ON THE HOMOTOPY GROUPS OF ROTATION
GROUPS

Masaniro SUGAWARA

G. W. Whitehead [10]° and B. Eckmann [3] determined the 7-th
homotopy groups =#.(R,) of the rotation groups R, of the #z-dimen-
sional euclidean space E" for some values of 7; and N. E. Steenrod
[7, §§22 - 24] summarized them and further results for the values of
7 ranging from 1 to 5. Their calculations are based on the homotopy
groups 7,.(S™ of the n-dimensional spheres S*; and, in recent years,
J. Serre [5,6] and H. Toda [9] have independently determined the
groups #,(S") for r equal to 2 + 3, # + 4 and # + 5. Therefore, we
can calculate the groups =.R,) for » equal to 6, 7 and 8, by the

analogous processes developed in [7, §§22-24]. The results are stated
as follows : '

Theorem 1, i) 2y(R) =0, #,(RK;) =12, a(R,) = 12 + 12 and =,(R))
=0 for n>5.

i) m(R) =0, n(R) =2, n(R)=2+2 and m(Rs) = oo ; and
() =00 + 2, m(Ry) =0 + 4, n(R) =0+ 4+ oo and 7(R,) = co + 8
for n>9, or =, (Rs) = oo, m(R) = o0, (R = o0 + oo and n(R,) = o
for n>9.

iii) ZS(R2) =0, ns(Rs) =2, nS(R4) =2+2, "s(Rs) =0, WS(RG) = 24,
T(l) =2+ 2, 7(Re) =2+ 2+ 2, n(R) =2+ 2 and =nR,) =2 for
7> 10.

As the corollary, some results for the determinations of the
groups =,.{(S™ having a non-zero element are obtained by using the
map J: 7 (R,) - 7,.,(S" of G. W. Whitehead [12]:

Theorem 2. =,(S?) == 0 for the following values of r and n:

r | 12| 13| 14| 15| 15 | 16 16!17‘21

72.5667474‘88

1) Numbers in brackets refer to the references cited at the end of this note.
2) We adopt the conventions that equating a group oc or p means it is cyclic of
order infinite or p, respectively.
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1. Preliminaries

1.1.° We shall use notations analogous to those of [3]. Let
R,,, be the rotation group of the (z + 1)-dimensional euclidean space
E**t and S” the unit sphere of E**. Then R,., is the bundle space
over the base space S™ with the fibre and group R, and the natural
projection p:R,., — S® and, therefore, we can consider the exact
‘homotopy sequence of this fibre bundle {R,,,,», S*, R,, R} :

""" - nr+l(S") 'J_) nr(Rn} 'i—*) nT(RR—l-l) _p_*> zr(Sn) e A )

where i, and p, are the induced homomorphisms of i, the  inclusion
map of R, into R,,,, and p respectively, and 4 is the composed
homomorphism p;'@ of the isomorphism pg': 7, ,(S") — 7,y (Ruer, )
.and the boundary homomorphism @:=,,,(R,.,, R,) = =, (R,). The ker-
nel of iy is Ty, 7 (S*7Y) for < 2n —3, where T,,,:S*"'—> R, is the
characteristic map of this bundle; and i, :7.(R,) —2.(R,.) is iso-
morphic onto for #»_>7 + 2, and onto for # =7 + 1 and moreover
n=rif r is even.

Representing S* by the group of quaternions g of absolute value
1, and let 0:S*—> R; and ¢:S*— R, be the map such that

099 = q9'q™ and o(q)-q = qq',

respectively, where ¢ + g =0, that is ¢’€ §% in the former case.
- Then, the induced homomorphism py : 7(S¥) — #,(R,) is isomorphic
onto for » >2; and =n.(R) =~ =,(S% + =.(R;) for » >1, where the iso-
morphism of #,.(S% into =, (R, is given by ¢,. For r=1,2,3 and 4,
the groups =.(R,) and their generators are known as follows.

