ON THE INDUCED CHARACTERS OF GROUPS
OF FINITE ORDER

Masaru OSIMA

In this paper we shall study some properties of induced charac-
ters of groups®. Let $ be a group of finite order, and let K be
an algebraic number field which contains the absolutely irreducible
characters of & as well as those of the subgroups of ®. We consider
the representations of & in K. The distinct irreducible characters
of & will be denoted by »,, %, -+ , X»» Where in particular ¥, means,
as usual, the 1-character: #%,(G) =1 for all G in 8. Here n is equal
to the number of classes of conjugate elements in &. Let £ be a
fixed Sylow-subgroup of & belonging to a prime g. We denote by
By, By, eeeeen , 2,, the distinct irreducible characters of 2. We assume
also that ¢, is the l-character, If we denote by ## the character of
& induced by the character ¢,, then we have by Frobenius’ theorem,

w@) = 237 P Q) (for @ in L)
(+)
P3G) = wazu(G) (for G in ©)
ne=l
where the 7,, are rational integers, r,,=>0. Let &, &,, ----- , X, be
the classes of conjugate elements in &, and let &, &, ------, &, be

those which contain the elements of .. As is well known, the
number of linearly independent characters #%* is 2. In §1, we shall
construct the generalized characters #;, 27, ---... , %, of £ which
satisfy the following conditions:
m—h
(1) 2:Q) = 2:(Q) + 200y, 44x?:4(&), where the b,,,.. are ratio-
K=1
nal numbers with the denominators prime to g;
(ii) %(@Q) = (@)
(i) 2UQ), PUQ), - , 7,(Q) are linearly independent ;
(iv) ﬂg(Q) = 93(Q") ), if two elements @ and @’ of < are conjugate
in ®;
(v) 2#HG), 95 G), -+ , #%(G) are linearly independent ;
h
(vi) 7.(Q) =§mﬂ;(Q) with the same 7, @ =1,2, - , k) as
in (%).

1) A summary of the results obtained herein appeared in [8].
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In §2 we study the connection between the group characters and
these generalized characters. Let G be an element of & which does
not belong to &, ¢=1, 2, ... , 7). Then G is of form G = AQ = QA,
where the order of A is prime to g and the order of @ is a power
q¢'=1 of g. We denote by R(A) the normalizer of A in G, and by
R(A), a g-Sylow-subgroup of R(A). We may construct the generalized
characters of R(A), which have the same meaning for R(A) as the
25 have for @. Then the vaiue 7,(AQ) is expressed by these genera-
lized characters of R(A),. The coefficients are not necessarily ratio-
nal, but they are algebraic integers. As an application, we shall
prove a group theoretical theorem due to Brauer ([3], Theorem 1)
which played a fundamental role to prove the conjectures of Artin
and Schur (see{3],[4]). Our proof may be considered as an improve-
ment of Brauer’s original one®.

In §3 we shall apply our method to the theory of modular
characters of @ for a prime p=g¢. In particular we shall prove
Brauer’s theorem concerning the determinant of Cartan invariants of
® ([1), Theorem 1).

1. We consider a group @ of finite order g = ¢"g’ where g is a
prime number and (g’, g) =1. Let @,, @., ------, @, be representa-
tives for the % classes &, R, -+ , &, as described in the introduc-
tion, and let T® be a ¢-Sylow-subgroup of the normalizer R(Q,) of @,
in ®. Replacing @, by a suitable conjugate G!'Q,G, we may assume,
in virtue of Sylow’s theorem, that

1.1 Q®wc o G=1,2 - h).

Denote by #, the order of R(Q). We set »n, = q,n, where g, is a
power of ¢ and (%], ¢ = 1. Then we see by (1.1) that the order of
the normalizer of @, in O is g;.

