ON THE INDUCED CHARACTERS OF GROUPS OF FINITE ORDER

Masaru OSIMA

In this paper we shall study some properties of induced characters of groups. Let $\mathfrak G$ be a group of finite order, and let K be an algebraic number field which contains the absolutely irreducible characters of $\mathfrak G$ as well as those of the subgroups of $\mathfrak G$. We consider the representations of $\mathfrak G$ in K. The distinct irreducible characters of $\mathfrak G$ will be denoted by $\chi_1, \chi_2, \dots, \chi_n$, where in particular χ_1 means, as usual, the 1-character: $\chi_1(G) = 1$ for all G in $\mathfrak G$. Here n is equal to the number of classes of conjugate elements in $\mathfrak G$. Let $\mathfrak L$ be a fixed Sylow-subgroup of $\mathfrak G$ belonging to a prime q. We denote by $\vartheta_1, \vartheta_2, \dots, \vartheta_m$ the distinct irreducible characters of $\mathfrak L$. We assume also that ϑ_1 is the 1-character, If we denote by ϑ_2^* the character of $\mathfrak G$ induced by the character ϑ_2 , then we have by Frobenius' theorem,

$$\begin{cases} \chi_{\mu}(Q) &= \sum_{\nu=1}^{m} r_{\mu\nu} \vartheta_{\nu}(Q) & \text{(for } Q \text{ in } \mathfrak{L}) \\ \vartheta_{\nu}^{*}(G) &= \sum_{\mu=1}^{n} r_{\mu\nu} \chi_{\mu}(G) & \text{(for } G \text{ in } \mathfrak{G}) \end{cases}$$

where the $r_{\mu\nu}$ are rational integers, $r_{\mu\nu} \geq 0$. Let \Re_1 , \Re_2 ,, \Re_n be the classes of conjugate elements in \Im , and let \Re_1 , \Re_2 ,, \Re_n be those which contain the elements of \Im . As is well known, the number of linearly independent characters ϑ_1^* is h. In §1, we shall construct the generalized characters ϑ_1^* , ϑ_2^* ,, ϑ_n^* of \Im which satisfy the following conditions:

- (i) $\vartheta'_{\lambda}(Q) = \vartheta_{\lambda}(Q) + \sum_{\kappa=1}^{m-h} b_{\lambda, h+\kappa} \vartheta_{h+\kappa}(Q)$, where the $b_{\lambda, h+\kappa}$ are rational numbers with the denominators prime to q;
 - (ii) $\vartheta_1'(Q) = \vartheta_1(Q)$;
 - (iii) $\vartheta'_1(Q)$, $\vartheta'_2(Q)$,, $\vartheta'_n(Q)$ are linearly independent;
- (iv) $\vartheta_\lambda'(Q) = \vartheta_\lambda'(Q')$, if two elements Q and Q' of Σ are conjugate in G:
 - (v) $\vartheta_1^*(G)$, $\vartheta_2^*(G)$,, $\vartheta_n^*(G)$ are linearly independent;
- (vi) $\chi_{\mu}(Q) = \sum_{\lambda=1}^{h} r_{\mu\lambda} \vartheta_{\lambda}'(Q)$ with the same $r_{\mu\lambda}$ ($\lambda = 1, 2, \dots, h$) as in (*).

¹⁾ A summary of the results obtained herein appeared in [8].

In §2 we study the connection between the group characters and these generalized characters. Let G be an element of $\mathfrak S$ which does not belong to $\mathfrak R_i$ ($i=1,2,\cdots,h$). Then G is of form G=AQ=QA, where the order of A is prime to q and the order of Q is a power $q^{\nu} \geq 1$ of q. We denote by $\mathfrak R(A)$ the normalizer of A in $\mathfrak S$, and by $\mathfrak R(A)_q$ a q-Sylow-subgroup of $\mathfrak R(A)$. We may construct the generalized characters of $\mathfrak R(A)_q$ which have the same meaning for $\mathfrak R(A)$ as the $\mathfrak R(A)_q$ have for $\mathfrak S$. Then the value $\mathfrak R(A)_q$ is expressed by these generalized characters of $\mathfrak R(A)_q$. The coefficients are not necessarily rational, but they are algebraic integers. As an application, we shall prove a group theoretical theorem due to Brauer ([3], Theorem 1) which played a fundamental role to prove the conjectures of Artin and Schur (see [3], [4]). Our proof may be considered as an improvement of Brauer's original one.

In §3 we shall apply our method to the theory of modular characters of \mathfrak{G} for a prime $p \neq q$. In particular we shall prove Brauer's theorem concerning the determinant of Cartan invariants of \mathfrak{G} ([1], Theorem 1).

1. We consider a group \mathfrak{G} of finite order $g=q^ag'$ where q is a prime number and (g', q)=1. Let Q_1, Q_2, \dots, Q_h be representatives for the h classes $\mathfrak{R}_1, \mathfrak{R}_2, \dots, \mathfrak{R}_h$, as described in the introduction, and let $\mathfrak{L}^{(i)}$ be a q-Sylow-subgroup of the normalizer $\mathfrak{R}(Q_i)$ of Q_i in \mathfrak{G} . Replacing Q_i by a suitable conjugate $G^{-1}Q_iG$, we may assume, in virtue of Sylow's theorem, that

$$\mathfrak{Q}^{(i)} \subset \mathfrak{Q} \qquad \qquad (i = 1, 2, \dots, h).$$

Denote by n_i the order of $\Re(Q_i)$. We set $n_i = q_i n_i'$ where q_i is a power of q and $(n_i', q) = 1$. Then we see by (1.1) that the order of the normalizer of Q_i in \mathfrak{Q} is q_i .

In \mathfrak{D} , the elements Q_1, Q_2, \dots, Q_k need not form a complete system of representatives for the classes of conjugate elements. However, we may construct such a system by adding further elements Q to the set Q_1, Q_2, \dots, Q_k . Each Q will be conjugate in \mathfrak{G} to a certain Q_i , i being uniquely determined by Q. We denote the elements Q belonging to Q_i by $Q_i = Q_i^{(i)}, Q_i^{(i)}, \dots, Q_i^{(i)}$, $(l_i \geq 0)$. Then

(1.2)
$$m = h + \sum_{i=1}^{n} l_i,$$

¹⁾ Recently new simpler proofs for this theorem were obtained from the properties of the character ring of ③. See [5], [9] and [10].