) 2a(R)=0, n,(R)=2 for r>3, and »(R)=0 for r>2.
w(R,) =0 for all n.

li) 713(R3) =00 = {“ﬂ} 2, ”3(R4) = oo + co = {a3} + {83}3)’ and 7z:;(Rn)
= oo = {8,} for n>5, where «, and B8, are the elements represented
by o and e, respectively.

iii) n(R)=2= {“-1}: 2 (R) =24 2= {a;} + {B}, 7(R)=2=
{8}, and n,(R,) =0 for n >5, where a, = a,°3,” and 8, = B3°7,.

1) For the properties of this section, cf. [7], §§7,17, 22 - 24,

2) We denote by {«3} the cyclic group generated by the element a.

3) In my(Ry), the term ey must be written 7y a3 precisely, where 7 is the inclusion
map of R; into R;. From now on, if iy maps a subgroup {e} of wy(&y) isomorphically
-onto a subgroup {7y 2} of T4 Run+1), we shall omit the letter iy .

4) =, is the generator of my(S?), cf. 1.2, i), below.
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1.2. The following groups =#.(S"™ are known explicitely®.

i) 7,(S%) = oo = {¢,} for n>1. 7n(S?) = oo ={,} and 7,.,(S™)
=2 = {y,}, for n>3, where 7,= E"z,. 7,,.(8" =2= {7,27,.}
for n >2.

il) 78%) = 2 = {monon}, m(SH) =12 = {}, n(SY = o + 12
= {v} + {#}, and n,,,(S") =24 = {v,} for n >5, where n,=E" "z
and v, = E®y,.

i) 7,S%) =12 = {mon}, 7S =2= {mov), m(SH)=2+2=
{90} + {von}, 7(S%) = 2 = {y;on} and =,,,S") = 0 for n>6.

iv) =(SY) =2 = {77207730;)4}, 7(S¥) = 2 = {g,~vy09:}, 7,(SY) = 2+2
= {7740”;"775} + {'»'4°77:°7h}, nlh(ss) =2 :{V5°v5°779}, nLI(Sﬁ) = oo and
Taes(S™ = 0 for n>7.

1.3. The groups z,(R,) are calculated without proofs in [7, 24.11].
Now, we shall determine their generators for the use of later.

Proposition. 7;(R) =2 = {a;} and =(R) =2+ 2= {a;} + {B;},
where ay = a,on,on, and B; = B,o0,°7,. #n () =2 = {8}, a,(R) = oo
= {6;}, and n(R,) =0 for n>7, where o, is transformed into 2¢;, of
n.(S°) by the map py: =n.(R)— nd(Ss).

#.(R,) and =(R,) are followed immediately from 1.1.

Consider the bundle {R,, p, S, R,, R,} and its homotopy sequence:

m(R) > m(R) L n(SY > a(R) N 7, (R).

As image 4 = kernel ¢} is cyclic subgroup of #,(R,) of order 2 [7, 23.9.
Theorem] and =;(S*) = 2, 4 is isomorphic onto and hence i{ is onto
by exactness. The kernel of i is 7.,7,(S% and its generator is
7“* 73°7) = (—ay + 253) °773°7h2) = @00y = &, and therefore n;(Rs)
is cyclic of order 2 generated by the image of 5..

In the case n,(R;), if we consider the sequence: =, (R)'i‘wz {R;)

2% 0 5(§%) 4 n,(R;) > n(R), then image p, = kernel 4 is the infinite
cyclic subgroup of =;(S°) = oo consisting of all even elements, because
ny(R) = 0 and 7,(R;) = 2. On the other hand, kernel i, = 7\ ,7,(S?) =
1(Bsem) o0} = {Bs} = m5(R;), and hence 7 (R:) = oo.

The homomorphism 7y : z;(K;) > #,(R;) is onto and its kernel is
T.,7(S%. It is known that p7; maps S° onto S° with degree 2 [7,
23.4. Theorem], and hence 7, represents 2¢ of =,(S%). This shows

1) Cf.[9), Appendix 2, a) - f).
2) The maps T; and 7; represent the elements —aj3 - 283 and 83973, respectively,
cf. |7}, 23.6. Theorem, and proofs of 24.6. Theorem.
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that T; represents the generator o, of =(R;), and therefore T, z(S°) =

73(R). Thus we have =;(R) = 0 and 'so =,(R,) = 0 for #n>>7.
14. For R, and R,, it follows immediately, from 1.1 and 1.2.