In &, the elements @,, Q,, -+~ , @, need not form a complete
system of representatives for the classes of conjugate elements.
However, we may construct such a system by adding further elements

Q to the set @,, Q., +--+- , Q.. Each @ will be conjugate in & to a
certain @,, ¢ being uniquely determined by €. We denote the ele-
ments @ belonging to @, by @, = @, @, ---... , Q% (4, =0). Then
(1.2) m = h"‘ElL,

i=1

1) Recently new simpler proofs for this theorem were obtained from the properties
of the character ring of @. See [5], [9] and [10].
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where 72 denotes the number of irreducible characters of T. Let g{
be the order of the normalizer of Q{® in T. We have

(1.3) a@” = q.
From (x), we have
1.4) (@) = (7)) (9Q)
=12 .- S ov=1,2, ---n- ,my 1=1,2, --e- , ). Here r,=1,

7, =0 for v % 1. The rank of the matrix (r,) is k. Since @, and
Q{® are conjugate in ®, 7.(Q) = x.(Q) and hence

(L5) 33 7u04Q) = 317 2,(QF).
We denote by &, the character conjugate complex to 4,. Then
24Q7) = 9.Q).
‘We have from (1.5)
(L.6) 3 7wd@) = 37.9.QF).
We arrange 2,(Q¢®) in matrix form
1.7) 6 = (B3,(Q)) v row index; 7, # column indices.

We arrange the columns so that first the %4 columns with « =0
appear and then the /, columns with 7 =1 and so on. Thus

(1.8) 0 = (@ 0),

where 6, is of type (m, k) and 6, of type (m, m — k). If we set
(1.9) @(QF) = 6 = 6, 6),

then

(1.10) o] = + |6].

We denote by M’ the transpose of a matrix M. By the orthogonality
relations for the characters of Q

@ 0
1.11) 6’0 = 2 q®

0 gi
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Hence

(1.12) 106 = £ |0 = 1 mg.
i I3
We subtract every column (7, 0) from all the columns (7, x) with
£ >0, and with the same first index. Then we obtain a new matrix
{6, 6, which may be written as

(1.13) ®y 0) = (6, O)P = 6P,
where P is a unimodular matrix with | P| = 1. From (1.13) we have
(1.14) l@ 6)| = 1o||lP| = |6l

Since @, 0. = 6P, it follows that

(@“>(@0 0,) = P'(G'6)P.

‘We then obtain from the form of P and (1.11)

2, 0

{1.15) 6.6, = . R

where 2, = (o), 1 < &, A) is of type (/, ) and

) _{q,+q§‘> for &« =2
" 4. for &4
We see easily that
[ = g qE‘t’(l + % 4oeeenen + %_‘)_)
Since ¢ (r=0,1,2, -+ , 1) are divisors of g, and moreover the

number d; of ¢ such that ¢® =g, is prime to ¢ (see [1], Lemma),
we have ‘

{1.16) | 6:0,] =0 (mod 77 17 ),
and
@1n , | 6:0, | == 0 (mod g(rr 17 4t))-
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Since there exists a minor | 4| of degree % of (x.(Q)) (=12,
------ ,n; i=1,2,.-, h) with | 4|0, we may assume that

Zp(Ql) Zp(QZ) """ xp(Qh)

A — XG(Ql) xG(QZ) """ zv(Qh)

xAQ)) AR -+ %AQ)

and | 4]1%0. If we set

Tor Toy tooeer Yo
Z — ru'l rﬂ'2 """" ro'm
7o Tpp oeeeeee Tom
then we have
4 = Z6,

We see by (1.5) and (1.6) that Z6, =0 and Z6,=0. If we set

z
U=<_\)
a,

7

then U is of type (m, m) and

118 v oy = (Z Ve oy =4 O
(L18) (6, f)—(gé)(n o—(* 50)

It follows from | 8;60,1%0 that | U|+0. Now we set

v=(%)
o

Then | U|= +| V|, and

YA 0
uv =( 0 @ 0)
Hence
(1.19) | U= x| ZZ'||6;6,| =0 (mod 17 17 4f).

i 0<x
On combining (1.14), (1.16), (1.18) and (1.19), we have for every minor
of degree % of (x.(Q))
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(1.20) |41*=0 (mod 17 q).
1

