ON PRIMARY IDEAL DECOMPOSITIONS
IN NON-COMMUTATIVE RINGS"

Hisao TOMINAGA

It is the purpose of this note to present the condition that every
ideal in a (non-commutative) ring is represented as the intersection
of a finite number of s-primary ideals. Although the fact that the
well-known rvesults of E. Noether hold in non-commutative case for
those ideals which can be represented as the intersection of a finite
number of right primary ideals has been shown under maximum con-
dition [3]®, a necessary and sufficient condition that such a represen-
tation exists for every ideal is still unknown.

Throughout this note, the term “ideals” will mean “two-sided
ideals ” and R will be a ring considered.

1. The right [left] quotient ab~'[b~'a] of the ideals a and b is
defined by ab*={x e R | xbca}[bla= {xreR | bxca}]. The follow-
ing properties of quotients are easily verified:

1) (ab~')c~t = a(ch)~?,

2) (Q )bt = Q a,bY,

3) a(%} byt = Qab;‘, a, b, a, and b, are ideals.

Let a, b be ideals, if ab~'oa, we say that b is non-prime to «a.
If, for some positive integer %, ab™* = ab~**Y®, then we say that
ab~* is the right limit ideal of a by b. Clearly, the right limit ideal

ab-% = § ab-*. The left limit ideal is defined in the obvious way.
i=1

In the case where the right limit ideal of a by b coincides with the
left one, we call it the limit ideal of a by 0. :

An ideal p is said to be prime [1] if a='p = pa~! = p for any ideal
astp.  As well-known, for every prime divisor p of any ideal a, there
exists a minimal prime divisor of a which are contained in p [1]. The
intersection of all the minimal prime divisors of a is called the radical
of a and denoted by a.

An ideal q is called right [left] primary if qa' = gq[a~'q = q] for
any ideal a<q[3]. An ideal called primary if it is both right and

1) This note has been completed by the encouragement of Prof. M. Moriya. 1 ex-
press him my hearty thanks. .

2) Numbers in brackets refer to the bibliography at the end of the note.

3) ab~* is defined as (ab—k-1)b-! inductively.
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left primary, and a [right, left] primary ideal is called s-[right, left]
primary if its radical is nilpotent modulo the ideal.

Theorem 1. The radical of an s-right primary ideal q is prime.

In fact, let abc q, then (ab)”c q for a sufficiently large n. Let »
be the least with this property. If a,b< g, then (ab)* = (ab)*'abc q
implies (ab)"~'c q because q is right primary. (We set (ab)*! =R if
n =1) But this contradicts with the minimality of z.

If a prime ideal is the radical of an s-primary ideal g, we say
that q is an s-primary ideal belonging to the prime ideal. And a
prime ideal p is called a prime ideal associated with an ideal a [2] if
there exists an s-primary ideal q belonging to p such that q = ar~?,
where t is an ideal not contained in a.

2. In this section, we assume that a =g, N ------ Nq,, where q;
are s-primary and the representation is irredundant®., As easily veri-
fied, a prime ideal p is a minimal prime divisor of a if and only if p
is minimal in the set {§}. If g, =19 for all 7, then a is also a
primary ideal with the radical y’. In fact, p’ is the unique minimal
prime divisor of a and the rest of the proof is easy.

Theorem 2. Leta=q, N - N q., where q, are s-primary, then
a is nilpotent modulo a.

In fact, let %2, be the nilpotency index of §; modulo q,, then
(—d)kl+ Y= R

From the preceding, we can assume, without loss of generality,
that §, does not coincide with any §, (/ &=j) and so that the represen-
tation a=q, N ------ U q. is a short representation of a®.

If n>1, then a is not primary. In fact, let §, be minimal in the
set {G}. Then there exist elements ¢, (=2, «---- » #) such that
@; €4, \{;, where i\, means the complement of §; in §,. And so,
for some positive integer m, (¢)"cq, G =2, -+ - , ), where (@;) means
the two-sided ideal generated by @,. As clearly q,oa, there exists

n
an element ¢, € q,\a, and (g,) iJ__TE (@)™ c a. Suppose now that a is

primary, then (g,) S=a implies {Ji (a)"cac g, but it is impossible.
In the rest of this section, we assume that a = q, 0 +----- N q, be

1) A representation a==q1 1 -+ N qu is called irredundant if none of the g con-
tains the intersection of the remainings.