Proposition. 7(R,) =12 = {a}, #;(R) = 2 = {a;} and a,(R) =2
= {aS}’ where Xg = ;o p;, @, = o0, and ay = a,op0v07;. we(R)
=12 + 12 = {ae} + {8}, m(R)=2+2={a} + {8} and =n(R) =
2 + 2 = {as} + {8}, where B, = Byeny, B; = Byoyzovy and By = Byon,ov,e7r.

2. The groups =.(R)

2.1. To determine =, (R.), we must calculate the kernel of 7,:
(R, = =, (R;). For this purpose, we first consider a principal bundle
B ={B,p, S G, G} over S". Let S*! be a great (» — 1)-sphere on
S* determined by setting the last real coordinate to zero, and EZ, E?
the closed hemi-spheres of S® determined by S*-'. Moreover, let g,
in E7 and a, in E® be the poles of S* !, and V, and V, be open cells
on S* bounded by (n# — 1)-spheres parallel to S™! and containing E?
and E* respectively. If the bundle B is in normal form, that is, its
coordinate neighborhoods are V, and V,, and gy(a)) = e the identity
of G, where @, is the reference point on S*' and g,: V. nV,— G is
the coordinate transformation, then the map T =g, | S*!:S"'> G
is known as the characteristic map of ¥B; and, if r< 22— 3, the
image of the homomorphism 4:=,,,(S") — #(G,) is the group £,7,

7,(S*"'), where G, is the fibre over ¢, and é =¢,, = ¢, |2 x G and
¢,:V, x G— p~(V,) is the coordinate function®.
To prove this property, we consider the diagram:
‘ » Px ]
Toay(S”) —— 7,.(B, G) —> n,(G)
N
LB N T ez,

Tra(S™ ED) <2 n, (B2, §71) = m,(S™Y)

where %2 and / are inclusion maps, @ and 8’ the boundary homomor-
phisms and %:(E?, S*') > (S* @) the map such that, for x€ E?,
h(x) lies in the great circle arc C(¥) = a,xa, and its arc length from
a, is twice that of x; and, finally, if k(x) is the point C(x)n S~
n(E", S*Y) — (B, G,) is the map defined by

1) Cf.]7], 23.2. Theorem.
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é,(h(x), Tk(x)), when A(x)€E,,

) = {¢2(h(x), e), when A(x) € E,.

Then, k., p. and &' are isomorphic onto and commutative ‘relations
hold in the square and triangles, Moreover, as the composed map
k3,07 1 (S*Y) > w,,(S™ is the suspension E, &,Tyn.(S"") =
0p;*En(S*™Y) = 4E=(S*"). If r<2n — 3, this shows the above
property, as E:z(S"Y) — n,.,(S" is onto. The last property is stated
as follows.

Theorem. In the above nolations, the image group £,7T,.=(S™")
is the subgroup AEn.(S*") of =.{G,), and hence, if E:n(S"") — n,,,(S™)
is onto, the group &,T,n(S"") is equal to the image of 4:n..(S")—
(G-

2.2. Now, we consider the principal bundle {R,.,,#, S* R,, R.}.
If a is a element of #,,(S™ such that 4« = 0, then there is a ele-
ment B€ 7,,,(R,.,) such that p,8 = a, by exactness of the homotopy
sequence stated in 1.1. Let f:S™'— R,,, be a map representing B8,
and £:S™*!' x S > S™ be the map determined by the formula: fix, )
= f(x)-y, where x€S"* and ye€ S* Then £ 8™ x y, represents
pyB=a and f| x, x S* represents ¢, for base points x,€ S™' and
Y€ S and hence f has type (a,¢,). It is known that the existence
of a map of type (a, B) is equivalent to [a, 8] =0, where [a, 8] is
the Whitehead product of « and 3 [11, Corollary (3.5)], and therefore
we have

Theorem. If a is a element of =,,(S™ such that 4a =0, then
[a, ¢,] = 0.