Let q be a prime ideal of K which divides the prime ¢, and let
q* be the highest power of the prime ideal q which divides (g,q.
------ g)+. Then there exists at least one minor | 4| of degree %
of (x.Q)), such that | 4]==0 (mod qq*) (see [3], p. 508). If we
choose such minor | 4 |, then it follows from (1.19) that | ZZ' [ 40
(mod g). This implies that there exists at least one minor of degree
k of Z which is not divisible by g. Further we may assume that
this minor contains the coefficients in the first row of (7,,), since
rn=1, n, =0 (v 1), and the rank of (r,,) is 2. Hence if the nota-
tion is suitably chosen, we have

VTR ATTIRLEERTINY 474
Toy Pag *oover 7,

(1.21) [zl =" 10 (mod g),
Tir Tz oo Tun

where 7, =1, r,=0(» % 1). Set

(1.22) 4 = (2(Q)) (1, 1=1,2, veeee. » o).
We then have

(1.23) 4] =0 (mod g*), |41 £ 0 (mod qq*).

Thus we have the following

Lemma 1 Let n, be the order of the normalizer N(Q,) of Q; in
®, and let q* be the highest power of the prime ideal q which divides
(mn, ------ n,)s. Then there exists a minor | 4| of degree h of
(2.(Q)), such that the matrix 4 contains the coefficients in the first
row of (1.(Q)) and

|4] =0 (mod q*) {4] ==0 (mod qq*)

If the notation is chosen so as 4 appears in the first h rows of (1,(Q.)),
then the first h rows of (7,,) contain a minor of degree h which is not
divisible by q. The rank of (r.,) (mod g) is h.

Evidently this lemma may be considered as a special case of
Brauer’s result in [3] (see p. 507).

We denote by R the matrix of the first %z columns of (7,,):



ON THE INDUCED CHARACTERS OF GROUPS OF FINITE ORDER 53

A
Rz(z), 1 Z,| 4= 0 (mod g).

Since
zZ, Z,
= = RU B),
(7v) ( Z Z;) (I B)

 we see that the coefficients of B are rational numbers with the
denominators | Z, |. Moreover all the coefficients in the first row
of B are zero. Now we set

124y U B)(3,(Q)) = (J(Q))
(v = 1,2, .- ,m; i’ A=1,2, - s h)’ then
(1.25) 9 = d,.

It follows from (x,.(Q))) = R(I B)#.,(Q))) = R@F,(Q)) that
(1.26) 2@ = 27a%i@ (for Q in D).

If we set #* = (9,(Q,)), then | 4| =|Z ]| #*| and from (1.21), (1.23)
we obtain

(1.27) [l =0 (mod g%, | 6*[=£ 0 (mod qq*).

Hence we have

Lemma 2. #(Q), 2UQ), ------ , 9:(Q) are linearly independent.
Combination of (1.26) with |Z, | & 0, yields

(1.28) Q) = FUQY).
If we set
(1°29) B = (bh,h-bx) A= 1’ 2: """ ’ h; k= 11 2: """ » m ""h’
where b,,,.. =0(=1,2, .- » m — k), then (1.24) shows
m-h
(1'30) ﬂ,l\(Q) = 0,\(Q) + glb}\,h*xﬂhi-x(Q) ('l = 1! 2; """ » h)-

We have from (x)

?¥(G) = %‘.r,‘yx,‘(G) =12 - , h),
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or in matrix form

(1.31) r = (P¥Q)) = R'(x(Q)).
On the other hand we find

IrG) = D17unatlG) = 33 (27001 ad 1l6)
= 2 (B 706) = 2 by ane?? (6.
As is well known, we have
210HQ)PQF) = dumi,

and hence, on replacing #7,, by 315,,...2¥, we obtain
A

(1.32) SIOHQIQ) = dum.
Then (1.32) yields
(1.33) E{J&W(QJ%(QE’) = 0ng £, 2=1,2, 00 » 1),

where g, = gf#n;. Further (1.32) implies that 9*(G), 8¥(G), -+, 9¥(G)
are linearly independent.

If we set
(1.34) W = RR = (W),
then, since ¥ = R'(x.(Q)) = R'R 6%,
(1.35) I = }A_‘,wuﬂg(Q) (for @ in Q).

