ON THE HOMOTOPY GROUPS OF ROTATION GROUPS #### Masahiro SUGAWARA G. W. Whitehead [10]¹⁰ and B. Eckmann [3] determined the r-th homotopy groups $\pi_r(R_n)$ of the rotation groups R_n of the n-dimensional euclidean space E^n for some values of r; and N. E. Steenrod [7, §§ 22 - 24] summarized them and further results for the values of r ranging from 1 to 5. Their calculations are based on the homotopy groups $\pi_r(S^n)$ of the n-dimensional spheres S^n ; and, in recent years, J. Serre [5, 6] and H. Toda [9] have independently determined the groups $\pi_r(S^n)$ for r equal to n+3, n+4 and n+5. Therefore, we can calculate the groups $\pi_r(R_n)$ for r equal to 6, 7 and 8, by the analogous processes developed in [7, §§ 22 - 24]. The results are stated as follows: Theorem 1. i) $\pi_6(R_2) = 0$, $\pi_6(R_3) = 12$, $\pi_6(R_4) = 12 + 12$ and $\pi_6(R_n) = 0$ for $n \gg 5$. - ii) $\pi_7(R_2) = 0$, $\pi_7(R_3) = 2$, $\pi_2(R_4) = 2 + 2$ and $\pi_7(R_5) = \infty$; and $\pi_7(R_6) = \infty + 2$, $\pi_7(R_7) = \infty + 4$, $\pi_7(R_8) = \infty + 4 + \infty$ and $\pi_7(R_n) = \infty + 8$ for $n \geqslant 9$, or $\pi_7(R_6) = \infty$, $\pi_7(R_7) = \infty$, $\pi_7(R_8) = \infty + \infty$ and $\pi_7(R_n) = \infty$ for $n \geqslant 9$. - iii) $\pi_8(R_2) = 0$, $\pi_8(R_3) = 2$, $\pi_8(R_4) = 2 + 2$, $\pi_8(R_5) = 0$, $\pi_8(R_6) = 24$, $\pi_8(R_7) = 2 + 2$, $\pi_8(R_8) = 2 + 2 + 2$, $\pi_8(R_9) = 2 + 2$ and $\pi_8(R_n) = 2$ for $n \geqslant 10$. As the corollary, some results for the determinations of the groups $\pi_r(S^n)$ having a non-zero element are obtained by using the map $J:\pi_r(R_n)\to\pi_{r+n}(S^n)$ of G. W. Whitehead [12]: Theorem 2. $\pi_r(S^n) \neq 0$ for the following values of r and n: | r | 12 | 13 | 14 | 15 | 15 | 16 | 16 | 17 | 21 | |---|----|----|----|----|----|----|----|----|----| | n | 5 | 6 | 6 | 7 | 4 | 7 | 4 | 8 | 8 | ¹⁾ Numbers in brackets refer to the references cited at the end of this note. ²⁾ We adopt the conventions that equating a group ∞ or p means it is cyclic of order infinite or p, respectively. #### 1. Preliminaries 1.1.1) We shall use notations analogous to those of [3]. Let R_{n+1} be the rotation group of the (n+1)-dimensional euclidean space E^{n+1} and S^n the unit sphere of E^{n+1} . Then R_{n+1} is the bundle space over the base space S^n with the fibre and group R_n and the natural projection $p:R_{n+1}\to S^n$ and, therefore, we can consider the exact homotopy sequence of this fibre bundle $\{R_{n+1}, p, S^n, R_n, R_n\}$: $$\cdots \longrightarrow \pi_{r+1}(S^n) \xrightarrow{\Delta} \pi_r(R_n) \xrightarrow{i_*} \pi_r(R_{n+1}) \xrightarrow{p_*} \pi_r(S^n) \longrightarrow \cdots ,$$ where i_* and p_* are the induced homomorphisms of i, the inclusion map of R_n into R_{n+1} , and p respectively, and Δ is the composed homomorphism $p_*^{-1}\partial$ of the isomorphism $p_*^{-1}:\pi_{r+1}(S^n)\to\pi_{r+1}(R_{n+1},R_n)$ and the boundary homomorphism $\partial:\pi_{r+1}(R_{n+1},R_n)\to\pi_r(R_n)$. The kernel of i_* is $T_{n+1_*}\pi_r(S^{n-1})$ for $r\leqslant 2n-3$, where $T_{n+1}:S^{n-1}\to R_n$ is the characteristic map of this bundle; and $i_*:\pi_r(R_n)\to\pi_r(R_{n+1})$ is isomorphic onto for $n\geqslant r+2$, and onto for n=r+1 and moreover n=r if r is even. Representing S^3 by the group of quaternions q of absolute value 1, and let $\rho: S^3 \to R_3$ and $\sigma: S^3 \to R_4$ be the map such that $$\rho(q) \cdot q' = qq'q^{-1}$$ and $\sigma(q) \cdot q' = qq'$, respectively, where $q' + \overline{q}' = 0$, that is $q' \in S^2$, in the former case. Then, the induced homomorphism $\rho_* : \pi_r(S^3) \to \pi_r(R_3)$ is isomorphic onto for $r \geqslant 2$; and $\pi_r(R_1) \approx \pi_r(S^3) + \pi_r(R_3)$ for $r \geqslant 1$, where the isomorphism of $\pi_r(S^3)$ into $\pi_r(R_4)$ is given by σ_* . For r = 1, 2, 3 and 4, the groups $\pi_r(R_n)$ and their generators are known as follows. - i) $\pi_1(R_2) = 0$, $\pi_1(R_n) = 2$ for $r \geqslant 3$, and $\pi_r(R_2) = 0$ for $r \geqslant 2$. $\pi_2(R_n) = 0$ for all n. - ii) $\pi_3(R_3) = \infty = \{\alpha_3\}^2$, $\pi_3(R_4) = \infty + \infty = \{\alpha_3\} + \{\beta_3\}^3$, and $\pi_3(R_n) = \infty = \{\beta_3\}$ for $n \geqslant 5$, where α_3 and β_3 are the elements represented by ρ and σ , respectively. - iii) $\pi_4(R_3) = 2 = \{\alpha_4\}, \quad \pi_4(R_4) = 2 + 2 = \{\alpha_4\} + \{\beta_4\}, \quad \pi_4(R_5) = 2 = \{\beta_4\}, \quad \text{and} \quad \pi_4(R_n) = 0 \text{ for } n \gg 5, \text{ where } \alpha_4 = \alpha_3 \circ \eta_3^{40} \text{ and } \beta_4 = \beta_3 \circ \eta_3.