2.3. By using above two theorems, we can prove
_ Lemma. The map 4: (S — n(R,) is onto and its kernel is the
infinite cyclic subgroup of =(SY) generated by 12v,.

As the subgroup {#,} c#;(S% is equal to E=(S?, by Theorem of
21, 4{p,} = T.,n(S% and its generator is

T.’;*/“"!i = (—a; + 28)on,
= (—agopu, + 2B)en, + [—ay, 233]°H(”3)D

1) In [12], Theorem 5.15, G. W. Whitehead proved that, if @ ¢ 7,(S?) and 8:, Bz«
wn(X), and if # <37 — 3, then (B, + Bs)oa = Bioa 4 Byoa + [B), B2]o H{xx), where Hie)«
7-(S%2-1) is the generalized Hopf invariant; and Blakers and Massey [2, (5.5)] showed
that the definition of the generalized Hopf invariant H{e) can be extended by one dimen-
sion, and the above relation also holds for the case # =37 — 3.
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= —ayop+ 2B,0m, + [azn a, > H(n) + [st° 83]°H(ﬂ3) - [asv B,]o2H (1)
= —a4 + 285.

The last equality follows from the fact that

[y, @] = [pxtsr Ox ts] = ox[t;y ¢} = 0,
[Bss B3] = [0xty, oxts] = ayfts, ] = 0,

because E(¢,, ¢,]) = 0 [11, Theorem 3.11] and the fact that E:=/(S"
— 7,(S*) is isomorphic onto imply [¢,¢,] =0. The above calculation
shows that 4{x,} = {—a, + 28} = 12.

On the other hand, it is known that [v,, ¢]] = 2ywe;” and v,ou;
has order 24%; and hence, by Theorem of 2.2, 4{»;} is cyclic sub-
group of z(R) of order 12. Set 4v, = a and 4p, = §, then {a} and
{8} are both cyclic subgroups of order 12. If ma = nf for some
integers m and » such that 0 < m, n < 12, then 4@y, — 1) = 0, and
S0 [my, — nnp,, ¢,] =0 by Theorem of 2.2. As [a,, ¢,] = [¢,oEu,, ¢,oE¢]
= [e;n e Jo(py % )Y = Qv — p)e Elpy = (2v, — 1) 02v = 4y, — 2p)0v,,
it follows that ((2m — 4n)v, — 2nu)-v, =0, and hence 2m — 4n=0
mod 24, This shows that m — 272 =0 or —12, and so m + 12a¢ = 2n,
where a=0 or 1. As a has order 12, this shows that 2na =
(m + 12a)a = ma and hence 2na = nf. If =0, this relation con-
tradicts with the fact that both « and B have order 12; and there-
fore 7 =0, and 7, = 0. Thus the intersection of {a} and {3} contains
the zero element only, and hence {a} + {8} = n,(R,), as n(K,) =12 +12
has 12 x 12 elements.

The above results show that 4n;(SY) = 4({a} + {¥}) = =(R),
and the above lemma is completed.

2.4. To determine the image of 4:x,,(S") — =(R,) for » > 7 and
8, we consider the homomorphism Y,:#n/(X)— =, (X), for > 2,
defined by

Yia) = acy,, o € 7 (X).

1) This is a consequence of the fact that [i, vy]= 2r40r7 [9, Lemma (4.6)], and [«, 8]
= (—1)7[a, B] for @ ¢ 7,(X) and B ¢ w,(X) [13, (3.3)].

2) If we apply to rjowr; the Hopf homomorphism Ho: T(S?) —» wr41(S27) of [9, (3.2)]
for 7 =10 and #=4, and use [9, (3.4)] or [8, (2.7)], then Hi(ricvy) = Ho(r1)oE*vs=130vs
= vy, and so v3ov, has order 24.

3) Cf.[12}, (3.58), where us*¢; is the join of p3and 3.

4) [1.1 R 14] =2rq4 — py and En-Spuz=2vy, cf. [9], Lemma (4.3), ii).