where m denotes the number of irreducible characters of \mathfrak{Q} . Let $q_i^{(\kappa)}$ be the order of the normalizer of $Q_i^{(\kappa)}$ in \mathfrak{D} . We have

$$q_i^{(0)} = q_i.$$

From (*), we have

$$(1.4) \qquad (\chi_{\mu}(Q_i)) = (r_{\mu\nu})(\vartheta_{\nu}(Q_i))$$

 $(\mu=1,2,\cdots,n; \nu=1,2,\cdots,m; i=1,2,\cdots,h)$. Here $r_{11}=1$, $r_{1\nu}=0$ for $\nu\neq 1$. The rank of the matrix (r_{μ}) is h. Since Q_i and $Q_i^{(\kappa)}$ are conjugate in \mathfrak{G} , $\chi_{\mu}(Q_i)=\chi_{\mu}(Q_i^{(\kappa)})$ and hence

$$(1.5) \qquad \qquad \sum_{\nu} r_{\mu\nu} \vartheta_{\nu}(Q_i) = \sum_{\nu} r_{\mu\nu} \vartheta_{\nu}(Q_i^{(\kappa)}).$$

We denote by $\bar{\vartheta}_{\nu}$ the character conjugate complex to ϑ_{ν} . Then

$$\vartheta_{\nu}(Q^{-1}) = \overline{\vartheta_{\nu}(Q)}$$

We have from (1.5)

We arrange $\vartheta_{\nu}(Q_i^{(\kappa)})$ in matrix form

(1.7)
$$\theta = (\vartheta_{\nu}(Q_i^{(\kappa)}))$$
 ν row index; i, κ column indices.

We arrange the columns so that first the h columns with $\kappa = 0$ appear and then the l_1 columns with i = 1 and so on. Thus

$$(1.8) \theta = (\theta_0 \ \theta_1),$$

where Θ_0 is of type (m, h) and Θ_1 of type (m, m - h). If we set

$$(\overline{\vartheta_{\nu}(Q_{i}^{(\kappa)})}) = \overline{\Theta} = (\overline{\Theta}_{0} \ \overline{\Theta}_{i}),$$

then

We denote by M' the transpose of a matrix M. By the orthogonality relations for the characters of \mathfrak{Q}

(1.11)
$$\overline{\Theta}'\Theta = \begin{pmatrix} q_1 & & & 0 \\ & \ddots & & & \\ & & q_h & & \\ & & & \ddots & \\ 0 & & & & q_{h^{(1)}} \end{pmatrix}.$$

Hence

$$(1.12) | \overline{\theta}' \theta | = \pm | \theta |^2 = \prod_i \eta_i q_i^{(\kappa)}.$$

We subtract every column (i, 0) from all the columns (i, κ) with $\kappa > 0$, and with the same first index. Then we obtain a new matrix (θ_0, θ_2) which may be written as

$$(0_0 \quad \Theta_0) = (\Theta_0 \quad \Theta_1)P = \Theta P,$$

where P is a unimodular matrix with |P| = 1. From (1.13) we have

$$(1.14) \qquad | (\Theta_0 \ \Theta_2) | = | \Theta | | P | = | \Theta |.$$

Since $(\vec{\Theta}_0 \ \vec{\Theta}_2) = \vec{\Theta}P$, it follows that

$$\begin{pmatrix} \overline{\Theta}'_0 \\ \overline{\Theta}'_2 \end{pmatrix} (\Theta_0 \ \Theta_2) = P'(\overline{\Theta}'\Theta)P.$$

We then obtain from the form of P and (1.11)

$$(1.15) \qquad \qquad \bar{\Theta}_2'\Theta_2 = \begin{pmatrix} \Omega_1 & 0 \\ \Omega_2 & \\ & \ddots & \\ 0 & \Omega_1 \end{pmatrix},$$

where $\Omega_i = (\rho_{\kappa\lambda}^{(i)})$, $(1 \le \kappa, \lambda)$ is of type (l_i, l_i) and

$$\rho_{\kappa\lambda}^{(i)} = \begin{cases} q_i + q_i^{(c)} & \text{for } \kappa = \lambda \\ q_i & \text{for } \kappa \neq \lambda. \end{cases}$$

We see easily that

$$|\Omega_i| = q_i^{(1)} q_i^{(2)} \cdots q_i^{(l_i)} \left(1 + \frac{q_i}{q_i^{(1)}} + \cdots + \frac{q_i}{q_i^{(l_i)}}\right).$$

Since $q_i^{(\kappa)}$ ($\kappa=0,1,2,\dots,l_i$) are divisors of q_i and moreover the number d_i of $q_i^{(\kappa)}$ such that $q_i^{(\kappa)}=q_i$, is prime to q (see [1], Lemma), we have

and

$$(1.17) | \overline{\Theta}_2' \Theta_2 | \equiv 0 (\text{mod } q(\prod_{i=0}^{n} q_i^{(\kappa)})).$$

Since there exists a minor |A| of degree h of $(\chi_{\mu}(Q_i))$ $(\mu = 1, 2, \dots, n; i = 1, 2, \dots, h)$ with $|A| \neq 0$, we may assume that

$$arDelta \ = \left(egin{array}{cccc} \chi_{
ho}(Q_1) & \chi_{
ho}(Q_2) & \cdots & \chi_{
ho}(Q_n) \ \chi_{\sigma}(Q_1) & \chi_{\sigma}(Q_2) & \cdots & \chi_{\sigma}(Q_n) \ & \cdots & \ddots & \ddots \ \chi_{\tau}(Q_1) & \chi_{\tau}(Q_2) & \cdots & \chi_{\tau}(Q_n) \end{array}
ight)$$

and $|4| \neq 0$. If we set

$$Z = egin{pmatrix} oldsymbol{ au_{
ho 1}} & oldsymbol{ au_{
ho 2}} & \cdots & oldsymbol{ au_{
ho m}} \ oldsymbol{ au_{
ho 1}} & oldsymbol{ au_{
ho 2}} & \cdots & oldsymbol{ au_{
ho m}} \ & \cdots & \ddots & \ oldsymbol{ au_{
ho 1}} & oldsymbol{ au_{
ho 2}} & \cdots & oldsymbol{ au_{
ho m}} \end{pmatrix}$$

then we have

$$\Delta = Z\theta_0$$
.

We see by (1.5) and (1.6) that $Z\theta_2 = 0$ and $Z\overline{\theta}_2 = 0$. If we set

$$U = \begin{pmatrix} Z \\ \overline{\theta}'_2 \end{pmatrix}$$

then U is of type (m, m) and

$$(1.18) U(\theta_0 \ \theta_1) = \begin{pmatrix} Z \\ \overline{\theta}_0' \end{pmatrix} (\theta_0 \ \theta_2) = \begin{pmatrix} \Delta & 0 \\ * & \overline{\theta}_0' \theta_2 \end{pmatrix}.$$

It follows from $|\bar{\theta}_2' \theta_2| \neq 0$ that $|U| \neq 0$. Now we set

$$V = \begin{pmatrix} Z \\ \theta_2' \end{pmatrix}$$
.