We have | 67*i = + | #*|, where #* = (F;:(Q))). Hence it follows from
(1.32) that

| w)] = 2| ]| W] = n 0 n, .
This implies that | #*|* is a rational number and
(1.36) | Wl =0 (mod g).
It we set W-! = (s,,), then (1.33) yields
1.37) 2&0UQ)NQT) = 0ag (£, 4 =1, 2, nenr » o),
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(1.38) DI TEHQIIXQT) = wag (£, 4 =1.2, cevene , k).
Theorem 1. If we set (9 (Q.)) = 6%, then
i % Iz = oGy e q,,/v,

where v is a rational integer prime to q.
Proof. Since (I B)#,=0 by (1.28), we have

I B I B\/#,, &, f g% 0
(0n HB) :( ( ! ’ ) :( )
(0 1) 0 I1)\6,. 6, oy Oy

and hence | #|=|&*| #,,|, where | ¢, .| is an algebraic integer.
(1.10) and (1.11) show that | # |* is a power of g. Hence | #* |* is
not divisible by any prime number p==¢q. Further, since | #* |* is
rational, we see from (1.27) that our theorem is valid.

We shall consider a special case when & contains a normal
g-Sylow-subgroup £:. The irreducible characters #,, J,, ------ , 3, of
£ are distributed into classes of characters which are associated

with regard to &; two characters ¢, and ¢, being associated if
2,(Q) = 2(G'QG),

where @ is a variable element of & and G is a fixed element of ®.
The number of such classes is equal to 2 Let #,, 9,, ... ?, be
a complete system of representatives for those classes. Further let
3, = 0O, 9P, e , 9V be mutually associated characters. It is
easy to see that

(1.39) Q) = EPJﬂi”’(Q}-

Hence we see that ¥ =1 in Theorem 1. If 7,==0 for some 2 in
(1.25), then 7, = 0 for £==24, that is, %,(Q) = 7. 9.(Q@). We say that

7. corresponds to the character ¢,. Let 7\1, Angs woome s X, be the
characters corresponding to 95, then

I 0 for # 2
(1.40) W, = 5o

1 Siria for r = 4.

i=1 °

We see from (1.36) that there exists at least one 7 which is prime
to g for each 4.
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2. We call an element G of & g-regular if its order is prime to
q. Let A, =1, A4,, ----- , A, be a maximal system of elements of &
such that A,, A, are not conjugate for 2=/ and the order of each
A, is prime to gq. Let %, be the normalizer of A, in & and let Q,
be a g-Sylow-subgroup of 9N,. A full system 3} of elements of &
representing the different classes of conjugate elements can be ob-
tained in the following manner: Let Q{®, Q®, -..... » Q58, (@ e Q)
represent the different classes of conjugate elements in %,, in which
the orders of the elements are powers of g. Then 3! consists of
the elements A, Q" (=1, 2, -+---- JE; i=1,2, ... , B(R)). Thus we
have

@.1) n o= S k), (1) = ).

k=1l
Let us denote by #{® the order of the normalizer N(A4.Q%*) of
A Qi in B, Then the order of the normalizer of Q% in R, is equal
to #®. We set #® = g®n{™', where (#{, q) =1 and ¢{® is a power
of g. We denote by xx,., %0 == - » X, ney the irreducible characters
of R, and by &, |, Pu 0y =-ooe- » P mo those of .. If we apply the
argument in §1 to 9., we have for Q¥ in Q,

n(k) 3] , )
(2-2) Xx:,;‘(Q“.)) = ;?_‘Jlrlc,p.‘u "9}:,\;(@"‘)) = ,‘}Jlrv,m ﬂk,A(Q (k))’

where the # , have the same meaning for %, as the #, have for ®.
We have from (2.2) (see similar argument in [2], p. 928.)

0]
(2.3) 1 (A QW) = Ai‘r,‘;m;.,A(Q“’) (for Q® in Q).

Here the 7%, are integers of the field of the p.th roots of unity and
p. means the order of A,. For 2=1, we have A,=1, %, = 6.
Hence 7., =7.. We arrange these numbers 7%, for a fixed %2 in
form of a matrix R* = (%) with £ as row index and 2 as column
index, and set

(24) R = (R, R? - » RY). R' = R.

