ON THE SPACES WITH NORMAL PROJECTIVE
CONNEXIONS AND SOME IMBEDDING
PROBLEM OF RIEMANNIAN
SPACES II

Tominosuke OTSUKI

In the present paper, we shall investigate the conditions under
which a given Riemannian space V, can be imbedded, as a hyper-
surface, into a Riemannian space V,,, which has the following pro-
perties I) and II).

I) The group of holonomy of the space with a normal projective
connexion corresponding to V,., fixes a hyperquadric and V, is ils
image in V.., that is, the locus of points lying on the parallel displaced
hyperquadrics, regarded as points in the tangent projective spaces.

If V,.,. has the property above, there exist a scalar y such that
the hypersurface is given by the relation y = 0.

II) The orthogonal trajectories of the family of the hypersurfaces
on which y is constant are geodesics in V,.,,.

If the group of holonomy of the space with a normal projective
connexion corresponding to a V,,, fixes a hyperquadric, it is pro-
jectively equivalent to an Einstein space?. In the previous paper,
the author have studied the problem of the same kind as this under
the conditions I) and

II) V... is an Einstein space.

The imbedding problem of V, into V,,, under the only condition
I) is very complicated in structure. The purpose of the present paper
is also to search for the methods dealing with the problem, as the
previous one,

§ 1

Let V, be a given n-dimensional Riemannian space with positive
definite line element

1) T.Otsuki, On the spaces with normal projective connexions and some imbedding
prablem of Riemannian spaces, Math. Jour. of Okayama University, Vol. 1, 1952, pp. 69-98.

2) T. Otsuki, On projectively connected spaces whose groups of holonomy fix a
hyperquadric, Jour. of the Math. Soc. of Japan, Vol. 1, No. 4, 1950, pp. 251 -263.

21



29 Tommosvee OTSUKI

ds' = g (x)dxrdx+®

in each of its coordinate neighborhoods. By virtue of Theorem 3 in
the previous paper, in oder that we can imbed V, in a Riemannian
space V,.. with the property I), it is necessary and sufficient that
the following system of equations with respect to symmetric tensors

B (%, 3), Ra(x,), Talx,y), a vector L,(x,y) and scalars (%, y),
Ulx, )

1) S = —2yh,
, _3]1;_ —_ R b b b b )
(2) 63’ - 2_)’ (km + 1#Ta) + ?(kha Ra) + “b'a,’

3 SL— e ver+ v+ 20 - mn - R),

(4) aaj;.'; = Y TY —~ BT + v, L+ gy L.,

(5) Sl ymL T - T D) - L -,

oU _ 1 2 e
(6) o = gt D) + U — R = R)
is integrable under the conditions

1 A N AN —
(7) La + 1'0‘3 l",a T(h,a ka.,‘\) - 09
1
{8) La;.la + Ta.hhh,\ + hah(T + U) + W(kah + "!"Tmb) = 0,
(9) Tab,c - Lahbc - Lbkac = 0’
— 2 N /2.8 —

o Usa = s = H2) = 0
and

(8ar(%, ¥))ym0 = GwlX),

where a comma denotes the covariant derivative of V,(y) with line
element ”

3) Indices take the following values:

a, b, c, - DAy e == 12 e , n.
A 31’31) arftd A o A ] h « d
4) Rw = Ryrun, Rura = ot om + 1% — 0%, where 1%, denotes

the Christoffel symbol made by ggs .
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ds* = g%, y)dxrdx*.

Then, in the coordinate neighborhood %', «-:-.- , X% v, the line element
of V,,, is given by

ds’ = g.(x, y)dx dx* + (Yr(x, 3))%

On the other hand, the orthogonal trajectories of the family of
the hypersurfaces in V,,, on which y is constant is given by x* =
constant. In order that these trajectories are geodesics, it is necessary
and sufficient that

) Yo = oL =0,

Then, the above relations become respectively

’ on, _ n » v > _ b
(2) DM — JUR+ VT + vl — R,
@) L — BT - RTY),

4 a
(5) e = ML= - — B,
(7) Lo~ 22— W) = 0.