Then $|U| = \pm |V|$, and

$$UV' \; = \left(egin{array}{cc} ZZ' & 0 \ 0 & ar{ heta}_2' \; heta_2 \end{array}
ight).$$

Hence

$$(1.19) \qquad |U|^2 = \pm |ZZ'||\overline{\theta}_2'\theta_2| \equiv 0 \qquad (\text{mod } \prod_{i \text{ } 0 \leqslant \epsilon} \eta_i^{(\epsilon)}).$$

On combining (1.14), (1.16), (1.18) and (1.19), we have for every minor of degree h of $(\chi_{\mu}(Q_i))$

$$(1.20) | \Delta |^2 \equiv 0 (\text{mod } \eta q_i).$$

Let q be a prime ideal of K which divides the prime q, and let q^* be the highest power of the prime ideal q which divides $(q_1q_2 \dots q_h)^{\frac{1}{2}}$. Then there exists at least one minor |A| of degree h of $(\chi_{\mu}(Q_i))$, such that $|A| = 0 \pmod{qq^*}$ (see [3], p. 508). If we choose such minor |A|, then it follows from (1.19) that $|ZZ'| \neq 0 \pmod{q}$. This implies that there exists at least one minor of degree h of Z which is not divisible by q. Further we may assume that this minor contains the coefficients in the first row of $(r_{\mu\nu})$, since $r_{11} = 1$, $r_{1\nu} = 0$ ($\nu \neq 1$), and the rank of $(r_{\mu\nu})$ is h. Hence if the notation is suitably chosen, we have

$$|Z_1| = \begin{vmatrix} r_{11} & r_{12} & \cdots & r_{1h} \\ r_{21} & r_{22} & \cdots & r_{2h} \\ \vdots & \vdots & \ddots & \vdots \\ r_{h1} & r_{h2} & \cdots & r_{hh} \end{vmatrix} \equiv 0 \pmod{q},$$

where $r_{11} = 1$, $r_{1\nu} = 0$ ($\nu \neq 1$). Set

We then have

$$(1.23) | \Delta | \equiv 0 \pmod{\mathfrak{q}^*}, | \Delta | \not\equiv 0 \pmod{\mathfrak{q}\mathfrak{q}^*}.$$

Thus we have the following

Lemma 1 Let n_i be the order of the normalizer $\Re(Q_i)$ of Q_i in \mathfrak{G} , and let \mathfrak{q}^* be the highest power of the prime ideal \mathfrak{q} which divides $(n_1n_2 \cdots n_k)^{\frac{1}{2}}$. Then there exists a minor |A| of degree h of $(\chi_{\mu}(Q_i))$, such that the matrix A contains the coefficients in the first row of $(\chi_{\mu}(Q_i))$ and

$$|\Delta| \equiv 0 \pmod{\mathfrak{q}^*}$$
 $|\Delta| \not\equiv 0 \pmod{\mathfrak{q}^*}$.

If the notation is chosen so as Δ appears in the first h rows of $(\chi_{\mu}(Q_i))$, then the first h rows of $(r_{\mu\nu})$ contain a minor of degree h which is not divisible by q. The rank of $(r_{\mu\nu})$ (mod q) is h.

Evidently this lemma may be considered as a special case of Brauer's result in [3] (see p. 507).

We denote by R the matrix of the first h columns of $(r_{\mu\nu})$:

$$R = \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}, \quad |Z_1| \not\equiv 0 \pmod{q}.$$

Since

$$(r_{\mu\nu}) = \begin{pmatrix} Z_1 & Z_3 \\ Z_2 & Z_4 \end{pmatrix} = R(I B),$$

we see that the coefficients of B are rational numbers with the denominators $|Z_1|$. Moreover all the coefficients in the first row of B are zero. Now we set

$$(1.24) (I B)(\vartheta_{\nu}(Q_i)) = (\vartheta_{\lambda}'(Q_i))$$

$$(\nu = 1, 2, \dots, m; i, \lambda = 1, 2, \dots, h)$$
, then

$$\vartheta_1' = \vartheta_1.$$

It follows from $(\chi_{\mu}(Q_i)) = R(I \ B)(\vartheta_{\nu}(Q_i)) = R(\vartheta'_{\nu}(Q))$ that

(1.26)
$$\chi_{\mu}(Q) = \sum_{\lambda=1}^{h} r_{\mu\lambda} \vartheta_{\lambda}'(Q) \qquad \text{(for } Q \text{ in } \mathfrak{Q}).$$

If we set $\theta^* = (\vartheta'_{\lambda}(Q_i))$, then $|\Delta| = |Z_i| |\theta^*|$ and from (1.21), (1.23) we obtain

$$(1.27) \qquad |\theta^*| \equiv 0 \pmod{\mathfrak{q}^*}, \qquad |\theta^*| \equiv 0 \pmod{\mathfrak{q}^*}.$$

Hence we have

Lemma 2. $\vartheta_1'(Q)$, $\vartheta_2'(Q)$,, $\vartheta_n'(Q)$ are linearly independent. Combination of (1.26) with $|Z_1| \neq 0$, yields

(1.28)
$$\vartheta'_{\lambda}(Q_i) = \vartheta'_{\lambda}(Q_i^{(\kappa)}).$$

If we set

$$(1.29) B = (b_{\lambda, h+\kappa}) \lambda = 1, 2, \dots, h; \kappa = 1, 2, \dots, m-h,$$

where $b_{1,h+\kappa} = 0$ ($\kappa = 1, 2, \dots, m-h$), then (1.24) shows

(1.30)
$$\vartheta'_{\lambda}(Q) = \vartheta_{\lambda}(Q) + \sum_{k=0}^{m-h} b_{\lambda_{k}, h+k} \vartheta_{h+k}(Q) \qquad (\lambda = 1, 2, \dots, h).$$

We have from (*)

$$\vartheta_{\lambda}^*(G) = \sum_{\mu} r_{\mu\nu} \chi_{\mu}(G)$$
 $(\lambda = 1, 2, \dots, h),$

or in matrix form

$$(1.31) \Psi = (\vartheta_{\lambda}^*(Q_i)) = R'(\chi_{\mu}(Q_i)).$$

On the other hand we find

$$\vartheta_{h+\kappa}^{*}(G) = \sum_{\mu} r_{\mu,h+\kappa} \chi_{\mu}(G) = \sum_{\mu} \left(\sum_{\lambda=1}^{h} r_{\mu\lambda} b_{\lambda,h+\kappa} \right) \chi_{\mu}(G) \\
= \sum_{\lambda=1}^{h} b_{\lambda,h+\kappa} \left(\sum_{\mu} r_{\mu\nu} \chi_{\mu}(G) \right) = \sum_{\lambda=1}^{h} b_{\lambda,h+\kappa} \vartheta_{\lambda}^{*}(G).$$