$ ¹⁾ For the properties of this section, cf. [7], §§7, 17, 22 - 24. ²⁾ We denote by $\{a\}$ the cyclic group generated by the element α . ³⁾ In $\pi_3(R_1)$, the term α_3 must be written $i_*\alpha_3$ precisely, where i is the inclusion map of R_3 into R_4 . From now on, if i_* maps a subgroup $\{\alpha\}$ of $\pi_r(R_n)$ isomorphically onto a subgroup $\{i_*\alpha\}$ of $\pi_r(R_{n+1})$, we shall omit the letter i_* . ⁴⁾ η_3 is the generator of $\pi_4(S^3)$, cf. 1.2, i), below. - 1.2. The following groups $\pi_r(S^n)$ are known explicitely. - i) $\pi_n(S^n) = \infty = \{\iota_n\}$ for $n \geqslant 1$. $\pi_3(S^2) = \infty = \{\tau_2\}$ and $\pi_{n+1}(S^n) = 2 = \{\eta_n\}$, for $n \geqslant 3$, where $\eta_n = E^{n-2}\tau_2$. $\pi_{n+2}(S^n) = 2 = \{\eta_n \circ \eta_{n+1}\}$ for $n \geqslant 2$. - ii) $\pi_5(S^2) = 2 = \{\eta_2 \circ \eta_3 \circ \eta_4\}, \quad \pi_6(S^3) = 12 = \{\mu_3\}, \quad \pi_7(S^4) = \infty + 12$ = $\{\nu_4\} + \{\mu_4\}, \quad \text{and} \quad \pi_{n+3}(S^n) = 24 = \{\nu_n\} \quad \text{for} \quad n \geqslant 5, \quad \text{where} \quad \mu_n = E^{n-3}\mu_3$ and $\nu_n = E^{n-4}\nu_4$. - iii) $\pi_6(S^2) = 12 = \{\eta_2 \circ \mu_3\}, \quad \pi_7(S^3) = 2 = \{\eta_3 \circ \nu_4\}, \quad \pi_8(S^4) = 2 + 2 = \{\eta_4 \circ \nu_5\} + \{\nu_4 \circ \eta_7\}, \quad \pi_9(S^5) = 2 = \{\nu_5 \circ \eta_8\} \text{ and } \pi_{n+4}(S^n) = 0 \text{ for } n \geqslant 6.$ - iv) $\pi_7(S^2) = 2 = \{\eta_2 \circ \eta_3 \circ \nu_4\}, \ \pi_8(S^3) = 2 = \{\eta_3 \circ \nu_4 \circ \eta_7\}, \ \pi_5(S^4) = 2 + 2$ $= \{\eta_4 \circ \nu_5 \circ \eta_8\} + \{\nu_4 \circ \eta_7 \circ \eta_8\}, \ \pi_{10}(S^5) = 2 = \{\nu_5 \circ \eta_8 \circ \eta_9\}, \ \pi_{11}(S^6) = \infty \ and$ $\pi_{n+5}(S^n) = 0 \ for \ n \geqslant 7.$ - 1.3. The groups $\pi_5(R_n)$ are calculated without proofs in [7, 24.11]. Now, we shall determine their generators for the use of later. **Proposition.** $\pi_{5}(R_{3}) = 2 = \{\alpha_{5}\}\$ and $\pi_{5}(R_{4}) = 2 + 2 = \{\alpha_{5}\}\ + \{\beta_{5}\}\$, where $\alpha_{5} = \alpha_{3} \circ \eta_{3} \circ \eta_{4}$ and $\beta_{5} = \beta_{3} \circ \eta_{3} \circ \eta_{4}$. $\pi_{5}(R_{5}) = 2 = \{\beta_{5}\}\$, $\pi_{5}(R_{6}) = \infty = \{\delta_{5}\}\$, and $\pi_{5}(R_{n}) = 0$ for $n \geqslant 7$, where δ_{5} is transformed into $2\epsilon_{5}$ of $\pi_{5}(S^{5})$ by the map $p_{*}: \pi_{5}(R_{6}) \rightarrow \pi_{5}(S^{5})$. $\pi_{5}(R_{3})$ and $\pi_{5}(R_{4})$ are followed immediately from 1.1. Consider the bundle $\{R_5, p, S^4, R_4, R_4\}$ and its homotopy sequence: $$\pi_{5}(R_{4}) \xrightarrow{i_{*}^{5}} \pi_{5}(R_{5}) \xrightarrow{p_{*}} \pi_{5}(S^{4}) \xrightarrow{A} \pi_{4}(R_{4}) \xrightarrow{i_{*}^{4}} \pi_{4}(R_{5}).$$ As image $\Delta = \text{kernel } i_*^4$ is cyclic subgroup of $\pi_4(R_4)$ of order 2 [7, 23.9. Theorem] and $\pi_5(S^4) = 2$, Δ is isomorphic onto and hence i_*^5 is onto by exactness. The kernel of i_*^5 is $T_{i_*}\pi_5(S^3)$ and its generator is $T_{i_*}(\eta_3\circ\eta_4) = (-\alpha_3+2\beta_3)\circ\eta_3\circ\eta_4^{(2)} = \alpha_3\circ\eta_3\circ\eta_4 = \alpha_5$, and therefore $\pi_5(R_5)$ is cyclic of order 2 generated by the image of β_5 . In the case $\pi_5(R_5)$, if we consider the sequence: $\pi_5(R_5) \stackrel{i_*}{\to} \pi_5(R_6)$ $\stackrel{p_*}{\to} \pi_5(S^5) \stackrel{d}{\to} \pi_4(R_5) \to \pi_4(R_6)$, then image $p_* = \text{kernel } \Delta$ is the infinite cyclic subgroup of $\pi_5(S^5) = \infty$ consisting