5) As in the footnote 2), Hy((avy — bus)ors) = Holavscr;) — bHo(E(130vs)) <k avs, by
[9, (3-3)] or [8, (2.6)], and hence, if (grs — bus)orr =0, @ is a multiple of 24.
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As 7, is the ‘suspension of 7,_,, Y, is clearly a homomorphism. Let
B ={B,p, X, Y, G} be a fibre bundle, Y, the fibre over x,€ X and
4. 7,,.(X) - n(Y,) the boundary homomorphism of the homotopy
sequence of this fibre bundle, then we have '

Lemma. 4.Y,. =Y, 4.,

Let E? and E™ be as in 21, and %k:(E7,S™) —> (S",a) be a
map representing ¢, € n(S”), then k,:= , (EI,S™") — n,.,(S") is iso-
morphic onto for » > 3. As 9:x.(E7,S™Y - n(S""") is isomorphic
onto, there is a map g:(E;*,S")— (El,S"") such that g|S":S”
— §7! represents 7,_,€x{(S""Y), and g represents a generator of
. (EL, §™"), and therefore hg represents the generator 7. of
‘"r+1(Sr)°

We consider the diagram

>

Y-
Dx (X)) —> mu,(X) Dx
n,.(B, K)) l Ar—L l 4, 7rr+1(Br K))

DN (7)) T () £

Let f:(S", @) — (X, x,) and f':(EI,S""Y) — (B, Y,) be a representative
of a € (X) and p;'(a) € n (B, Y,) respectively, then both pf’ and f2
represent a and so pf’ is homotopic to f2. Hence, pf’g is homotopic
to fhg, and, as the latter represents aey, = Y. a), f'g represents
7Y (a). Thus f'g | S":S"— Y, represents 8p;'Y,(a) = 4,.Y (a). On
the other hand, as f’g | S™ is the composition of g | S” and f' | §"!
and these maps represent 7,_, and 0pg'(a) = 4,_,a« respectively,
f'g ! S” represents (4,_,a)ey,_, =Y, 4, «. Thus we have 4.Y,a =
Y, 4, a

2.5. Lemma. The map 4,:x,,(S% — n(R) is isomorphic onto for
r=1728.

For the case B = {R;,p,S" R, R}, Y, 7,(S*) > n(SY), Y,:in(R)
— z(R) and 4;:n,(S?*) — n;(R,) are onto by 1.2, 1.4 and 2.3 respective-
ly, and therefore, by the lemma. of 2.4, 4; is onto. Similarly, 4, is
also onto. Finally, as =,,,(S*) and =,(R,) are the same type 2 + 2, for
r = 7 and 8, isomorphic properties are followed from ontoness

2.6. Now we can determine =.(R.).

Proposition. #(R;) = 0, =(K.) = 00 = {r;} and =(R) =0, where
17 Satisfies Py 17 = 12v, € ©(S?).
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Consider the exact homotopy sequence of the bundle {R;, p,
SY R, R} :

77.',..,_,(34) --7_7') ”r(R;) - ’Tr(R.’.) ﬁ*; ”r(S 1) -”r-l; nr—l(Ri) ‘I*_> nr—l(R.’S)'

For » =6,7 and 8, 4, is onto by 2.3 and 2.5, and hence p, is iso-
morphic into by exactness. For the case » =6, kernel i, = 2 by 1.3,
and =,(S') = 2, and so 4; is isomorphic onto. This shows that =(R;)
=0. For 7 =7, kernel 4,= {12»,} by 2.3, and hence =(R,) = co.
Finally, for r = 8, as 4, is isomorphic onto, =y(R;) = 0.

3. The groups =.(R,) for » >6
3.1. Proposition. =R, =0 for n > 6.

In the homotopy sequence = (R.) it n(Re) 1 75(S?) i 75 (R:) — 7,(Ry),
image 4 =2 and =S’ =2 imply the ontoness of i,, and hence
n(R) = 0, because =(R;) =0. By 1.1, =R, — ni(R,,,) is onto for
n > 6, and therefore we have 3.1.