As is well known, we have

$$\sum_{\nu=1}^m \vartheta_{\nu}^*(Q_i)\vartheta_{\nu}(Q_j^{-1}) = \delta_{ij}n_i,$$

and hence, on replacing $\vartheta_{h+\kappa}^*$ by $\sum_{\lambda} b_{\lambda,h+\kappa} \vartheta_{\lambda}^*$, we obtain

$$(1.32) \qquad \qquad \sum_{\lambda=1}^{h} \vartheta_{\lambda}^{\star}(Q_{i}) \vartheta_{\lambda}^{\prime}(Q_{j}^{-1}) = \delta_{ij} n_{i}.$$

Then (1.32) yields

$$(1.33) \sum_{i} g_{i} \vartheta_{\kappa}^{*}(Q_{i}) \vartheta_{\lambda}^{\prime}(Q_{i}^{-1}) = \delta_{\kappa \lambda} g (\kappa, \lambda = 1, 2, \dots, h),$$

where $g_i = g/n_i$. Further (1.32) implies that $\vartheta_1^*(G)$, $\vartheta_2^*(G)$,, $\vartheta_h^*(G)$ are linearly independent.

If we set

$$(1.34) W = R'R = (w_{\kappa\lambda}),$$

then, since $\Psi = R'(\chi_{\mu}(Q_i)) = R'R\theta^*$,

$$\vartheta_{\kappa}^{*}(Q) = \sum_{\lambda} w_{\kappa\lambda} \vartheta_{\lambda}'(Q) \qquad \text{(for } Q \text{ in } \mathfrak{Q}).$$

We have $|\vec{\theta}^*| = \pm |\theta^*|$, where $\vec{\theta}^* = (\vec{\vartheta_{\lambda}'}(Q_i))$. Hence it follows from (1.32) that

$$|\overline{\theta}^*||\Psi| = \pm |\theta^*|^2|W| = n_1 n_2 \cdot \cdot \cdot \cdot \cdot n_h$$
.

This implies that $|\theta^*|^2$ is a rational number and

$$|W| \equiv 0 \pmod{q}.$$

It we set $W^{-1} = (\sigma_{\kappa\lambda})$, then (1.33) yields

$$(1.37) \qquad \sum_{i} g_{i} \vartheta_{\kappa}'(Q_{i}) \vartheta_{\lambda}'(Q_{i}^{-1}) = \sigma_{\kappa \lambda} g \qquad (\kappa, \lambda = 1, 2, \dots, h),$$

$$(1.38) \qquad \qquad \sum g_i \vartheta_{\lambda}^*(Q_i) \vartheta_{\lambda}^*(Q_i^{-1}) = w_{\kappa\lambda} g \qquad (\kappa, \lambda = 1, 2, \dots, h).$$

Theorem 1. If we set $(\vartheta'_{\lambda}(Q_i)) = \theta^*$, then

$$|\theta^*|^2 = q_1 q_2 \cdots q_n/v_n$$

where v is a rational integer prime to q.

Proof. Since (I B) $\theta_2 = 0$ by (1.28), we have

$$\begin{pmatrix} I & B \\ 0 & I \end{pmatrix} (\theta_0 & \theta_2) = \begin{pmatrix} I & B \\ 0 & I \end{pmatrix} \begin{pmatrix} \theta_{0,1} & \theta_{2,1} \\ \theta_{0,2} & \theta_{2,2} \end{pmatrix} = \begin{pmatrix} \theta^* & 0 \\ \theta_{0,2} & \theta_{2,2} \end{pmatrix}$$

and hence $\mid \theta \mid = \mid \theta^* \mid \mid \theta_{2,2} \mid$, where $\mid \theta_{2,5} \mid$ is an algebraic integer. (1.10) and (1.11) show that $\mid \theta \mid^2$ is a power of q. Hence $\mid \theta^* \mid^2$ is not divisible by any prime number $p \neq q$. Further, since $\mid \theta^* \mid^2$ is rational, we see from (1.27) that our theorem is valid.

We shall consider a special case when $\mathfrak G$ contains a normal q-Sylow-subgroup $\mathfrak D$. The irreducible characters $\vartheta_1, \vartheta_2, \dots, \vartheta_m$ of $\mathfrak D$ are distributed into classes of characters which are associated with regard to $\mathfrak G$; two characters ϑ_μ and ϑ_ν being associated if

$$\vartheta_{\mu}(Q) = \vartheta_{\nu}(G^{-1}QG),$$

where Q is a variable element of $\mathfrak Q$ and G is a fixed element of $\mathfrak Q$. The number of such classes is equal to h. Let ϑ_1 , ϑ_2 , \dots , ϑ_h be a complete system of representatives for those classes. Further let $\vartheta_{\lambda} = \vartheta_{\lambda}^{(0)}$, $\vartheta_{\lambda}^{(1)}$, \dots , $\vartheta_{\lambda}^{(t_{\lambda})}$ be mutually associated characters. It is easy to see that

(1.39)
$$\vartheta'_{\lambda}(Q) = \sum_{\alpha} \vartheta^{(\alpha)}_{\lambda}(Q).$$

Hence we see that v=1 in Theorem 1. If $r_{\mu\nu} \neq 0$ for some λ in (1.25), then $r_{\mu\kappa} = 0$ for $\kappa \neq \lambda$, that is, $\chi_{\mu}(Q) = r_{\mu\lambda} \vartheta_{\lambda}'(Q)$. We say that χ_{μ} corresponds to the character ϑ_{λ}' . Let $\chi_{\lambda_1}, \chi_{\lambda_2}, \dots, \chi_{\lambda_s}$ be the characters corresponding to ϑ_{λ}' , then

(1.40)
$$w_{\kappa\lambda} = \begin{cases} 0 & \text{for } \kappa \neq \lambda \\ \sum_{i=1}^{s} r_{\lambda_i\lambda}^2 & \text{for } \kappa = \lambda. \end{cases}$$

We see from (1.36) that there exists at least one $r_{\lambda_i \lambda}$ which is prime to q for each λ .