of all even elements, because $\pi_4(R_5) = 0$ and $\pi_4(R_5) = 2$. On the other hand, kernel $i_* = T_{**}\pi_5(S^4) = \{(\beta_3 \circ \eta_3) \circ \eta_4\}^2 = \{\beta_6\} = \pi_5(R_5)$, and hence $\pi_5(R_6) = \infty$. The homomorphism $i_*: \pi_5(R_5) \to \pi_5(R_7)$ is onto and its kernel is $T_{7_*}\pi_5(S^5)$. It is known that pT_7 maps S^5 onto S^5 with degree 2 [7, 23.4. Theorem], and hence pT_7 represents $2\iota_7$ of $\pi_5(S^5)$. This shows ¹⁾ Cf. [9], Appendix 2, a) - f). ²⁾ The maps T_5 and T_6 represent the elements $-a_3 + 2\beta_3$ and $\beta_3 \circ \eta_3$, respectively, cf. [7], 23.6. Theorem, and proofs of 24.6. Theorem. that T_7 represents the generator δ_5 of $\pi_5(R_6)$, and therefore $T_{7*}\pi_5(S^5) = \pi_5(R_6)$. Thus we have $\pi_5(R_7) = 0$ and so $\pi_5(R_n) = 0$ for $n \geqslant 7$. 1.4. For R_3 and R_4 , it follows immediately, from 1.1 and 1.2. Proposition. $\pi_6(R_3) = 12 = \{\alpha_6\}, \ \pi_7(R_3) = 2 = \{\alpha_7\} \ \text{and} \ \pi_8(R_3) = 2 = \{\alpha_8\}, \ \text{where} \ \alpha_6 = \alpha_3 \circ \mu_3, \ \alpha_7 = \alpha_3 \circ \eta_3 \circ \nu_4 \ \text{and} \ \alpha_8 = \alpha_3 \circ \eta_3 \circ \nu_4 \circ \eta_7. \ \pi_6(R_4) = 12 + 12 = \{\alpha_6\} + \{\beta_6\}, \ \pi_7(R_4) = 2 + 2 = \{\alpha_7\} + \{\beta_7\} \ \text{and} \ \pi_8(R_4) = 2 + 2 = \{\alpha_8\} + \{\beta_8\}, \ \text{where} \ \beta_8 = \beta_3 \circ \mu_3, \ \beta_7 = \beta_3 \circ \eta_3 \circ \nu_4 \ \text{and} \ \beta_8 = \beta_3 \circ \eta_3 \circ \nu_4 \circ \eta_7.$ #### 2. The groups $\pi_r(R_1)$ 2.1. To determine $\pi_r(R_5)$, we must calculate the kernel of i_* : $\pi_r(R_4) \to \pi_r(R_5)$. For this purpose, we first consider a principal bundle $\mathfrak{B} = \{B, p, S^n, G, G\}$ over S^n . Let S^{n-1} be a great (n-1)-sphere on S^n determined by setting the last real coordinate to zero, and E_+^n , E_-^n the closed hemi-spheres of S^n determined by S^{n-1} . Moreover, let a_1 in E_+^n and a_2 in E_-^n be the poles of S^{n-1} , and V_1 and V_2 be open cells on S^n bounded by (n-1)-spheres parallel to S^{n-1} and containing E_+^n and E_-^n respectively. If the bundle \mathfrak{B} is in normal form, that is, its coordinate neighborhoods are V_1 and V_2 , and $g_{12}(a_0) = e$ the identity of G, where a_0 is the reference point on S^{n-1} and $g_{12}: V_1 \cap V_2 \to G$ is the coordinate transformation, then the map $T = g_{12} \mid S^{n-1}: S^{n-1} \to G$ is known as the characteristic map of \mathfrak{B} ; and, if $r \leqslant 2n-3$, the image of the homomorphism $A: \pi_{r+1}(S^n) \to \pi_r(G_1)$ is the group f_*T_* $\pi_r(S^{n-1})$, where G_1 is the fibre over a_1 and $f_2: f_1 = f_2 = f_2 = f_3 = f_3 = f_4 = f_3 = f_4 = f_3 = f_4 f_4$ To prove this property, we consider the diagram: $$\pi_{r+1}(S^n) \xleftarrow{p_*} \pi_{r+1}(B, G_1) \xrightarrow{\partial} \pi_r(G_1)$$ $$\downarrow k_* \qquad h_* \qquad \uparrow h_* \qquad \uparrow \xi_* T_*$$ $$\pi_{r+1}(S^n, E_+^n) \xleftarrow{\iota_*} \pi_{r-1}(E_-^n, S^{n-1}) \xrightarrow{\partial'} \pi_r(S^{n-1})$$ where k and l are inclusion maps, ∂ and ∂' the boundary homomorphisms and $h:(E_-^n,S^{n-1})\to (S^n,a_l)$ the map such that, for $x\in E_-^n$, h(x) lies in the great circle arc $C(x)=a_2xa_1$ and its arc length from a_2 is twice that of x; and, finally, if k(x) is the point $C(x)\cap S^{n-1}$, $h':(E_-^n,S^{n-1})\to (B,G_l)$ is the map defined by ¹⁾ Cf. [7], 23.2. Theorem. $$h'(x) = \begin{cases} \phi_1(h(x), Tk(x)), & \text{when } h(x) \in E_1, \\ \phi_2(h(x), e), & \text{when } h(x) \in E_2. \end{cases}$$ Then, k_* , p_* and ∂' are isomorphic onto and commutative relations hold in the square and triangles, Moreover, as the composed map $k_*^{-1}l_*\partial'^{-1}:\pi_r(S^{n-1})\to\pi_{r+1}(S^n)$ is the suspension E, $\xi_*T_*\pi_r(S^{n-1})=\partial p_*^{-1}E\pi_r(S^{n-1})=\Delta E\pi_r(S^{n-1})$. If $r\leqslant 2n-3$, this shows the above property, as $E:\pi_r(S^{n-1})\to\pi_{r+1}(S^n)$ is onto. The last property is stated as follows. **Theorem.