We see from (2.1) that R is a square matrix of the same degree »
as the matrix X of the group characters %, of &. (2.3) yields

(2.5) X = (x(4:.Q") = RT
(=12, - n, B=1,2, ... L1 1=1,2, -oent , h(k)). We see from
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(2.5) that R is non-singular. Moreover the matrix I” breaks up com-
pletely into the matrices 0¥ = (9, ) (=1, 2, ------ , 8¢

e 0
(2.6) r = . .
.0 oF
Theorem 1 implies
@n |rj*= e = g(:'zz’q?“’/ 2,
where (v, ¢y = 1. This implies
(2.8) [R! =0 (mod q).

If we denote by #%, , the character of N, induced by the character
¥, of <, then

n(k) ——
(2.9) ?_._“‘1192?.A(Q§“’) 9 Q) = 6,n.
On the other hand we have

%‘,z,L(AkQE*’) (A Q) = d,;n®,

and hence (2.3) yields

n(&) ———
(2.10) ;; > ?ﬁAZ}L(Angk))) 192—..\(Q_(1k)) = d,m.
= "
Since 9%,,, Bt 45 =oreer » Pr,w are linearly independent, we obtain
from (2.9), (2.10)
(2.11) FEARY) = S 74H71.(4,Q%).
3

(2.11), combined with (2.3), yields
PEAQY) = Dlwh vl QW)
= 3N TA7L 94, 4Q%),
and hence

(2.12) W = 27070,
M
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‘where the wf, have the same meaning for 9, as the w,, have for &.
Further from

S 7u(A Q) 2,(4,QF) = 0 (kE1),
"
we have >)7},7.(A4.Q5”) = 0, and hence
M
(2.13) 7T =0 (k==1).
®

The group 9, = {A4,, T,} generated by A, and &, is a direct
product: 9, = {4} x .. An irreducible character & of &, is the
‘product of an irreducible character ¢4 of the cyclic group {A4,} and
-an irreducible character ¢, , of T,

(2.14) YR (A, Q) = &0 (A) P, (QF).

Let us denote by (6% #,,,)* the character of ® induced by the character

£99, ,. Then we have, by Frobenius’ theorem,
[ 2dAQ®) = 3175 EP(A) 9., Q%)

2.1,- vV @

R 1 (L3, )*¥(G) = ?fé‘nx#((?)

where the 7§, are rational integers, 7%,=>0. Then (2.3) and (2.15)
yield

SI7E%A QW) = 3 (7560 (A)) % (@),

Since #;,,, PFpuy coeee , e muy are linearly independent, it follows
from (1.30) that

(2.16) 7h = D1rhaP(A) (4 =1,2, e, hiR)).

Observe that' we have formulas analogous to (1.30) for #;,,. We
-obtain from (2.16)

(2.17) (rh, 78, - , 7Y = (A, - » € f,"’(Ak))Lf\"),
where

L = (k) a row index; # column index
(a=1,2, - , 07 #=1,2, - ,#n). Here p = p, is the order of A,.
We set

M, = (R (A, (AL, - » §°(AD),
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and
M, 0
(2.18) MF = . ,
0 . M,
where M, appears in the main diagonal with multiplicity %(k). Hence
M is of type (h(R), h(R)p,). Further we set

(X
L®
23

(2.19) Ly =

(k)
)

Then L} is of type (%(k)o., #) and we have by (2.17)
(2.20) (RY = M¥LE,

where (R%’ is the transpose of R*. Hence if we set

My 0 Lt
M ¥

(2.21) M = ) . ’ L = ‘L'. ’
0 M, L¥

then M is of type (1, > h(R)p,) and L of type (S)h(R)o., #), and
(2.22) R’ = ML.