3.2. Proposition. =;(R,) is equal to i) o + 2 = {r;} + {4} or ii)
oo = {6,}, where pyé; = y.o9,€ 7(S°) and, in the case ii), 20, = r,.
m(R) = 24 = {6}, where p, 6, = v; € n(S").

7(S?) = 24 and =;(R;) = oo imply the image of the homomorphism
4 7e(S% — 7,(R;) is zero only, and therefore the above proposition
follows immediately by making use of the homotopy sequence of the
fibre bundle {R,, p, S°, R;, R;}.

3.3. Now, we consider some maps. Representing S by Cayley
numbers of absolute value 1, and taking a map 5:S’ — R; defined by
p(c)-¢ = c¢c'c™', where ce S” and ¢ € S®*= {c | ce S” and the real part
of ¢ is zero}. Then 7 is a continuous map and it is known that
pA:S"— S°® represents a nonzero element of z;(S%P.

It is known that the bundle R, is equivalent to the product
bundle S x R, and the map 7:S"—> R,, defined by #&(c)-¢’ = cc,
where ¢, ¢ € S7, 'is clearly a cross-section of this product bundle, and
s0, in the direct sum decomposition =.(R*) =~ =,.(S") + =.(&,), the iso-
morphism of =.(S?) into =.(R;) is given by 7,”. Let ¢; and ¢, be ele-
ments represented by 7 and 7 respectively, then

3.4. Proposition. i) m(R,) = 0o +4 = {7} + {&} and n(K) =

1) 7 is equivalent to f of [12], (8.12), which has the property that 2f represents 7;.
2) Cf. (7], (8.5), (8.6)-and (17.8).
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o + 4 + co = {7} + {;} + {&}, if n,(Ry) is the case i) of 3.2; or ii)
n(R) = o = {&,} and —:,(R)—oo+ oo = {s;} + {&.}, if m(Ry) is the
case ii) of 3.2; and the relatzon 2z, = o7 lzolds in (R,

In the sequence n(Ry) =5 n(Ry) i 3 (S“) 4 n(R;), because &;07;€
7(Ry) = 0, kernel iy = T, 7:(S% = {8;°9;°7,}” = 0, and hence 7, is iso-
morphic into. As =n(R) =0, n(R.)/kernel p, =~ z,(S° = 2. On the

other hand, in the homotopy sequence of (R., R): = (R, x 7 ()

% (R, R) - n(R), iy is isomorphic and =R) =0, and therefore
(R} [image i, = =(R:) [ {r:} =~ n(Ry, R;) = 4. These relations imply
the above proposition for =,(®;). =(R;) follows from 3.3.

3.5. Proposition. m(R;) =2+ 2= {5} + {&)} and =(R) =2 +
2 + 2 = {gﬁ}’ + {55} + '{Cs}, w;zere 0:8 = Z.¥ (?S, Eg == £,°%4 and CS ] C?ov_‘,.

In the sequence: (R, ’E, 7o(R;) Py 7{(S*) — 7,(R,) é» (R, iy is
isomorphic, and hence p, is onto. The kernel of ¢§ is equal to
T.,7{S% and its generator is T%,»; = 0,00, = 28;, as pP,(6;0v) =
Dx(8))ov; = 2¢,00, = 2v,. Thus image i =~ {d,}/{28,} = 2. On the
other hand, as py(s;0%;) = Pu(e) oy, = n5o7; &= 0 in 7(S%), the element
& = 2,07y Of n(K;) does not belong to image i and clearly has oder
2. Thus we have n(R;) = 2 + 2 and the above proposition.

3.6. Proposition. For n>9, corresponding to the case i) or ii) of

, 1) m(R) = o0 + 8= {r:} + {5}, or i) m(R,) = oo = {T}}, where

=1, &, and the relation 27, = <, holds. =(R) =2 + 2 = {5} + {C}..
and n(R,) = 2 = {8} for n> 10.

The groups =.{R,) and =;(R,) are the immediate consequence of
the property that 7,:S?— R,, the characteristic map of the principal
bundle {R,, #, S% Rs, R}, represents the element —e, + 2¢. of =(Ry),
which can be proved by the same proofs of the fact that 7, repre-
sents —a; + 25,7 by using Cayley numbers instead of quaternions.