Let us put

an = hhab - kzk:\b ’—'Rabs Q = g'\"Q)\p.'
By virtue of (3), (11) and (9), we get the relation

a2 b+ ¥(U + ALY + 22X Q= 0.

Furtheremore, from (10) and (7’) we get
(13) La =Y ‘!" Z]:m .
Putting this into (5'), by (6), (9), (10) and (11) we get

hoot3¥RL o+ 2¥ 0, + 3 yU,

Hence, putting (12) and (13) into the relation, we obtain
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W) {3+ yvh+yweT + U) + 2yQlu. —yumU, < o.

On the other hand, we get from (4)

eT
0y

that is, T depends only on x% Accordingly, from the relation
T, = 2Lk, = 2y U\ B,

= 0,

we get
[],J\kt); = O)

hence 7 is a constant. Accordingly, by virtue of the relation, we get
from (14), for sufficient small values of y,

(15) U, =0.
Now, by means of (3), (6), (11) and (15), we see that —— 597 V‘z +yU+T)

is a constant. Since Y- depends only on y, we may put [v],., =1,
then we have the relation

(16) 21!,2 + 2T+ U) — —%— = 0.
Then, by (13) and (15), (9) and (10) become

(9 To,e = 0,

(10’ h.—h.,=0.

We get from (1) and (11)

a7) OLe = oo ng™ — B0 — B2,

oy
Accordingly, by (2), (9", (11) and (17) we get

=i = (58) . - (B8) . -l m
= —;—Q,m+ #f( PN -%R,a) = %Q.u = 0.

Hence, we obtain by (12), (15) and (10') the relations
(18) h,=0, R, =0,
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and
1
h’;ht,a + —2°R‘a = 0.

Thus, we see that the system of relations (1) -(11) is equivalent to
the system («) as follows: '

(1) o = —24ha,
(2) Phi — g5 Tl + R — R,
04  _ 2y ¥
(3) Sy v h + V(T + W)+TQ-
@) oL~ vmT R,
, ow _ 1 ., . . 2
(6) ~5T—W(hT‘:'T)+ nQ,
an ¥oa =0
a5 W. =0,
(18) h,=0, =0,
BB+ 5 R, = 0,
(8) Ty + (o + = T) = 0,
(9’) ) Tab,c = 0:
16) _z};r— W =0,
where W =T+ U.
5 2

It follows from (18) that
0
a—ylz',,, = —'l[I‘R‘a — 0,

hence
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By virtue of (8') and the symmetricity of %4, and T,,, we get
Tlf‘ h)m - Tr? hAa = 0.
hence
oT,
0y
That is, 77 is dependent only on x“
Using matrices, let be
9 = (M), T = (T2),

where ¢ and b denote rows and columns respectively. Then, we can
rewrite (8) as

") = 0.

1
= —— 3,
1+ 2y3)9

Hence, for sufficiently small values of y, we get the relation

= 1 g — _i - — m Fm+l 5)
{19 b= -FiTrmE = 2, (=2
If we put
20) B =)= —¥d = 1o

it follows by (4”’) that

a p— a b —_ 2 6)
ay%_(ayf“)_ 28"
Substituting (21) into (2'), we get easily the relation

+¥ “W( ‘«iﬁ%)

21)

+ %{ L — } =0,
where R = (R?). By virtue of (16’), we get
T — 7 = 2y2F + W)
5) The right hand side is uniformly convergent for y such that 2 [y | - || T || <1,

where || € || denotes the norm of €. 1 denotes the unit matrix.
) 2 .
6) In the following, for any matrix & = (f.), a_y% and ¥, stand for the matrices

( fa) and (f, ,) respectively.
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therefore we can rewrite the above relation as
=nIF —2(1 —2yW)F
{z(f = L= L)L —23W) — T+ a— W + 2R3,
This relation shows that R? is a function of T¢, W and y as
R: = ouTt, W, ).
On the other hand, from (99, (19) and (20) we obtain

S ¢ = _ 1 < 0f -
kw.c - ’_lFf:,c - 1# aT,,, T){Lc 0-

Collecting these results, we obtain the following theorem.