We see from (2.8) and (2.22) that there exists at least one minor
| D| of degree » of L such that | D|==0 (mod ¢g). Moreover we
may assume from the form of M that the matrix D contains exact

one row of every L (k= 1, 2, ----- Jt 2=1,2, e . (k). Suppose
that D contains a row (7, i, 72,2, == , 75 ) of L. We set
(2.23) Y = (G99, )%(A.Q9)),

(R, 2 row indices, /, / column indices). The matrix Y is of type (x, »n)
and it follows from (2.15) that Y= DX. This implies

(2.24) DY = X.
Since | D|3=0 (mod ¢), (2.24) shows that the irreducible character
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%. 1S expressed as a linear combination of (62,“; 3...)¥% where the co-
efficients are rational numbers with the denominator | D|. Thus
we have

Lemma 3. If we choose h(k) irreducible characters €59, , (2 =1,
2, oo, R(R)) oOf each subgroup 9. = {A} x Qu(k=1,2, -, 8) suit-
ably and if we denote by (6929,)* the character of & induced by the
character 62‘;’ P, then every character of ® is expressed as a linear
combination of (Sﬁf; 3. \)*, where the coefficients are rational numbers
with the denominators prime to q.

As a special case of Lemma 3, we have

Lemma 4. Let g be a prime such that (g, g) =1. If we choose
an trreducible character ¢ of each cyclic subgroup {A} (R=1,2,
------ , 1) suitably and if we denote by (¢$°)* the character of © induced
by the character £, then every character of © is expressed as a linear
combination of E¢M)* (k=1,2, - , 1), where the coefficients are ratio-
nal numbers with the denominators prime to. q.’

We have from Lemma 4

Lemma 5 (Artin). Every character of ® is expressed as a linear
combination of characters of & induced by irreducible characters of
cyclic subgroups, where the coefficients are rational numbers whose
denominators are divisors of g.

We call a group elementary, if it is a direct product {A} x B
of a cyclic group {A} and a group B of prime power order ([4]).
Then groups $, in Lemma 3 are elementary. By Brauer (see [3],
Lemma 4), every irreducible character of o, is induced by a linear
character of a subgroup {4,} x €, €. c C,. Evidently {4} x €, is
elementary. Hence we have from Lemmas 3, 5 '

Theorem 2 (Brauer). Every character of & is expressed as a
linear combination > c,w¥, where the c, are rational integers and where
w} are characters of & induced by linear characters w, of elementary
subgroups of ®.

3. The arguments in §§1 and 2 are also applicable to the theory
of modular characters of & for a prime p=3=q. The distinct irre-
ducible modular characters of & will be denoted by ¢., ¢, «---- s Pus
where ¢, is the l-character. Here / is equal to the number of con-
jugate classes in @ which contain the p-regular elements ([6]). Let
us denote by v, 75, -+ , 7, the characters of indecomposable con-
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stituents of the modular regular representation of & (mod p). Let

&, 8, - , & be the classes of conjugate elements in & which con-
tain the p-regular elements, and let H; be a representative element
of & (=12, - ,1). Since p==¢g, we may assume that H, = @,
(=12, , B). We assume that C, T®, 9, and 4 have the same

meaning as in §1. We have by Nakayama’s theorem ({6], [7]))

@3.1) ¢ (@) = ZSM%(Q) (for @ in Q)

(3.2) I*H) = i}s,(.,v,‘(H) (for p-regular elements H in &)

where the s,, are rational integers, s,, > 0. The combination of (1.32)
and (3.2) yields

h 1 14 i
3.3) (S sanH))9UQTY) = }.‘i(as““”@‘— W) n.(H))

_ I n Q. = H)
| 0 Q.= H)).

On the other hand we have

n: (Q, = Ilrj)
3.4 3‘ QY wi(H
(3.4) Vcﬂ(Q )nHy) = 10 (@ == H).
Since »(H), #.(H), ++-+-- , »(H) are linearly independent, it follows from
(3.3) and (3.4)
3.5) ?Q) = z.sxuﬁ'&(Q) (for @ in Q).