** In the above notations, the image group $\xi_* T_* \pi_r(S^{n-1})$ is the subgroup $\Delta E \pi_r(S^{n-1})$ of $\pi_r(G_1)$, and hence, if $E: \pi_r(S^{n-1}) \to \pi_{r+1}(S^n)$ is onto, the group $\xi_* T_* \pi_r(S^{n-1})$ is equal to the image of $\Delta: \pi_{r+1}(S^n) \to \pi_r(G_1)$. 2.2. Now, we consider the principal bundle $\{R_{n+1}, p, S^n, R_n, R_n\}$. If α is a element of $\pi_{r+1}(S^n)$ such that $\Delta \alpha = 0$, then there is a element $\beta \in \pi_{r+1}(R_{n+1})$ such that $p_*\beta = \alpha$, by exactness of the homotopy sequence stated in 1.1. Let $f: S^{r+1} \to R_{n+1}$ be a map representing β , and $\bar{f}: S^{r+1} \times S^n \to S^n$ be the map determined by the formula: $\bar{f}(x, y) = f(x) \cdot y$, where $x \in S^{r+1}$ and $y \in S^n$. Then $\bar{f} \mid S^{r+1} \times y_0$ represents $p_*\beta = \alpha$ and $\bar{f} \mid x_0 \times S^n$ represents ϵ_n for base points $x_0 \in S^{r+1}$ and $y_0 \in S^n$, and hence f has type (α, ϵ_n) . It is known that the existence of a map of type (α, β) is equivalent to $[\alpha, \beta] = 0$, where $[\alpha, \beta]$ is the Whitehead product of α and β [11, Corollary (3.5)], and therefore we have **Theorem.** If α is a element of $\pi_{r+1}(S^n)$ such that $\Delta \alpha = 0$, then $\lceil \alpha, \iota_n \rceil = 0$. 2.3. By using above two theorems, we can prove **Lemma.** The map $\Delta: \pi_7(S^4) \to \pi_6(R_4)$ is onto and its kernel is the infinite cyclic subgroup of $\pi_7(S^4)$ generated by $12\nu_4$. As the subgroup $\{\mu_i\} \subset \pi_7(S^4)$ is equal to $E\pi_6(S^3)$, by Theorem of 2.1, $\Delta\{\mu_4\} = T_{i*}\pi_6(S^3)$ and its generator is $$T_{5*}\mu_3 = (-\alpha_3 + 2\beta_3) \circ \mu_3$$ = $(-\alpha_3) \circ \mu_3 + (2\beta_3) \circ \mu_3 + [-\alpha_3, 2\beta_3] \circ H(\mu_3)^{12}$ ¹⁾ In [12], Theorem 5.15, G. W. Whitehead proved that, if $\alpha \in \pi_r(S^n)$ and β_1 , $\beta_2 \in \pi_n(X)$, and if n < 3r - 3, then $(\beta_1 + \beta_2) \circ \alpha = \beta_1 \circ \alpha + \beta_2 \circ \alpha + [\beta_1, \beta_2] \circ H(\alpha)$, where $H(\alpha) \in \pi_r(S^{2n-1})$ is the generalized Hopf invariant; and Blakers and Massey [2, (5.5)] showed that the definition of the generalized Hopf invariant $H(\alpha)$ can be extended by one dimension, and the above relation also holds for the case n = 3r - 3. $$= -\alpha_3 \circ \mu_3 + 2\beta_3 \circ \mu_3 + [\alpha_3, \alpha_3] \circ H(\mu_3) + [\beta_3 \circ \beta_3] \circ H(\mu_3) - [\alpha_3, \beta_3] \circ 2H(\mu_3)$$ = $-\alpha_6 + 2\beta_6$. The last equality follows from the fact that $$[\alpha_3, \alpha_3] = [\rho_* \iota_3, \rho_* \iota_3] = \rho_* [\iota_3, \iota_3] = 0,$$ $$[\beta_3, \beta_3] = [\sigma_* \iota_3, \sigma_* \iota_3] = \sigma_* [\iota_3, \iota_3] = 0,$$ because $E([\iota_3, \iota_3]) = 0$ [11, Theorem 3.11] and the fact that $E: \pi_3(S^3) \to \pi_6(S^4)$ is isomorphic onto imply $[\iota_3, \iota_3] = 0$. The above calculation shows that $A\{\mu_4\} = \{-\alpha_6 + 2\beta_6\} = 12$. On the other hand, it is known that $[\nu_4, \epsilon_4] = 2\nu_4\nu_7^{(1)}$ and $\nu_4\circ\nu_7^{(1)}$ has order $24^{\circ 2}$; and hence, by Theorem of 2.2, $\Delta\{\nu_4\}$ is cyclic subgroup of $\pi_6(R_4)$ of order 12. Set $\Delta\nu_4=\alpha$ and $\Delta\mu_4=\beta$, then $\{\alpha\}$ and $\{\beta\}$ are both cyclic subgroups of order 12. If $m\alpha=n\beta$ for some integers m and n such that $0\leqslant m,n<12$, then $\Delta(m\nu_4-n\mu_4)=0$, and so $[m\nu_4-n\mu_4,\epsilon_4]=0$ by Theorem of 2.2. As $[\mu_4,\epsilon_4]=[\epsilon_4\circ E\mu_3,\epsilon_4\circ E\epsilon_3]=[\epsilon_4\circ\epsilon_4]\circ(\mu_3*\epsilon_3)^{\circ 3}=(2\nu_4-\mu_4)\circ E^4\mu_3=(2\nu_4-\mu_4)\circ 2\nu_7^{\circ 4}=(4\nu_4-2\mu_4)\circ\nu_7$, it follows that $((2m-4n)\nu_4-2n\mu_4)\circ\nu_7=0$, and hence $2m-4n\equiv 0$ mod $24^{\circ 3}$. This shows that m-2n=0 or -12, and so m+12a=2n, where a=0 or 1. As α has order 12, this shows that $2n\alpha=(m+12a)\alpha=m\alpha$ and hence $2n\alpha=n\beta$. If $n\neq 0$, this relation contradicts with the fact that both α and β have order 12; and therefore n=0, and m=0. Thus the intersection of $\{\alpha\}$ and $\{\beta\}$ contains the zero element only, and hence $\{\alpha\}+\{\beta\}=\pi_6(R_4)$, as $\pi_6(R_4)=12+12$ has 12×12 elements. The above results show that $\Delta \pi_7(S^4) = \Delta(\{\mu_4\} + \{\nu_4\}) = \pi_6(R_4)$, and the above lemma is completed. 