2) The term “short representations’ will be used for representations as the inter-
section of a finite number of s-primary ideals.
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a short representation of a. By using the same argument as in p. 35
of [4], we can prove, for every short representation of a, the uni-
queness of the number of primary components and the radicals of
the primary components. We state here the proof of the uniqueness
of the isolated components®. ‘

If pc R is any prime ideal, then we denote by a’(p), where o’ is an
ideal, the set of all the elements & of M such that brca’ for some
ideal t<p. (If p=NR, d'(r) =a’, by definition.) As easily verified,
a’(p) is a two-sided ideal containing o'.

Lemma 1. Leta=gq, N - N g, be a short representation. If p
is a prime ideal containing T, ----- , G, AL 7r<n) but not containing
[(APRIPRTERLE , Uns Lhem a(p) = q, N --over Ngq,. If p contains none of the
Gi» then a(p) = N.

We first assume that p contains y,, ------ »U-. Let b be any ele-

ment of a(p), then for some ideal 8<tp, b3c a and so (B)3cq, (=1,
------ ,n). As 8%¢q§,(¢=1, ----,7) and q, are s-primary, (d)c q, (: = 1,
...... ,7). Hence a(p)c q, N ------ N q,. The converse inclusion is proved
as following, If n =7, it is trivial. Therefore, we assume that
r<n and let ¢ be any element of q, N ... ng. For i=7r+1,
------ , n, we choose elements p; € g;\p, then for some positive integer
h, (P cq G=7+1, - yn). If we set v/ = (P ) (p.)*, then
vsp and g0 0 e Nq,. Since ceq, N «---.- N q, it follows that.
¢y c a, and hence c€ a(p).

If p contains none of the @, then the last part of the above
proof shows that there is an ideal 1’/ = (p)*------ (p)* which is not
contained in b, where p; is in §,\p and (p)*c q;. Hence, y1”c a for
all elements y € R, that is, a(p) = A.

Corollary®. Lef a=q; N ----- N g, be a short representation. Then
aip) is s-primary if b is a minimal prime divisor of a.
This is the direct consequence of Lemma 1.

1) Let a==q 1 - [ qn be a short representation. Consider a subset S of the set
{G:} having the property that if 4 ¢S, then §;c4; implies §;5¢ S. The intersection of the
s-primary components belonging to the prime ideals in S is called an isolated component
of a.

2) D.C.Murdoch proved that if a is represented as the intersection of a finite num-
ber of right primary ideals, then u(a, p) is right primary for every minimal prime divisor
y of a, where the maximum condition for ideals is assumed (Corollary 2 to Theorem 17 of
[3]). In our case, we obtain that u(a, p) =1(a, p) =a(p). Thus our corollary corresponds.
to the Murdoch’s result stated above.
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Let b=q, N Nq, be an isolated component of a, then a(;)
(s=1, - , m) Is represented as the intersection of the primary
ideals belonging to a subset of {q,J} Gg=1 - , m) containing 0, -
It follows that b = a@,) N oeeeee na@; ).

We summarize here the uniqueness theorems.

Theorem 3 If an ideal a is represénted as the intersection of a
finite number of s-primary ideals, then there exists a short representa-
tion of a. Awd, :

(1) The number of s-primary components in every short represen-
tation of a and the radicals of them are uniquely determined.

(2) The radicals of primary ideals belonging to an isolated com-
ponent of a wuniquely determine the isolated component, and so the
isolated components of a coincide in all the short representations.

Let b be an arbitrary ideal contained in 7,, then R = q,b™* =
q: 0" ¢*) = p-t*Dq, = b~*q, for a sufficiently large 2 On the other
hand, if by, then q;, = q,b~*= b"q, for every positive integer h.
Thus, for any ideal ¢, there exists a positive integer ¢ such that

qc~t = qe-@rD = ~GrD g — a, N ceeees n i, » where {qil’ ...... , q‘m} is a
subset of {q,, ------ , Q- This proves the next
Theorem 4. Let a=q, N - N g, be a short representation.