We denote by d,, the decomposition numbers of ¢ for p:

(3.6) 1wl H) = Sd. o H).
‘We have from (1.26), (3.5) and (3.6)
(3-7) Tun = Z(IMKSKA!

or in matrix form
3.8) R = DS,

where D= (d,,) and S = (s,). Let C be the matrix of Cartan in-
variants of @ for p. Since C = D’D, we obtain from (1.34) and (3.8)



62 Masaruy OSIMA

(3.9) W =RR = SDDS = S'CS.
Let A,, A4,, - , A, have the same meaning as in §2. We may
assume that A,, A,, ------ , A, are a maximal system of elements of

® such that A,, A, are not conjugate for 7/3=j and the order of
each A, is prime to p and ¢. We obtain by the similar way as in §2

)
(3.10) dAQP) = X5t MQP),
where the s, are algebraic integers. We set S! = (s%,) and
(3.11) S = (St, S?, --e- , S, , S = S.

Then S is a square matrix of the same degree /= S1A() as the
matrix @ of the modular group characters ¢, of &. (3.10) yields

3.12) 0 = (pA:QF)) = S4,

where the matrix 4 breaks up completely into the matrices #¥ =
@G A@ME=12 - ,7). Hence, by Theorem 1

(3.13) |41 = 1 (maP/v), 0, @ = L
=l =)

We see from (3.12) and (3.13)

(3.14) jo]: =0 (mod 3’. ;}i)q?’).

v r{d)

(3.14), combined with | @ |*| C | = 7 j7#%, yields
i=1 j=i

(3.15) 1C| =0 (mod g).

Since (3.14) and (3.15) hold for arbitrary prime divisor g==p of the
order g of & and (| 2 |, ) =1, we have

Theorem 3 (Brauer). The determinant | C | of the matrix of
Cartan invariants of & for p is equal to the highest power of p which
divides 1 'Irup.

=1 j=1

Further we have from (3.12), (3.13) and (3.14)
(3.16) S| ==0 (mod q), | S| ==0 (mody),

where p is a prime ideal which divides the prime p
Let ©, have the same meaning as in §2: 9, = {A} x ;. We
consider only 9; such that the order of A; is prime to p. Let
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(3-17) ¢K(Al QS‘)) = > g S::xvéz(sl) (A.) g .u(QSI)),

where the s.. are rational integers, si., >=0. Then by Nakayama’s
‘theorem we have .

(3.18) EP 2 )¥H) = D suam(H)

for p-regular elements H in 8. The combination of (3.10) with (3.17)
yields

ak) .

Disa (@) = (2:‘ Sea§P(A)) 2, @),

A=l Y
and hence we have

(3'19) sf{‘/ = X SLKA55:>(AZ) (’t - 1’ 21 """ ’ ]Z (i))'

From (3.16), (3.18) and (3.19), we have by the similar way as in
Lemma 3

Lemma 6. If we choose suitably h(i) irreducible characters 5;‘3 AN
(=12, - , h(i)) from the irreducible characters of each subgroup
Hi={A} x 2, E=12, .- , 7), then every character v, is expressed
as a linear combination of characters (€929, )%, where the coefficients
are rational numbers with denominators prime to q.

Further from (| @ |, $) =1 we have

Lemma 7. Ewvery character 5. of & is expressed as a linear com-
bination of characters of & which are induced by irreducible characters
of cyclic subgroups {H} (i=1,2, -.---- , 1) of orders prime to p, where
the coefficients are rational numbers with denominators prime to p.

Now let g be a prime such that (g, ¢) =1. Since (¢!, ¢ =1,
Lemma 7 is also valid if we replace p by ¢, that is, ». is expressed
as a linear combination of characters of & which are induced by
irreducible characters of cyclic subgroups {H)}, where the coefficients
are rational numbers with denominators prime to g. We set g = p'g*,
where (g*, ) = 1. We then have

Lemma 8. FEvery character 7. of & is expressed as a linear com-
bination of characters of & which are induced by irreducible characters
of cyclic subgroups {H)} (G =1,2, - y 1), where the coefficients are
rational numbers whose denominators are divisors of g¥*.

Consequently we have by Lemmas 6 and 8 ~

Theorem 4 (Brauer). Ewvery character 4, of ® is expressed as a
linear combination >d,«¥, where the d, are rational integers and the
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w¥ are characlers of © induced by linear characters o, of elementary
subgroups of order prime to p.
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