2.4. To determine the image of $\Delta: \pi_{r+1}(S^4) \to \pi_r(R_1)$ for r > 7 and 8, we consider the homomorphism $Y_r: \pi_r(X) \to \pi_{r+1}(X)$, for r > 2, defined by $$Y_r(\alpha) = \alpha \circ \eta_r$$, $\alpha \in \pi_r(X)$. ¹⁾ This is a consequence of the fact that $[\iota_4, \nu_4] = 2\nu_4 \circ \nu_7$ [9, Lemma (4.6)], and $[\alpha, \beta] = (-1)^{pq} [\alpha, \beta]$ for $\alpha \in \pi_p(X)$ and $\beta \in \pi_q(X)$ [13, (3.3)]. ²⁾ If we apply to $\nu_3 \circ \nu_7$ the Hopf homomorphism $H_0: \pi_r(S^n) \to \pi_{r+1}(S^{2n})$ of [9, (3.2)] for r = 10 and n = 4, and use [9, (3.4)] or [8, (2.7)], then $H_0(\nu_4 \circ \nu_7) = H_0(\nu_4) \circ E^2 \nu_6 = \iota_8 \circ \nu_8 = \nu_8$, and so $\nu_4 \circ \nu_7$ has order 24. ³⁾ Cf. [12], (3.58), where $\mu_3 * \iota_3$ is the join of μ_3 and ι_3 . ⁴⁾ $[\iota_4, \iota_4] = 2\nu_4 - \mu_4$ and $E^{n-3}\mu_3 = 2\nu_n$, cf. [9], Lemma (4.3), ii). ⁵⁾ As in the footnote 2), $H_0((a\nu_4 - b\mu_4)\circ\nu_7) = H_0(a\nu_4\circ\nu_7) - bH_0(E(\mu_3\circ\nu_6)) = a\nu_3$, by [9, (3.3)] or [8, (2.6)], and hence, if $(a\nu_4 - b\mu_4)\circ\nu_7 = 0$, a is a multiple of 24. As η_r is the suspension of η_{r-1} , Y_r is clearly a homomorphism. Let $\mathfrak{B} = \{B, p, X, Y, G\}$ be a fibre bundle, Y_0 the fibre over $x_0 \in X$ and $A_r : \pi_{r+1}(X) \to \pi_r(Y_0)$ the boundary homomorphism of the homotopy sequence of this fibre bundle, then we have Lemma. $\Delta_r Y_r = Y_{r-1} \Delta_{r-1}$. Let E^n_+ and E^n_- be as in 2.1, and $h:(E^r_+,S^{r-1})\to (S^r,a_0)$ be a map representing $\iota_r\in\pi_r(S^r)$, then $h_*:\pi_{r+1}(E^r_+,S^{r-1})\to\pi_{r+1}(S^r)$ is isomorphic onto for r>3. As $\partial:\pi_{r+1}(E^r_+,S^{r-1})\to\pi_r(S^{r-1})$ is isomorphic onto, there is a map $g:(E^{r+1}_+,S^r)\to(E^r_+,S^{r-1})$ such that $g\mid S^r:S^r\to S^{r-1}$ represents $\eta_{r-1}\in\pi_r(S^{r-1})$, and g represents a generator of $\pi_{r+1}(E^r_+,S^{r-1})$, and therefore hg represents the generator η_r of $\pi_{r+1}(S^r)$. We consider the diagram $$\pi_{r}(B, Y_{0}) \xrightarrow{p_{*}} \pi_{r}(X) \xrightarrow{Y_{r}} \pi_{r+1}(X) \xrightarrow{p_{*}} \pi_{r+1}(B, Y_{0})$$ $$\downarrow \Delta_{r-1} \qquad \downarrow \Delta_{r} \qquad \pi_{r+1}(B, Y_{0})$$ $$\uparrow \qquad \qquad \downarrow \Delta_{r} \qquad \qquad \downarrow \Delta_{r} \qquad \qquad \downarrow \Delta_{r+1}(B, Y_{0})$$ Let $f:(S^r,a_0)\to (X,x_0)$ and $f':(E_r^+,S^{r-1})\to (B,Y_0)$ be a representative of $\alpha\in\pi_r(X)$ and $p_*^{-1}(\alpha)\in\pi_r(B,Y_0)$ respectively, then both pf' and fh represent α and so pf' is homotopic to fh. Hence, pf'g is homotopic to fhg, and, as the latter represents $\alpha\circ\eta_r=Y_r(\alpha)$, f'g represents $p_*^{-1}Y_r(\alpha)$. Thus $f'g\mid S^r:S^r\to Y_0$ represents $\partial p_*^{-1}Y_r(\alpha)=\Delta_rY_r(\alpha)$. On the other hand, as $f'g\mid S^r$ is the composition of $g\mid S^r$ and $f'\mid S^{r-1}$ and these maps represent η_{r-1} and $\partial p_*^{-1}(\alpha)=\Delta_{r-1}\alpha$ respectively, $f'g\mid S^r$ represents $(\Delta_{r-1}\alpha)\circ\eta_{r-1}=Y_{r-1}\Delta_{r-1}\alpha$. Thus we have $\Delta_rY_r\alpha=Y_{r-1}\Delta_{r-1}\alpha$. 2.5. Lemma. The map $4_r: \pi_{r+1}(S^4) \to \pi_r(R_4)$ is isomorphic onto for r=7, 8. For the case $\mathfrak{B} = \{R_5, p, S^4, R, R\}$, $Y_7: \pi_7(S^4) \to \pi_8(S^4)$, $Y_6: \pi_6(R_1) \to \pi_7(R_4)$ and $A_6: \pi_7(S^4) \to \pi_6(R_4)$ are onto by 1.2, 1.4 and 2.3 respectively, and therefore, by the lemma of 2.4, A_7 is onto. Similarly, A_8 is also onto. Finally, as $\pi_{r+1}(S^4)$ and $\pi_r(R_4)$ are the same type 2+2, for r=7 and 8, isomorphic properties are followed from ontoness. **2.6.