Then, for any ideal b, there exists the limit ideal of a by b. And the
number of ideals which, starting from qa, are oblained by repeating the
procedures to make limit ideals successively is finite, and is uniquely
determined by a.

From the existence of the limit ideal of a, we see readily the
following

Corollary.” ab-'>sa if and only if b‘aosa, accordingly, a is
primary if and only if a is right (or left) primary.

Let p be a minimal prime divisor of a (c}) and let # be a posi-
tive integer such that p*c q, for all g, with T, containing p, then
clearly ap™>5a. Hence we have

Theorem 5. Let q, N ------ Nq,=a be a short representation of
acR. If p is a minimal prime divisor of a, then b is non-prime lo a.

Lemma 2. If q is s-primary, then for any ideal t<q, qr™' is
s-left primary.

Clearly, qi'=74. ubc qr~* implies ubrc q, where 1, b are ideals.
If ugqr?, then we have prcq. Thus pcqr’.

1) This corollary is derived from only the fact that there exists the limit ideal of a.
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Theorem 6. If every ideal in N is represented as the intersection
of a finite number of s-primary ideals, then a prime divisor p of an
arbitrary ideal a is a prime ideal associated with o if and only if p
coincides with one of the radicals §, in a short representation a = q, N
------ Nq,. And every primary component q; (j =1, ------, n) has the
following property. For any ideal cc q;, Sa, ac™ is not an s-primary
ideal belonging to T;.

The second part of this theorem follows from ac™ =q,¢c7' 0 ---en
' PR S o s PPY bl o IETORLY N q.c ™

Now we shall prove the first part. As a=q, N ------ ng, is a
short representation, jr; f]j$q,. Clearly a(JQiq,)'l = qt(jr; lq,)“. By

Lemma 2 and Corollary to Theorem 4, a(n q;) ' is an s-primary ideal
It :
belonging to ;. (If # =1, we set ngq,=N.) Conversely, let p be a
J=t

prime ideal associated with a, that is, g = ar~!(x<a) be an s-primary
ideal belonging to p. If rcq,, -+ -+ , G DUt SFEqpeps oot , 0., then ax~!
e TS ALl £ IPPPRP N q,r~%. Again by Lemma 2 and Corollary to Theorem
4, the ideals q,,,t7% +----- , 4,1t are s-primary. By Theorem 3. (1), we
have ar ' = q;x! for some ¢ (#r + 1 <i<n). Hence p coincides with
Ui »

Summarizing the above-mentioned results, we obtain

Theorem 7. In order that every ideal in R is represented as the
intersection of a finite number of s-primary ideals, the following condi-
tions are necessary .

(A) The radical of any ideal a is nilpotent modulo o®.

(B) For any ideals a,b, there exists the limit ideal of a by b and
there exisis a finite number n(a) of ideals which, starting from a, are
obtained by repeating the procedures to make limit ideals swuccessively.
The number n(q) is uniquely determined by a.

(C) Each minimal prime divisor of any ideal ac R is non-prime
to a.

(D) If p is an arbitrary prime ideal associated with an ideal «a,
there exists an s-primary ideal q o a belonging to p such that, for any
ideal bc q, Fa, ab! is no primary ideal belonging to p.

3. In this section, we assume first the condition (B) in Theorem
7. Let a be an ideal and let pcR be a minimal prime divisor of a.

1) In any ring with maximum condition for ideals, the condition (A) is satisfied.
See, for example, Theorem 10 of {3]
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Then we consider the set M of the limit ideals of a by 1/, where t’
runs over all ideals not contained in p. Clearly, by (B), M is a finite
set. Therefore, there exists a maximal ideal a, in M and, for some
ideal t<tp, a, = ar ¥ = ar %D = p-®+Dq = y~*q, where %2 is a suf-
ficiently large positive integer. Being r*<tp, p is obviously a minimal
prime divisor of a,. By the definition, a,c a(p). Let now b be any
element in a(p). Then there exists an ideal 3<% such that b3caca,.