2. We call an element G of \mathfrak{G} q-regular if its order is prime to q. Let $A_1=1,\,A_2,\,\cdots,A_l$ be a maximal system of elements of \mathfrak{G} such that A_k , A_l are not conjugate for $k \neq l$ and the order of each A_k is prime to q. Let \mathfrak{R}_k be the normalizer of A_k in \mathfrak{G} and let \mathfrak{Q}_k be a q-Sylow-subgroup of \mathfrak{R}_k . A full system \sum of elements of \mathfrak{G} representing the different classes of conjugate elements can be obtained in the following manner: Let $Q_1^{(k)},\,Q_2^{(k)},\,\cdots,\,Q_{k(k)}^{(k)}\,(Q_i^{(k)}\in\mathfrak{Q}_k)$ represent the different classes of conjugate elements in \mathfrak{R}_k , in which the orders of the elements are powers of q. Then \sum consists of the elements $A_k Q_i^{(k)}\,(k=1,2,\,\cdots,\,t\,;\,i=1,2,\,\cdots,\,h(k))$. Thus we have

(2.1)
$$n = \sum_{k=1}^{r} h(k), \qquad (h(1) = h).$$

Let us denote by $n_i^{(k)}$ the order of the normalizer $\mathfrak{N}(A_kQ_i^{(k)})$ of $A_kQ_i^{(k)}$ in \mathfrak{S} . Then the order of the normalizer of $Q_i^{(k)}$ in \mathfrak{R}_k is equal to $n_i^{(k)}$. We set $n_i^{(k)} = q_i^{(k)}n_i^{(k)'}$, where $(n_i^{(k)'}, q) = 1$ and $q_i^{(k)}$ is a power of q. We denote by $\chi_{k,1}, \chi_{k,2}, \dots, \chi_{k,n(k)}$ the irreducible characters of \mathfrak{R}_k , and by $\vartheta_{k,1}, \vartheta_{k,2}, \dots, \vartheta_{k,m(k)}$ those of \mathfrak{Q}_k . If we apply the argument in §1 to \mathfrak{R}_k , we have for $Q^{(k)}$ in \mathfrak{Q}_k

(2.2)
$$\chi_{k,\mu}(Q^{(k)}) = \sum_{\nu=1}^{m(k)} r_{k,\mu\nu} \vartheta_{k,\nu}(Q^{(k)}) = \sum_{\lambda=1}^{h(k)} r_{k,\mu\lambda} \vartheta_{k,\lambda}(Q^{(k)}),$$

where the $\vartheta'_{k,\lambda}$ have the same meaning for \mathfrak{R}_k as the ϑ'_{λ} have for \mathfrak{G} . We have from (2.2) (see similar argument in [2], p. 928.)

(2.3)
$$\chi_{\mu}(A_{k}Q^{(k)}) = \sum_{k=1}^{h(k)} r_{\mu \lambda}^{k} \vartheta_{k, \lambda}^{\prime}(Q^{(k)}) \qquad \text{(for } Q^{(k)} \text{ in } \Sigma_{k}).$$

Here the $r_{\mu\lambda}^k$ are integers of the field of the ρ_k th roots of unity and ρ_k means the order of A_k . For k=1, we have $A_1=1$, $\mathfrak{R}_1=\mathfrak{S}$. Hence $r_{\mu\lambda}^1=r_{\mu\lambda}$. We arrange these numbers $r_{\mu\lambda}^k$ for a fixed k in form of a matrix $R^k=(r_{\mu\lambda}^k)$ with μ as row index and λ as column index, and set

(2.4)
$$R = (R^1, R^2, \dots, R^t).$$
 $R^1 = R.$

We see from (2.1) that R is a square matrix of the same degree n as the matrix X of the group characters χ_{μ} of \mathfrak{G} . (2.3) yields

$$(2.5) X = (\chi_{\mu}(A_{k}Q_{i}^{(k)})) = \mathbf{R} \Gamma$$

$$(\mu = 1, 2, \dots, n; k = 1, 2, \dots, t; i = 1, 2, \dots, h(k))$$
. We see from

(2.5) that R is non-singular. Moreover the matrix Γ breaks up completely into the matrices $\theta_k^* = (\vartheta_{k,\lambda})$ $(k = 1, 2, \dots, t)$:

(2.6)
$$\Gamma = \begin{pmatrix} \theta_1^* & 0 \\ \theta_2^* & \\ 0 & \theta_t^* \end{pmatrix}.$$

Theorem 1 implies

(2.7)
$$|\Gamma|^2 = \prod_{k} |\theta_k^*|^2 = \prod_{k} (\prod_{i=1}^{h(k)} q_i^{(k)} / v_k),$$

where $(v_k, q) = 1$. This implies

$$|\mathbf{R}| \neq 0 \qquad (\text{mod } \mathfrak{q}).$$

If we denote by $\vartheta_{k,\lambda}^*$ the character of \mathfrak{N}_k induced by the character $\vartheta_{k,\lambda}$ of \mathfrak{D}_k , then

(2.9)
$$\sum_{\lambda=1}^{h(k)} \vartheta_{k,\lambda}^*(Q_i^{(k)}) \, \overline{\vartheta_{k,\lambda}'(Q_j^{(k)})} = \, \hat{\sigma}_{ij} \, n_i^{(k)}.$$

On the other hand we have

$$\sum_{\mu} \chi_{\mu}(A_k Q_i^{(k)}) \overline{\chi_{\mu}(A_k Q_j^{(k)})} = \delta_{ij} n_i^{(k)},$$

and hence (2.3) yields

$$(2.10) \qquad \qquad \sum_{\lambda=1}^{h(k)} \left(\sum_{\mu} \overline{r}_{\mu\lambda}^{k} \chi_{\mu}(A_{k} Q_{i}^{(k)}) \right) \overline{\vartheta_{k,\lambda}^{\prime}(Q_{j}^{(k)})} = \delta_{ij} n_{i}^{(k)}.$$

Since $\vartheta'_{k,1}$, $\vartheta'_{k,2}$,, $\vartheta'_{k,k(k)}$ are linearly independent, we obtain from (2.9), (2.10)

$$(2.11) \vartheta_{k,\lambda}^*(Q^{(k)}) = \sum_{\mu} \bar{r}_{\mu\lambda}^k \chi_{\mu}(A_k Q^{(k)}).$$

(2.11), combined with (2.3), yields

$$\begin{array}{rcl} \vartheta_{k,\lambda}^{\star}(Q^{(k)}) &=& \sum_{\kappa} w_{\kappa\lambda}^{k} \vartheta_{k,\kappa}^{\prime}(Q^{(k)}) \\ &=& \sum_{k} \left(\sum_{\mu} \overline{r}_{\mu\lambda}^{k} r_{\mu\kappa}^{k} \right) \vartheta_{k,\kappa}^{\prime}(Q^{(k)}), \end{array}$$

and hence

$$(2.12) w_{\kappa\lambda}^k = \sum_{n} r_{\mu\kappa}^k \overline{r}_{\mu\lambda}^k,$$

where the $w_{\kappa\lambda}^k$ have the same meaning for \mathfrak{R}_k as the $w_{\kappa\lambda}$ have for \mathfrak{S} . Further from

$$\sum_{i} \chi_{\mu}(A_{k}Q_{i}^{(k)})\overline{\chi_{\mu}(A_{l}Q_{j}^{(l)})} = 0 \qquad (k \neq l),$$

we have $\sum_{\mu} \overline{r}_{\mu\lambda}^{l} \chi_{\mu}(A_{k}Q_{l}^{(k)}) = 0$, and hence

$$(2.13) \sum_{\mu} \tau_{\mu\kappa}^{k} \bar{\tau}_{\mu\lambda}^{l} = 0 (k \neq l).$$