Theorem 1. [In order that we can imbed a given V, with line
element

ds* = g, (x)dx*dx*

into a V,.. which has the properties I} and II), it is necessary and
sufficient that the system of relations:

’ aga — A
1) —a—jf— = 2f28u>»
oT?
) S~ 2wr+ T + 2 - 2w - Za
= p(TL, W,y -
where
o . 3
(19’) (fa) = % - 1—_'_2}'—%;

22) (@) = & = nIF - 21 - 2yW)F*
+2(f - 20— D)L —29W) — T+ (1~ DW + LI

is integrable under the conditions

(15) £, =W, =0,
(7) { (9) & 0

7 =R} —¢ =0

[
=3
i

and
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[gub(x! y)]y=0 = gah(x}-
For it is easily verified that (B) and (1) imply (a).

§ 3

Let g.(x,¥), T2(x) and W(x,y) be any solutions of the system
of equations (8) and ¢,, % and 7} be quantities made by them ac-
cording to the left hand sides of (r).

Now, we get easily

(23) S = 300/ 0TOC + 05 OW..

Since we get from (1’) the relation analogous to (17) such that
2 v . A 13 1]
6y rac - fm:,Ag +fa,c +fc,a!

we get, by means of (8), the relation

(24) aay e = —gWTa(@f2 0T, + To@fR [ 0T 5

+ T2Of] 0 THE + 8 T™(@ )| 0 TS,

~ TROf2 0T — TROL 0T, -
Accordingly, if we take solutions such that W,, =0 and 72 ,= 0 for
¥ =0, then by means of (23) and (24) the relations §, =0 and £, =0
hold good for each value of y. Then W is depend only on ¥ and T

is a constant. In the following, we shall consider only such solutions.
Then, we get easily the relation

OR; _ _oprs
(25) 7y = 2R 1.

We get from (22)
(-2 e — - pera - 29w}
= aTtfd + (P = fAfHA—29W) + {(n — YW — T}/,
accordingly we have the relation
% —%{P—ﬁﬁ%a—bW%Hn—DW-T+%%w

=E-%W{@Hﬁ+m—nW—T
-
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volr— 2 el —2mw)
Making use of (19), the right hand side becomes

1 — — S _.L 2 (2 —
—1_—_25_;—@” DW -5+ 2l = L el - 2w

Therefore ¢! determined indirectly in (22) can be represented as
follows :

22) & = n3F — 20 — Y W)F

_lﬂ[(n W —f+ 2{f — L+ A2 }(1 - 2yW)]%'

+
1
Now, by virtue of (22, we obtain likewise the relation

2(Wf + T — l{go — (P — S — 2y W)}

D =
Hence, by (21) and this relation, (6") becomes
oW _ _w. 0 _ 2f 2fLf2
oy W-af Iog(l P n—29f"
that is

Lm0 - -3
senstogy, W(1-37) + o = (wa ) = (wa ).

that is

- _c—f
n— 2yf

where ¢ is a constant. Then, since

_ _ n-—2yc
1-2yW "= of

and
=W —f+2{f = 27+ ferafa - 2w

= i n—1c f 2y ©fA
"—ny{ w T T @S )

49 ¢

SR
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(22" becomes

. ~ —_ _n - 2}’6 o3
(26) R = nIF -2 "= T

g |0 = Ve + = 2@l + 1A + L+ LR

From the above relation, we get

@7) y D o= %‘;’) = —285 +4 2= ;‘g; 5
2GR e
where
o = o(T},, C)AAE %f?(j;y_T)cJ +
+ %@—Ef—%ﬁ’—[—fi‘fﬁ FIRRE + B - ffef: ¢}]
+— _42’;,f)~ (FLfd - 2,

-which we obtain by a long computation. Hence we get by (25) and
(27) the relation