** Now we can determine $\pi_r(R_5)$. **Proposition.** $\pi_6(R_5) = 0$, $\pi_7(R_5) = \infty = \{\gamma_7\}$ and $\pi_8(R_5) = 0$, where γ_7 satisfies $p_* \gamma_7 = 12 \nu_4 \in \pi_7(S^3)$. Consider the exact homotopy sequence of the bundle $\{R_5, p, S^4, R_4, R_4\}$: $$\pi_{r+1}(S^4) \xrightarrow{\mathcal{L}_r} \pi_r(R_1) \to \pi_r(R_2) \xrightarrow{p_*} \pi_r(S^4) \xrightarrow{\mathcal{L}_{r-1}} \pi_{r-1}(R_1) \xrightarrow{i_*} \pi_{r-1}(R_2).$$ For r=6, 7 and 8, Δ_r is onto by 2.3 and 2.5, and hence p_* is isomorphic into by exactness. For the case r=6, kernel $i_*=2$ by 1.3, and $\pi_6(S^4)=2$, and so Δ_5 is isomorphic onto. This shows that $\pi_6(R_5)=0$. For r=7, kernel $\Delta_6=\{12\nu_4\}$ by 2.3, and hence $\pi_7(R_5)=\infty$. Finally, for r=8, as Δ_7 is isomorphic onto, $\pi_8(R_5)=0$. ## 3. The groups $\pi_r(R_n)$ for $n \gg 6$ ## 3.1. Proposition. $\pi_6(R_n) = 0$ for $n \gg 6$. In the homotopy sequence $\pi_6(R_5) \xrightarrow{i_*} \pi_6(R_6) \xrightarrow{p_*} \pi_6(S^5) \xrightarrow{\Delta} \pi_5(R_5) \to \pi_5(R_6)$, image $\Delta=2$ and $\pi_6(S^5)=2$ imply the ontoness of i_* , and hence $\pi_6(R_6)=0$, because $\pi_6(R_7)=0$. By 1.1, $\pi_6(R_a)\to\pi_6(R_{n+1})$ is onto for $n\geqslant 6$, and therefore we have 3.1. 3.2. Proposition. $\pi_7(R_6)$ is equal to i) $\infty + 2 = \{r_7\} + \{\partial_7\}$ or ii) $\infty = \{\partial_7\}$, where $p_*\partial_7 = \eta_5 \circ \eta_6 \in \pi_7(S^5)$ and, in the case ii), $2\partial_7 = r_7$. $\pi_3(R_6) = 24 = \{\delta_8\}$, where $p_*\partial_8 = \nu_5 \in \pi_8(S^5)$. $\pi_3(S^5) = 24$ and $\pi_7(R_5) = \infty$ imply the image of the homomorphism $A: \pi_3(S^5) \to \pi_7(R_5)$ is zero only, and therefore the above proposition follows immediately by making use of the homotopy sequence of the fibre bundle $\{R_6, p, S^5, R_5, R_5\}$. 3.3. Now, we consider some maps. Representing S^7 by Cayley numbers of absolute value 1, and taking a map $\bar{p}: S^7 \to R_7$ defined by $\bar{p}(c) \cdot c' = cc'c^{-1}$, where $c \in S^7$ and $c' \in S^6 = \{c \mid c \in S^7 \text{ and the real part of } c \text{ is zero}\}$. Then \bar{p} is a continuous map and it is known that $p\bar{p}: S^7 \to S^6$ represents a nonzero element of $\pi_7(S^6)^{10}$. It is known that the bundle R_s is equivalent to the product bundle $S^7 \times R_7$ and the map $\overline{\sigma}: S^7 \to R_8$, defined by $\overline{\sigma}(c) \cdot c' = cc'$, where $c, c' \in S^7$, is clearly a cross-section of this product bundle, and so, in the direct sum decomposition $\pi_r(R^s) \approx \pi_r(S^7) + \pi_r(R_7)$, the isomorphism of $\pi_r(S^7)$ into $\pi_r(R_8)$ is given by $\overline{\sigma}_*^2$. Let ε_7 and ζ_7 be elements represented by $\overline{\rho}$ and $\overline{\sigma}$ respectively, then 3.4. Proposition. i) $$\pi_7(R_7) = \infty + 4 = \{r_7\} + \{\varepsilon_7\}$$ and $\pi_7(R_8) =$ ¹⁾ \bar{p} is equivalent to \bar{f} of [12], (8.12), which has the property that $p\bar{f}$ represents η_6 . ²⁾ Cf. [7], (8.5), (8.6) and (17.8). $\infty + 4 + \infty = \{ \gamma_{2} \} + \{ \varepsilon_{2} \} + \{ \zeta_{2} \}, \text{ if } \pi_{2}(R_{6}) \text{ is the case i) of } 3.2; \text{ or ii)}$ $\pi_{7}(R_{7})=\infty=\{\varepsilon_{7}\}\ \ and\ \ \pi_{7}(R_{8})=\infty+\infty=\{\varepsilon_{7}\}+\{\zeta_{7}\},\ \ if\ \ \pi_{7}(R_{6})\ \ is\ \ the$ case ii) of 3.2; and the relation $2\varepsilon_7 = \delta_7$ holds in $\pi_1(R_7)$. In the sequence $\pi_1(R_s) \xrightarrow{i_*} \pi_1(R_7) \xrightarrow{p_*} \pi_2(S^6) \xrightarrow{\Delta} \pi_6(R_6)$, because $\delta_1 \circ \gamma_2 \in$ $\pi_{\rm b}(R_{\rm b})=0$, kernel $i_{\star}=T_{i_{\star}}\pi_{i}(S^{5})=\{\delta_{\rm 5}\circ\eta_{\rm 5}\circ\eta_{\rm 6}\}^{10}=0$, and hence i_{\star} is isomorphic into. As $\pi_6(R_6) = 0$, $\pi_7(R_7) / \text{kernel } p_* \approx \pi_7(S^6) = 2$. On the other hand, in the homotopy sequence of (R_7, R_5) : $\pi_7(R_5) \stackrel{i_*}{\to} \pi_7(R_7)$ $\stackrel{j_*}{\to} \pi_{\scriptscriptstyle 7}(R_{\scriptscriptstyle 7}, R_{\scriptscriptstyle 5}) \to \pi_{\scriptscriptstyle 6}(R_{\scriptscriptstyle 5}), i_*$ is isomorphic and $\pi_{\scriptscriptstyle 6}(R_{\scriptscriptstyle 5}) = 0$, and therefore $\pi_7(R_7)$ / image $i_* = \pi_7(R_7)$ / $\{\gamma_7\} \approx \pi_7(R_7, R_5) = 4^2$. These relations imply the above proposition for $\pi_7(R_7)$. $\pi_7(R_8)$ follows from 3.3. **3.5.