The group $\mathfrak{S}_k = \{A_k, \mathfrak{D}_k\}$ generated by A_k and \mathfrak{D}_k is a direct product: $\mathfrak{S}_k = \{A_k\} \times \mathfrak{D}_k$. An irreducible character $\psi_{\sigma}^{(k)}$ of \mathfrak{S}_k is the product of an irreducible character $\mathfrak{F}_x^{(k)}$ of the cyclic group $\{A_k\}$ and an irreducible character $\vartheta_{k,\nu}$ of \mathfrak{D}_k :

$$\psi_{\sigma}^{(k)}(A_k Q_i^{(k)}) = \xi_{\alpha}^{(k)}(A_k) \vartheta_{k,\nu}(Q_i^{(k)}).$$

Let us denote by $(\xi_{\alpha}^{(k)} \vartheta_{k,\nu})^*$ the character of \mathfrak{G} induced by the character $\xi_{\alpha}^{(k)} \vartheta_{k,\nu}$. Then we have, by Frobenius' theorem,

(2.15)
$$\begin{cases} \chi_{\mu}(A_{k}Q^{(k)}) = \sum_{\nu} \sum_{\alpha} \dot{r}_{\alpha\mu\nu}^{k} \xi_{\alpha}^{(k)}(A_{k}) \vartheta_{k,\nu}(Q^{(k)}) \\ (\xi_{\alpha}^{(k)} \vartheta_{k,\nu})^{*}(G) = \sum_{\mu} r_{\alpha\mu\nu}^{k} \chi_{\mu}(G) \end{cases}$$

where the $r_{\alpha\mu\nu}^k$ are rational integers, $r_{\alpha\mu\nu}^k \ge 0$. Then (2.3) and (2.15) yield

$$\sum_{\lambda} r_{\mu\lambda}^k \vartheta_{k,\lambda}'(Q^{(k)}) = \sum_{\lambda} \left(\sum_{\alpha} r_{\alpha\mu\lambda}^k \xi_{\alpha}^{(k)}(A_k) \right) \vartheta_{k,\lambda}(Q^{(k)}).$$

Since $\vartheta_{k,1}$, $\vartheta_{k,2}$,, $\vartheta_{k,m(k)}$ are linearly independent, it follows from (1.30) that

(2.16)
$$r_{\mu\lambda}^{k} = \sum_{\alpha} r_{\alpha\mu\lambda}^{k} \hat{\epsilon}_{\alpha}^{(k)}(A_{k}) \qquad (\lambda = 1, 2, \dots, h(k)).$$

Observe that we have formulas analogous to (1.30) for $\vartheta'_{k,\lambda}$. We obtain from (2.16)

$$(2.17) (\boldsymbol{r}_{1\lambda}^{k}, \boldsymbol{r}_{2\lambda}^{k}, \dots, \boldsymbol{r}_{n\lambda}^{k}) = (\hat{\boldsymbol{s}}_{1}^{(k)}(A_{k}), \dots, \hat{\boldsymbol{s}}_{n}^{(k)}(A_{k})) L_{\lambda}^{(k)},$$

where

$$L_{\alpha}^{(k)} = (r_{\alpha\alpha}^k)$$
 α row index; μ column index

 $(\alpha = 1, 2, \dots, \rho; \mu = 1, 2, \dots, n)$. Here $\rho = \rho_k$ is the order of A_k . We set

$$M_k = (\xi_1^{(k)}(A_k), \xi_2^{(k)}(A_k), \dots, \xi_p^{(k)}(A_k)),$$

and

(2.18)
$$M_{k}^{*} = \begin{pmatrix} M_{k} & 0 \\ M_{k} & \\ & \ddots & \\ 0 & & M_{k} \end{pmatrix},$$

where M_k appears in the main diagonal with multiplicity h(k). Hence M_k^* is of type $(h(k), h(k)\rho_k)$. Further we set

(2.19)
$$L_k^* = \begin{pmatrix} L_1^{(k)} \\ L_2^{(k)} \\ \vdots \\ L_{b(k)}^{(k)} \end{pmatrix}.$$

Then L_k^* is of type $(h(k)\rho_k$, n) and we have by (2.17)

$$(2.20) (R^k)' = M_k^* L_k^*,$$

where $(R^k)'$ is the transpose of R^k . Hence if we set

(2.21)
$$M = \begin{pmatrix} M_1^* & 0 \\ M_2^* & \\ & \cdot \\ 0 & M_t^* \end{pmatrix}, \qquad L = \begin{pmatrix} L_1^* \\ L_2^* \\ \vdots \\ L_t^* \end{pmatrix},$$

then M is of type $(n, \sum h(k)\rho_k)$ and L of type $(\sum h(k)\rho_k, n)$, and

$$(2.22) R' = ML.$$

We see from (2.8) and (2.22) that there exists at least one minor |D| of degree n of L such that $|D| \not\equiv 0 \pmod{q}$. Moreover we may assume from the form of M that the matrix D contains exact one row of every $L_{\lambda}^{(k)}$ $(k = 1, 2, \dots, t; \lambda = 1, 2, \dots, h(k))$. Suppose that D contains a row $(r_{\alpha_{\lambda} 1\lambda}^{k}, r_{\alpha_{\lambda} 2\lambda}^{k}, \dots, r_{\alpha_{\lambda} n\lambda}^{k})$ of $L_{\lambda}^{(k)}$. We set

$$(2.23) Y = ((\hat{\varepsilon}_{\alpha_{\lambda}}^{(k)} \vartheta_{k,\lambda})^* (A_l Q_i^{(l)})),$$

 $(k, \lambda \text{ row indices, } l, i \text{ column indices)}$. The matrix Y is of type (n, n) and it follows from (2.15) that Y = DX. This implies

$$(2.24) D^{-1}Y = X.$$

Since $|D| \neq 0 \pmod{q}$, (2.24) shows that the irreducible character

 χ_{μ} is expressed as a linear combination of $(\mathcal{E}_{\kappa_{\lambda}}^{(k)} \vartheta_{k,\lambda})^*$, where the coefficients are rational numbers with the denominator |D|. Thus we have

Lemma 3. If we choose h(k) irreducible characters $\xi_{\omega_{\lambda}}^{(k)} \vartheta_{k,\lambda}$ ($\lambda = 1$, 2,, h(k)) of each subgroup $\mathfrak{D}_k = \{A_k\} \times \mathfrak{D}_k$ ($k = 1, 2, \dots, t$) suitably and if we denote by $(\xi_{\omega_{\lambda}}^{(k)} \vartheta_{k,\lambda})^*$ the character of \mathfrak{D} induced by the character $\xi_{\omega_{\lambda}}^{(k)} \vartheta_{k,\lambda}$, then every character of \mathfrak{D} is expressed as a linear combination of $(\xi_{\omega_{\lambda}}^{(k)} \vartheta_{k,\lambda})^*$, where the coefficients are rational numbers with the denominators prime to q.