0 oy — o x4 —2C n—-2yc
3y R-0 2R - F — 4 P 2yf% —557 )"
— R
By the last relation, it must hold good that
n—Zyc —2YC \ o~
oS 0y 2yf)7§ +og =0
Making use of (19'), this is equivalent to
~ _ n— 2yc }
az—!—Z{Zyo’ (n—ny)
- 2yc n—ZyC}., . _
+4{ya S n—2yf)+n—2yf =0

On the other hand, by some comutations we get the relations

@ (-2 G

- — %(f—c) +443—{3f(f—6) — nfifi}
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8 (] — fRFIFA
n S_(f_ C)f)\ " A ,l..f‘a}

16y° wevgr € . oA
— 159" S5+ 20mtsin — Coafefy — 2000
— B (e — SRS = 28(T8 6, 9)

and

2y — 2y¢ n—2yc}
(1 7 ){y yay n—ny + n—2yf

— 182 e AP 005 ofefd + n@eft - f21200)

@) — B prren - 2y - BLEE e - S
= T(T}l\‘s C, y)o

Therefore, we have the relation

(30) {a(TE, ¢, y) + B(TE 6, NT + v(TE, ¢, T} =

where

" _ L1 29N
a(T¢, ¢,y) = 7 (1 = )o(TA,c,y)-
§ 4

Since (30) holds good for any value of y, putting y =0, we get
by virtue of (27), (28) and (29) the relation

(31) I = AT + BE*.
where
A = _—?%{al(al -0+ (11_: = —a(Tt, ¢ 0)
B = %(al — C) = _B(T)‘fy c, 0)’
a, = lrace Im, m =1, 2,3, .

Hence, we obtain inductively from (31) the relation
(32) I = AM,_ % + M, T, m=3,4, ,

where
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Mm — Bm + (m;l)Bm-2A + (m;&)Bm-!A I + (m:r)Bm—'err F oeeeeen,
m=0,1,2, e .
For
Q(AM,L_SE + Mu—zzg) = AM;:-Ez + (AMH—S + BMN-—?)EZ,

L[(m—1)/2]

AMm_g + BMm_z = Bm—l -+ Z {(m—;’!-r) + (m;‘f; )}Bm—l-err
—_ Bm—l + E(m—:—r)Bm-l—:'rAr — Mn-l-

Then, by virtue ofr these relations, we get

(33) am = AMM—I;al + M»-zaz = nMnr + cMu-l ’
m=1,2,3, .

Now, by (19) and (33) we have
f = B2 = ¢+ (= 20) 33 (—-2)" M.
Since

SH=2)"M, . = B—29(B* + A) + 3 (~29)" M.

B _ sz Mme
T+ 2By — 44y °

it follows that

__ c+nB—2nAy
(34) f = Tem a4y
whence
n—2yc _ _ "

Then, by an analogous computation we get

fopr = 1 8f _ nA+ Be+nB® - 4A(c + nB)y + dndy’
Ve 2y L +2By — 44y%° .

Now, for the coefficient of § in (26), we obtain by virtue of the
above relations

(n = Dc + f — 29(26f + 21D + LE (72 4 frfy
- _ Y _(n—2yc(B - 44y)
= nf1-25) + (I + 2By — 44y
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whence

g (= Do+ = 29@ef + Fe7) + 2L+ frp)]
= ¢+ B — 4Ay.
Thus, (26) may become the simple relation such that
! = nTF — 201 + 2By — 4A»)WF + (¢ + B— 44A»)3.
Hence we get from this
_6379 = —28F + 4(1 + 2By — 4AW)F — 4(B — 4AN)F — AT
Therefore, (30) may become the relation such that
(1 + 2By — 44y)F — (B — 4AnF - A = 0,
which is equivalent to

(1 + 2By — 4AyHT — (B— 4ANT( + 29T) — AT + 2y3p
= —AS -B%+3T3 =0

by virtue of (19’). Thus we get a conclusion as follows.

Theorem 1'. For a given Riemannian space V,, in order that we
can imbed it into a V,., with the properties 1) and I1), it is necessary
and sufficient that the system of equations with respect to T? and a
constant ¢

(35) R = - 2)T + (c + BT,
(31 I = AT + BZ*®,
9 T, =0,

= L pupa 1 S
(36) A = 7TA 7 v (T - o), B = n (T -0
is solvable.

