 2A)V, = 0 by the assumption 7" — 2n K:.‘:') Sub-
stituting this relation into (42), we obtain the relation

(
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