Hence, b€q,3°t = a(d8t®)'c y a®r®)"%. Since g, vua@B™M*e M and
i-1 i=1

a, is maximal in M, then G a(8r®)"*=aqa,, whence b€q,. Thus, we
loot ' .
have a(p) = a, and, furthermore, a, = a,837! for every 3.

Let us assume next the condition (C) in Theorem 7, in addition
to (B). If a(p)==p, then there exists a minimal prime divisor p' % p
of a(p). Since, by (C), v’ is non-prime to a(p), for some ideal b<Ea(p),
by'ca(p). But bca()y ! =a(p). This contradiction shows a(p) = p.
Hence we have proved the following

Lemma 3. Let R satisfy the conditions (B) and (C) in Theorem
7. Then a(p) is primary, where pcR is a minimal prime divisor of
«a, and there exists an ideal 1, Ep such that a(p) = ar;' = 1;7'a.

We prove next the following

Lemma 4. If R satisfies the conditions (A) and (B) in Theorem
7, then the number of prfme ideals associated with a non-primary ideal
a is finite.

Let {p,} be the set of all prime ideals associated with a and let
4, = ar;' (1,9 a) be a primary ideal belonging to p,. By Lemma 3
and the condition (A), the set {p,} is not empty.

At first, let p,op,D-e-ee- oh, be a chain in {p,;}, then 2 < n(a).
If not, we define the ideals 1} (i =1, ------ , B) by setting t; = the limit
ideal of a by p,, 1} = the limit ideal of x/_, by b, ({ > 1). Then, for
some positive integer A, pi ... pi1jc a, where, by (A), we assume
prcq, for every m 1< m<j). As qni.ca and bf-.-... yic ., we
have v, ctj. But, if ¢£>j, t,<1), because pj------ pit, c a implies
Pyeeeees ptcqcp,. Hence, we have an ascending chain act{c......
cr; in which each term is the limit ideal of the preceding one and
whose length is £ But it contradicts with the condition (B). From
this, we can easily see that there is a maximal one in {p,}.

Next, let {p,, «---:- , b} be a finite subset of {p,} and let every p,
be not contained in any remaining one. Then k< m(a), If not, by
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-using the above argument, we can construct an ascending chain
act/c ... crt/ in which each term is the limit ideal of the preced-
ing one and whose length is %.

By the facts proved above, we see that there exists a finite
number of maximal elements in {p,}. Now, we omit from the set
{p,} = M, all the maximal elements P, - » Pr,s » @nd denote by
M, the set of the remaining ideals. Since M, has obviously a finite
number of maximal elements p,,,, -+ » Poysyr WE obtain the set A,
by omitting p, ,, - y Do, from M,. Clearly, each ideal of p, ., -~ ,
p.,, is contained in some of p,/’s. Repeating this procedures, we
-obtain a ‘descending chain Mo M, > :----- , but My +1 is the empty
set, because, otherwise, there exists a descending chain of prime
ideals from {p,} whose length exceeds n{a)— 1. q.e.d.

We assume here the condition (D) besides (A), (B) and (C) in
“Theorem 7.

Let p,, -o---- , b, be all the prime ideals associated with an non
primary ideal a (by Lemma 4), and let q,, ------ , 0. be the primary
divisors of a belonging to p,, ------, p, respectively which possess the
property in (D). Weset b=q, 0. Na,(=2a). By Lemma 3, every
minimal prime divisor of a is a prime ideal associated with a. Hence
dcd. As @ is nilpotent modulo a (by (A)), ab'>a. We suppose
now that doa. If ad™! is non primary, by Lemma 3, we have, for
some ideal 1, ad”!, a primary ideal ad~'r;'cR and set r = 1,0. On
the other hand, if ad™! is primary, we set b =rt. Hence, in either
case, we have a primary ideal q = ar™', where 1<q, xrcd, and § is
a prime ideal associated with a. Therefore, for some 7, §=1,.
Since tc b c g;, the ideal q = ar™! is not primary (by (D)), but this is
a contradiction. Hence, we have a = b, This proves the sufliciency
part of the next principal theorem.

Theorem 8. Every ideal in N is represented as the intersection
of a finite number of s-primary ideals if and only if the conditions
(A), B), (C) and (D) are satisfied.
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