In the following, let be # > 2. In place of ¢, take % such that
(37 c+ B = w = 2(n— 2)k,

then (35) is rewritten as

(35" R = (n— 2)(F* + 2kI).
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By virtue of (37), we get from (36)

-1 — 2 —
B = P {T — 2(n — 2)k},
R 1

4 = n(n — 2) - n(n—1) (T* + 2kT).

Now, putting (35) into (31), we get

1 o, __ 1 qe _
n_l(T+2k)Z + A% — RT = 0,
which we can rewrite by the same substitution as
(38) T+2 I _ng

m—1m—2" n-—2
1 R (T+2k)(T+2nk)} —
+ -n—{n —2 n—1 T =0
Accordingly, the system of equations in Theorem 1’ may be replaced
by the one of (35), (38) and (9).
Furthermore, let us put

B =T+ k1,
then (35) and (38) become
(39) R+ - 2)F1 = (n— 2)B,
(40) V+Ek 1 qe

n-1n-2" 7#n-2
1 R (VA nrR)(V - (n—2)k _ —
n\n—2 n—1 )(58 k1) =0

On the other hand, from (35) and (9’) the relation R? ,= 0 must be
satisfied in the space. Thus we can describe Theorem 1’ as follows:
For a given V,,, in order that we can solve our problem in the small,
it is necessary and sufficient that R,,= 0 and there exist B and k
such that they satisfy (39), (40) and B , = 0.

Now, we see that for the given space V,, if the relation

1
7n— 2

min {eigen values of R} + 2* >0

holds good at each point, we may have in general 2" solutions such
that

- (_1 )T = ¢
Qi_(%—_—z—fﬁ+k1) — SR, E).
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Therefore, if 20 and

1

o2k norm (R) < 1,

we have a function

~ 1 <
1) X = k{l + g

= qmal3eee@m-3 R\
+ D S o ((n—Z)k”))

which is uniformly convergent and satisfy (39). Since, in V,, there
exist in general 2" tensors 4 = (4(x)) such that

(42) AR = R4, A = 1,

we see that § = 4F,.

§ 5

In the paragraph, we shall investigate the conditions for a given
V. (n > 2) under which we can solve the problem stated in Theorem
1 for each (sufficient large) value of Z.

Then, (41) is the fundamental solution for (39). Since we may
consider %2 as an arbitrary constant, let be

and

o 2 N ot 1ym-1 1-3-e--ee (2771'__3)27» m
W) 0=l R S D S I sy

According to the previous consideration, in a neighborhcod of z = 0,
we must have at least a 4 such that

(trace 40+ 1)z v 2z
“h (n—1)(n—2) N = g hae
1§ Rz _ (trace 40 + n)(trace Am-(n—Z))} o
n{n—Z n—1 , (o —1) = 0.

Hence, if we put z —» 0 in (44), we get by (43) the relation

(trace 4 + n)(trace 4 — (1 — 2))(4 — 1) = 0.

This relation and the assumption for 2 imply that we may consider
the cases 4 = +1 or trace 4 = n — 2,
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I. Case 4 = 1.
Then, (44) is written as

(¢ + 1)z _ Z 9
@4 (i —-1)(n — 2) R 7 —2 neo
1 Rz  (¢e+n)e—n+2) 1) —
R e L

where ¢ = trace #, In (44,), the coefficient of z is identically zero.
From the coefficient of z* we may have the relation

R

(45) N = ” R,
hence by induction
(46) m=23,4, e .
Accordingly we get from (43)
Rz
“n o =1+ my
and putting this and (46) into (43)
. m—t ~@2m—-3) 2" (R 'y
0_1+2(z )m+,§’g( D 24 ------ 2m (72—2)"‘( ) ’
that is
(48) 0 =1+ @—nh
If we put (47) and (48) into (44,), we get
(¢ + 1)z _ 1{ Rz _(e+me—n+2], 4
(n—l)(n—Z)EH —2SH o {11—2 n—1 %( )
_ 2 —mn) R _qe)
= 2 (n s)_o.
Since
o—n _ z . 2m —=3)z"( R\ 4
7= mey R e am = 2 ) o

the above relation is equivalent to

(45) R — %9{ — 0.
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The above argument shows that (44;) is equivalent to (45). (45) is
clearly equivalent to the relation

A «» _ R
(45" R = - 1.