** Proposition. $\pi_3(R_7) = 2 + 2 = \{\bar{\delta}_3\} + \{\varepsilon_3\} \text{ and } \pi_3(R_3) = 2 + 2 = \{\bar{\delta}_3\} + \{\varepsilon_3\} \}$ $2+2=\{\bar{\delta}_s\}+\{\varepsilon_s\}+\{\zeta_s\}, \text{ where } \bar{\delta}_s=i_*\delta_s, \ \varepsilon_s=\varepsilon_{7}\circ\eta_7 \text{ and } \zeta_s=\zeta_{7}\circ\eta_7.$ In the sequence: $\pi_3(R_6) \xrightarrow{i_8^8} \pi_3(R_7) \xrightarrow{p_*} \pi_8(S^6) \to \pi_7(R_6) \xrightarrow{i_7^7} \pi_7(R_7)$, i_*^7 is isomorphic, and hence p_* is onto. The kernel of i_*^8 is equal to $T_{7*}\pi_8(S^5)$ and its generator is $T_{7*}\nu_5=\delta_5\circ\nu_5=2\delta_8$, as $p_*(\delta_5\circ\nu_5)=$ $p_*(\delta_5) \circ \nu_5 = 2\iota_5 \circ \nu_5 = 2\nu_5$. Thus image $i_*^s \approx \{\delta_8\} / \{2\delta_8\} = 2$. On the other hand, as $p_*(\varepsilon_7 \circ \eta_7) = p_*(\varepsilon_7) \circ \eta_7 = \eta_6 \circ \eta_7 \neq 0$ in $\pi_8(S^6)$, the element $\varepsilon_8 = \varepsilon_4 \circ \eta_7$ of $\pi_8(R_7)$ does not belong to image i_*^8 and clearly has oder Thus we have $\pi_s(R_7) = 2 + 2$ and the above proposition. 3.6. Proposition. For $n \geqslant 9$, corresponding to the case i) or ii) of 3.2, i) $\pi_7(R_n) = \infty + 8 = \{r_7\} + \{\overline{\zeta}_7\}$, or ii) $\pi_7(R_n) = \infty = \{\overline{\zeta}_7\}$, where $\bar{\zeta}_7 = i_* \zeta_7$ and the relation $2\bar{\zeta}_7 = \varepsilon_7$ holds. $\pi_s(R_9) = 2 + 2 = \{\bar{\delta}_s\} + \{\zeta_s\}$, and $\pi_3(R_n) = 2 = \{\delta_s\}$ for $n \gg 10$. The groups $\pi_{\mathfrak{f}}(R_{\mathfrak{g}})$ and $\pi_{\mathfrak{g}}(R_{\mathfrak{g}})$ are the immediate consequence of the property that $T_s: S^7 \to R_s$, the characteristic map of the principal bundle $\{R_9, p, S^8, R_8, R_8\}$, represents the element $-\varepsilon_7 + 2\zeta_7$ of $\pi_7(R_8)$, which can be proved by the same proofs of the fact that $T_{\scriptscriptstyle 5}$ represents $-\alpha_3 + 2\beta_3^{3}$ by using Cayley numbers instead of quaternions. The characteristic map $T_{10}: S^{s} \to R_{9}$ is homotopic to the characteristic map $T_5: S^8 \to R_8$ of the unitary bundle⁵⁾. Because $pT_5: S^8 \to R_8$ S^{τ} is essential³⁾, T_5' represents $a\bar{b}_8 + b\varepsilon_8 + \zeta_8$ of $\pi_8(R_8)$, where a, b = 0or 1. These properties show that T_{10} represents the image of $a\bar{\delta}_8$ + $b \in {}_8 + \zeta_8$ under the map $i_* : \pi_8(R_8) \to \pi_8(R_9)$ and the latter is $a\bar{\delta}_s + \zeta_8$, where a = 0 or 1. Thus we have 3.6. ¹⁾ T_7 represents $\delta_5 \in \pi_5(R_6)$, cf. proofs of the proposition of 1.3. ²⁾ Cf. [1], Theorem 1.2. 3) Cf. [7], 23.6. Theorem, and 24.2 - 24.5. By the results of $\S\S2-3$, we obtain Theorem 1 completely. ### 4. Some remarks on $\pi_r(S^n)$ - **4.1.** It was proved by G. W. Whitehead that, if $\alpha \in \pi_r(R_n)$ and $p_*(\alpha) \in \pi_r(S^{n-1})$ is not zero, then $J(\alpha) \in \pi_{r+n}(S^n)$ is a non-zero element for $r < 2n 3^{10}$; and A. L. Blakers and W. S. Massey generalized it for $n \leq 2n 3$ that, if $\alpha \in \pi_r(R_n)$ and the suspension $Ep_*(\alpha)$ is not zero, then $J(\alpha) \neq 0^{20}$. By the analogous process and making use of the Hopf homomorphism $H_0: \pi_r(S^n) \to \pi_{r+1}(S^{2n})$ of [9], we can prove more generally - 4.2. **Theorem.