The characteristic map T,,:S®— R, is homotopic to the charac-
teristic map 77 :S° — R. of the unitary bundle®. Because p77:S*—
ST is essential®, 7! represents ads + bzs + &5 of ny(Rs), where a, b = 0
or 1. These properties show that 7T, represents the image of ad, +
bes + s under the map i, : ms(Rs) — #n:(R,) and the latter is aé, + &x. -
where ¢ =0 or 1. Thus we have 3.6.

1) 7% represents 85 ¢ w;(R;), cf. proofs of the proposition of 1.3.
2) Cf.[1], Theorem 1.2.
3) Cf.[7], 23.6. Theorem, and 24.2 - 245,
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By the results of §§2 -3, we obtain Theorem 1 completely.

4. Some remarks on 7,.(S7)

4.1. It was proved by G.W. Whitehead that, if «€ z(R,) and
Dul@) € 7,(S*Y) is not zero, then f(a)€ #,..(S" is a non-zero element
for r < 2n — 3V; and A.L. Blakers and W.S. Massey generalized it
for 2<2n — 3 that, if a€ = (R,) and the suspension Ep,(a) is not
zero, then J(a) &= 0°. By the analogous process and making use of
the Hopf homomorphism H,: (S — =n,.(S™ of [9], we can prove
more generally

4.2. Theorem. If ac =R, and the m-hold suspension E™p(a)
of pula)€ x(S™") is not zero, then J(a) is a non-zero element of r,..(S™),
where m is the minimum value of n+1 and r — 2n + 4.

If a€n(R,), then J(«) is represented by the Hopf construction
of the mapping ST x S*'— S*! of type (p.(a), t,-)", and therefore
H(J(@) = (=1 P E(pyu(a) * t,-)° = (=1 @ PE(E" (@) = (—1)*2
E™'p (@). As the suspension homomorphism E':n,,(S*'*?) — 7,54
(S”*?) is isomorphic for p =7 — 2n + 4, 4.2 is established.

4.3. From 4.2, we can prove Theorem 2.

For the case =,(S%, we consider the element r, of =(R;). By
2.6, p.r; =12y, and, because E™(12v,) = 12v,,,€ n,,..(S™*') is not
zero, 5.2 implies J(r;) is a non-zero element of 7,.(S°).

For the case =,(S%, E™p,0; = E™v, = v,,; and hence aj(3,) =
J(ad,) is not zero for a =1, 2, -+---- , 23. Hence

4.4, Proposition. 7,(S% contains a cyclic subgroup whose order
is a multiple of 24.

7,5(S7) contains a non-zero element Jf(s;), and hence, by [4, Theo-
rem 4], »,~J(s,) is a non-zero element of z;(SY).

Now, we consider the homotopy sequence of the bundle {R.,p,
S% R, R} : :

"s(R7) ‘ﬁi} “s(sﬁ) i" ”s(R«) _1_*_) “a(R7)-

As kernel i, =12 by 3.5 and =(S%) = 24, image p, = kernel 4 =
{12»;} = 2. Hence =(R;) contains a element ¢, such that py =, = 12v,.

1) Ct.[12], Corollary 5.14, for the definition of J: @r(Rx) —> Tr+n(S?) and these results.
2) Cf. (2], (3.5).
3) Cfi. 9], Corollary (3.6).
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Therefore =,(S°) contains a non-zero element J(s,), and consequently
74(S?) contains a non-zero element v,o/f(=).

By the same manner as above, considering the sequence of the
bundle {R,,, S™, R,_,, R,_,} and using 4.2, it follows immediately
that

4.5. Corollary. If the homomorphism i, :=n,_ (R,.) — = (R) is
isomorphic and the image of the suspension E™:7.(S™ ') — 7,.(S* ™)
contains a cyclic subgroup of order p, where m =min n + 1,7 —
2n + 4), then =,..(S™) contains a cyclic subgroup whose order is a
multiple of p. .

As iy:n,_(R) —n.,(R) is isomorphic, it follows immediately
from this property that =.(S%) and =,(S%)" is not zero.
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