As a special case of Lemma 3, we have

Lemma 4. Let q be a prime such that (q, g) = 1. If we choose an irreducible character $\xi_{\alpha}^{(k)}$ of each cyclic subgroup $\{A_k\}$ $(k = 1, 2, \dots, n)$ suitably and if we denote by $(\xi_{\alpha}^{(k)})^*$ the character of \mathfrak{G} induced by the character $\xi_{\alpha}^{(k)}$, then every character of \mathfrak{G} is expressed as a linear combination of $(\xi_{\alpha}^{(k)})^*$ $(k = 1, 2, \dots, n)$, where the coefficients are rational numbers with the denominators prime to q.

We have from Lemma 4

Lemma 5 (Artin). Every character of & is expressed as a linear combination of characters of & induced by irreducible characters of cyclic subgroups, where the coefficients are rational numbers whose denominators are divisors of g.

We call a group elementary, if it is a direct product $\{A\} \times \mathfrak{B}$ of a cyclic group $\{A\}$ and a group \mathfrak{B} of prime power order ([4]). Then groups \mathfrak{S}_k in Lemma 3 are elementary. By Brauer (see [3], Lemma 4), every irreducible character of \mathfrak{S}_k is induced by a linear character of a subgroup $\{A_k\} \times \mathfrak{S}_k$, $\mathfrak{S}_k \subseteq \mathfrak{D}_k$. Evidently $\{A_k\} \times \mathfrak{S}_k$ is elementary. Hence we have from Lemmas 3, 5

Theorem 2 (Brauer). Every character of \mathfrak{G} is expressed as a linear combination $\sum c_{\rho}w_{\rho}^{*}$, where the c_{ρ} are rational integers and where w_{ρ}^{*} are characters of \mathfrak{G} induced by linear characters w_{ρ} of elementary subgroups of \mathfrak{G} .

3. The arguments in §§1 and 2 are also applicable to the theory of modular characters of \mathfrak{G} for a prime $p \neq q$. The distinct irreducible modular characters of \mathfrak{G} will be denoted by $\varphi_1, \varphi_2, \dots, \varphi_l$, where φ_1 is the 1-character. Here l is equal to the number of conjugate classes in \mathfrak{G} which contain the p-regular elements ([6]). Let us denote by $\eta_1, \eta_3, \dots, \eta_l$ the characters of indecomposable con-

stituents of the modular regular representation of \mathfrak{G} (mod p). Let \mathfrak{R}_1 , \mathfrak{R}_2 ,, \mathfrak{R}_l be the classes of conjugate elements in \mathfrak{G} which contain the p-regular elements, and let H_j be a representative element of \mathfrak{R}_j , $(j=1,2,\dots,l)$. Since $p \neq q$, we may assume that $H_l = Q_l$ $(i=1,2,\dots,h)$. We assume that \mathfrak{D}_j , $\mathfrak{D}_j^{(l)}$, ϑ_{ν} and ϑ_{λ}' have the same meaning as in §1. We have by Nakayama's theorem ([6], [7])

$$(3.1) \varphi_{\kappa}(Q) = \sum_{k=1}^{\infty} s_{\kappa k} \vartheta_{\nu}(Q) (for Q in \Omega)$$

(3.2)
$$\vartheta_{\nu}^{*}(H) = \sum_{\kappa=1}^{l} s_{\kappa\nu} \eta_{\kappa}(H)$$
 (for *p*-regular elements *H* in (9))

where the $s_{\kappa\nu}$ are rational integers, $s_{\kappa\nu} \ge 0$. The combination of (1.32) and (3.2) yields

$$(3.3) \qquad \sum_{\lambda=1}^{n} \left(\sum_{\kappa=1}^{l} S_{\kappa\lambda} \eta_{\kappa}(H_{j}) \right) \vartheta_{\lambda}'(Q_{l}^{-1}) = \sum_{\kappa=1}^{l} \left(\sum_{\lambda=1}^{n} S_{\kappa\lambda} \vartheta_{\lambda}'(Q_{l}^{-1}) \right) \eta_{\kappa}(H_{j})$$

$$= \begin{cases} n_{l} & (Q_{l} = H_{j}) \\ 0 & (Q_{l} \neq H_{l}). \end{cases}$$

On the other hand we have

$$(5.4) \qquad \sum_{\kappa=1}^{l} \varphi_{\kappa}(Q_{i}^{-1}) \, \eta_{\kappa}(H_{j}) = \begin{cases} n_{i} & (Q_{i} = H_{j}) \\ 0 & (Q_{i} \neq H_{j}). \end{cases}$$

Since $\eta_1(H)$, $\eta_2(H)$,, $\eta_l(H)$ are linearly independent, it follows from (3.3) and (3.4)

(3.5)
$$\varphi_{\kappa}(Q) = \sum_{\lambda=1}^{h} S_{\kappa\lambda} \vartheta_{\lambda}'(Q) \qquad \text{(for } Q \text{ in } \mathfrak{Q}).$$

We denote by $d_{\mu\kappa}$ the decomposition numbers of \mathfrak{G} for p:

(3.6)
$$\chi_{\mu}(H) = \sum_{\kappa} d_{\mu\kappa} \varphi_{\kappa}(H).$$

We have from (1.26), (3.5) and (3.6)

$$r_{\mu\lambda} = \sum_{\kappa} d_{\mu\kappa} s_{\kappa\lambda},$$

or in matrix form

$$(3.8) R = DS,$$

where $D = (d_{\mu\nu})$ and $S = (s_{\kappa\lambda})$. Let C be the matrix of Cartan invariants of \mathfrak{G} for p. Since C = D'D, we obtain from (1.34) and (3.8)

(3.9)
$$W = R'R = S'D'DS = S'CS$$
.