** If $\alpha \in \pi_r(R_n)$ and the m-hold suspension $E^m p_*(\alpha)$ of $p_*(\alpha) \in \pi_r(S^{n-1})$ is not zero, then $J(\alpha)$ is a non-zero element of $\pi_{r+n}(S^n)$, where m is the minimum value of n+1 and r-2n+4. If $\alpha \in \pi_r(R_n)$, then $J(\alpha)$ is represented by the Hopf construction of the mapping $S^r \times S^{n-1} \to S^{n-1}$ of type $(p_*(\alpha), \iota_{n-1})^{1)}$, and therefore $H_0(J(\alpha)) = (-1)^{r(n-1)} E(p_*(\alpha) * \iota_{n-1})^{3)} = (-1)^{r(n-1)} E(E^n p_*(\alpha)) = (-1)^{r(n-1)} E^{n+1} p_*(\alpha)$. As the suspension homomorphism $E: \pi_{r+p}(S^{n-1+p}) \to \pi_{r+p+1}(S^{n+p})$ is isomorphic for $p \ge r - 2n + 4$, 4.2 is established. 4.3. From 4.2, we can prove Theorem 2. For the case $\pi_{12}(S^3)$, we consider the element r_7 of $\pi_7(R_3)$. By 2.6, $p_* r_7 = 12 \nu_4$, and, because $E^m(12 \nu_4) = 12 \nu_{m+4} \in \pi_{m+7}(S^{m+4})$ is not zero, 5.2 implies $J(r_7)$ is a non-zero element of $\pi_{12}(S^3)$. For the case $\pi_{14}(S^6)$, $E^m p_* \delta_s = E^m \nu_s = \nu_{m+5}$ and hence $aJ(\delta_s) = J(a\delta_s)$ is not zero for $a = 1, 2, \dots, 23$. Hence 4.4. Proposition. $\pi_{14}(S^6)$ contains a cyclic subgroup whose order is a multiple of 24. $\pi_{15}(S^7)$ contains a non-zero element $J(\varepsilon_8)$, and hence, by [4, Theorem 4], $\nu_4 \gamma J(\varepsilon_8)$ is a non-zero element of $\pi_{15}(S^4)$. Now, we consider the homotopy sequence of the bundle $\{R_7, p, S^6, R_6, R_6\}$: $$\pi_{\mathfrak{g}}(R_7) \xrightarrow{p_*} \pi_{\mathfrak{g}}(S^6) \xrightarrow{A} \pi_{\mathfrak{g}}(R_6) \xrightarrow{i_*} \pi_{\mathfrak{g}}(R_7).$$ As kernel $i_*=12$ by 3.5 and $\pi_9(S^6)=24$, image $p_*=$ kernel $d=\{12\nu_6\}=2$. Hence $\pi_9(R_7)$ contains a element ε_9 such that $p_*\varepsilon_9=12\nu_6$. ¹⁾ Cf. [12], Corollary 5.14, for the definition of $J: \pi_r(R_n) \to \pi_{r+n}(S^n)$ and these results. ²⁾ Cf. [2], (5.5). ³⁾ Cf. [9], Corollary (3.6). Therefore $\pi_{16}(S^7)$ contains a non-zero element $J(\varepsilon_9)$, and consequently $\pi_{16}(S^4)$ contains a non-zero element $\nu_4 \circ J(\varepsilon_9)$. By the same manner as above, considering the sequence of the bundle $\{R_n, p, S^{n-1}, R_{n-1}, R_{n-1}\}$ and using 4.2, it follows immediately that 4.5. Corollary. If the homomorphism $i_{\sharp}:\pi_{r-1}(R_{n-1})\to\pi_{r-1}(R_n)$ is isomorphic and the image of the suspension $E^m:\pi_r(S^{n-1})\to\pi_{r+m}(S^{n-1+m})$ contains a cyclic subgroup of order p, where $m=\min\ (n+1,r-2n+4)$, then $\pi_{r+n}(S^n)$ contains a cyclic subgroup whose order is a multiple of p. As $i_*: \pi_{r-1}(R_i) \to \pi_{r-1}(R_s)$ is isomorphic, it follows immediately from this property that $\pi_{17}(S^s)$ and $\pi_{21}(S^s)^{13}$ is not zero. #### REFERENCES - [1] BARATT, H. G. and PEACHTER, G. F., A note on $\pi_r(V_{n,m})$, Proc. Nat. Acad. Sci., U.S.A., 38 (1952), 119 121. - [2] BLAKERS, A. L. and MASSEY, W. S., The homotopy groups of a triad, I., Annals of Math., 53 (1951), 161 - 205. - [3] Eckmann, B., Über die Homotopiegruppen von Gruppenräumen, Comm. Math. Helv., 14 (1942), 234 256. - [4] HUREWICZ, H. and STEENROD, N. E., Homotopy relations in fibre spaces, Proc. Nat. Acad. Sci., U.S.A., 27 (1941), 60 - 64. - [5] SERRE, J. P., Sur les groupes d'Eilenberg-MacLane, C. R., Paris, 234 (1952), 1243-1245. - [6] ——, Sur la suspension de Freudenthal, ibid., 234 (1952), 1340 1342. - [7] STELNROD, N. E., The Topology of Fibre Bundles, Princeton Univ. Press, 1951. - [8] Toda, H., Some relations in homotopy groups of spheres, Jour. Inst. Polyt. Osaka City Univ., 2 (1952), 71 80. - [9] ————, Generalized Whitehead products and homotopy groups of spheres, ibid., 3 (1952), 43 82. - [10] WHITEHEAD, G. W., On the homotopy properties of the real orthogonal groups, Annals of Math., 43 (1942), 132 146. - [11] ————, On products in homotopy groups, ibid., 47 (1946), 460 475. - [12] A generalization of Hopf invariant, ibid., 51 (1950), 192 237. - [13] WHITEHEAD, J. H. C., On adding relations to homotopy groups, ibid., 42 (1941), 409-428. ## DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY (Received July 5, 1953) ¹⁾ $E: \pi_{13}(S^7) \rightarrow \pi_{14}(S^8)$ is isomorphic, cf. [9], Appendix 2, viii).