Let A_1, A_2, \dots, A_t have the same meaning as in §2. We may assume that A_1, A_2, \dots, A_r are a maximal system of elements of G such that G are not conjugate for G and the order of each G is prime to G and G. We obtain by the similar way as in §2

(3.10)
$$\varphi_{\kappa}(A_i Q_j^{(t)}) = \sum_{\lambda=1}^{h(t)} s_{\kappa\lambda}^4 \vartheta_{i,\lambda}'(Q_j^{(t)}),$$

where the $s_{\kappa\lambda}^i$ are algebraic integers. We set $S^i = (s_{\kappa\lambda}^i)$ and

(3.11)
$$S = (S^1, S^2, \dots, S^r), S^1 = S.$$

Then **S** is a square matrix of the same degree $l = \sum h(i)$ as the matrix θ of the modular group characters φ_{κ} of \mathfrak{G} . (3.10) yields

$$\emptyset = (\varphi_{\kappa}(A_i Q_j^{(i)})) = S\Lambda,$$

where the matrix Λ breaks up completely into the matrices $\theta_i^* = (\vartheta_{i,\lambda}'(Q_i^{(i)}))$ $(i = 1, 2, \dots, r)$. Hence, by Theorem 1

(3.13)
$$|A|^2 = \prod_{i=1}^r (\prod_{i=1}^{h(i)} q_i^{(i)} / v_i), \qquad (v_i, q) = 1.$$

We see from (3.12) and (3.13)

$$(3.14) | \mathscr{O} |^2 \equiv 0 (\text{mod } \prod_{j=1}^r \prod_{j=1}^{h(l)} Q_j^{(l)}).$$

(3.14), combined with $| \mathcal{O} |^2 | C | = \prod_{i=1}^r \prod_{j=1}^{h(i)} n_j^{(i)}$, yields

$$|C| \equiv 0 \pmod{q}.$$

Since (3.14) and (3.15) hold for arbitrary prime divisor $q \neq p$ of the order g of \mathfrak{G} and $(|\mathfrak{O}|, p) = 1$, we have

Theorem 3 (Brauer). The determinant |C| of the matrix of Cartan invariants of \mathfrak{G} for p is equal to the highest power of p which divides $\prod_{i=1}^{r} \prod_{j=1}^{h(i)} n_j^{(i)}$.

Further we have from (3.12), (3.13) and (3.14)

$$(3.16) \qquad |\mathbf{S}| \equiv 0 \pmod{\mathfrak{q}}, \qquad |\mathbf{S}| \equiv 0 \pmod{\mathfrak{p}},$$

where p is a prime ideal which divides the prime p

Let \mathfrak{H}_i have the same meaning as in $\S 2 : \mathfrak{H}_i = \{A_i\} \times \mathfrak{L}_i$. We consider only \mathfrak{H}_i such that the order of A_i is prime to p. Let

$$(3.17) \varphi_{\kappa}(A_i Q_j^{(i)}) = \sum_{\nu} \sum_{\alpha} s_{\alpha\kappa\nu}^i \xi_{\alpha}^{(i)}(A_i) \vartheta_{i,\nu}(Q_j^{(i)}),$$

where the $s_{\alpha\kappa\nu}^i$ are rational integers, $s_{\alpha\kappa\nu}^i \ge 0$. Then by Nakayama's theorem we have

$$(3.18) \qquad (\xi_{\alpha}^{(i)} \vartheta_{i,\nu})^*(H) = \sum_{i} S_{\alpha\kappa\nu}^i \eta_{\kappa}(H)$$

for p-regular elements H in \mathfrak{G} . The combination of (3.10) with (3.17) yields

$$\sum_{\lambda=1}^{h(t)} S_{\kappa\lambda}^t \, \vartheta_{t,\lambda}^t(Q_j^{(t)}) = \sum_{\lambda} \left(\sum_{\alpha} S_{\alpha\kappa\nu}^t \xi_{\alpha}^{(t)}(A_i) \right) \vartheta_{t,\nu}(Q_j^{(t)}),$$

and hence we have

(3.19)
$$s_{\kappa}^{i} = \sum_{\alpha} s_{\alpha\kappa\lambda}^{i} \xi_{\alpha}^{(i)}(A_{i}) \qquad (\lambda = 1, 2, \dots, h(i)).$$

From (3.16), (3.18) and (3.19), we have by the similar way as in Lemma 3

Lemma 6. If we choose suitably h(i) irreducible characters $\xi_{\alpha_{\lambda}}^{(i)} \vartheta_{i,\lambda}$ $(\lambda = 1, 2, \dots, h(i))$ from the irreducible characters of each subgroup $\mathfrak{D}_i = \{A_i\} \times \mathfrak{D}_i \ (i = 1, 2, \dots, r), \ then every character <math>\eta_{\kappa}$ is expressed as a linear combination of characters $(\xi_{\alpha_{\lambda}}^{(i)} \vartheta_{i,\lambda})^*$, where the coefficients are rational numbers with denominators prime to q.

Further from $(| \phi |, p) = 1$ we have

Lemma 7. Every character η_{κ} of \mathfrak{G} is expressed as a linear combination of characters of \mathfrak{G} which are induced by irreducible characters of cyclic subgroups $\{H_i\}$ $(i=1,2,\dots,l)$ of orders prime to p, where the coefficients are rational numbers with denominators prime to p.

Now let q be a prime such that (g, q) = 1. Since $(| \emptyset |, q) = 1$, Lemma 7 is also valid if we replace p by q, that is, η_{κ} is expressed as a linear combination of characters of (G) which are induced by irreducible characters of cyclic subgroups $\{H_i\}$, where the coefficients are rational numbers with denominators prime to q. We set $g = p^{\mu}g^{*}$, where $(g^*, p) = 1$. We then have

Lemma 8. Every character η_{κ} of \mathfrak{G} is expressed as a linear combination of characters of \mathfrak{G} which are induced by irreducible characters of cyclic subgroups $\{H_i\}$ $(i=1,2,\dots,l)$, where the coefficients are rational numbers whose denominators are divisors of g^* .

Consequently we have by Lemmas 6 and 8

Theorem 4 (Brauer). Every character η_{κ} of \mathfrak{G} is expressed as a linear combination $\sum d_{\sigma} \omega_{\sigma}^{*}$, where the d_{σ} are rational integers and the

 ω_{σ}^* are characters of \otimes induced by linear characters ω_{σ} of elementary subgroups of order prime to p.

References

- [1] R. Brauer, On the Cartan invariants of groups of finite order, Ann. of Math., 42 (1941), pp. 53 61.
- [2] ______, On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math., 42 (1941), pp. 926 935.
- [3] ———, On Artin's L-series with general group characters, Ann. of Math., 48 (1947), pp. 502 514.
- [4] ———, Applications of induced characters, Amer. J. Math., 69 (1947), pp. 709-716.
- [5] ————, A characterization of the characters of groups of finite order, Ann. of Math., 57 (1953), pp. 357 - 377.
- [6] and C. Nesbitt, On the modular characters of groups, Ann. of Math., 42 (1941), pp. 556 - 590.
- [7] T. NAKAYAMA, Some studies on regular representations, induced representations and modular representations, Ann. of Math., 39 (1938), pp. 361 - 369.
- [8] M. Osima, On the induced characters of a group, Proc. Japan Acad., 28 (1952), pp. 243 248.
- [9] P. ROQUETTE, Arithmetische Untersuchung des Charakterrings einer endlichen Gruppe, J. Reine Angew. Math., 190 (1952), pp. 148 - 168.
- [10] E. Witt, Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einer Zahlkörper, J. Reine Angew. Math., 190 (1952), pp. 231 - 245.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received June 4, 1953)