II. Case 4 = — 1.

Then, (44) is written as

_ =Dz §__ 2 (o
(44,) (n—1)(n—2) R n—2 R
19§ Rz _(¢—72)(¢+n—2)} o _
+ 1;{72—2 n—1 @+1) 0.

The coefficient of z in the left hand side is identically zero. From
the one of 2z it must follow that

g - R o 1¢ R
“9) R S
where 7, = trace R*, m =1, 2, 3, ----+- . From the coefficient of 2* in
44,), we have
o 2 7.R 1 .
N3 = <& — 2 2
(50) W= (= o)L+ oy T RO

On the other hand, by virtue of (49) we get the relation

1) R = 712—{( n f 1 )2 + rs} N — n(nR— 1) ( nR— 1 r.,.)l.

From this we get

nrR R R
Canirras 1z(n—1)+ n '

hence putting the relation into (50), we can rewrite it as

? M3 1 2 N ! - 2R R: —
607 R = nn — 1) (R + 7) R w \n—1 r.z) L

Hence, by (51) and (50°) we get

Ger A -5 = o

In the following, we divide the case into two cases.

n

. R .
(i) Case | — RtR} 2= 0.
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Then, we get the relation R = %l. Putting this into (43), we

get easily

ZR %
e~ . 0 = 1,
nn—2) ° n 1

Then, (44,,) is clearly satisfied by them and

R 5 I R?
n—1 Ry R, nn—1) "

ﬁm&mjﬁ%:%ﬁ,R#QaumemMMWsmemm%dw

these quantities.

= tracc @ = n}/1+

.. R®

(ii) Case | — R:R) = 0.

Then, we get from (49) the relation R* = nlj i R, in general
_(z~1 R, I

Accordingly, we get from (43) the relation

2R
= 1+(n—1)]/1+(7z—1)(n—2) ’
and

0 — P q.
1+ P R

Then, we see easily that (44;) is also satisfied by them. Therefore,
if R2= —R—ER, all the conditions are satisfied by these quantities.

III. Case trace A = n — 2.
In this case, from the left hand side of (44) it must follow that

the coefficient of z = (SR — 1 + tﬂ:ﬂml)(l A)

hence by virtue of (42) trace (J{A) = R. Putting this into the above
relation, we get R4 = AR = R. Then we get from (43)

(52) A0 = 0 + 4 —1

and trace (40) = ¢ — 2. Putting these relations into (44), it is re-
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placed by

¢—1z & z
44.,) m—Dm—2 R P Ro

1 Rz (¢e+n—2)¢—n) _
+7{n—2 n—1 S(m+_/1—21)—0.

From the coefficient of z* in this relation, we obtain by a simple
computation

9 R 1 R?
Rz — 9 — —
R n—l'RjL 2n (n——l rﬂ)(l ),
whence 7, = n{fjl_ Hence, the above relation becomes N® = h‘”fim‘
Therefore, as the case II, (i), we get
zR
0 — p_—n
¢ 1+~

Conversely, we see easily that these relations satisfy (44.).

In the above consideration, we did not discuss the condition
(40),, =0. Since 4,=0 in the cases I, II, the above condition is
clearly satisfied. In the third case, this may not be satisfied by the
A such that trace 4 =# — 2 but R must satisfy the same conditions
in Casell, (ii). Accordingly, we get the following theorem.

Theorem 2. In order that we can imbed a given n-dimensional
Riemannian space V, (n>2) into a V,., with the properties 1) and
II), irrespective of values of k, it is necessary and sufficient that it is
an Einstein space or such a space as its Ricci tensor R satisfy the
conditions

R
n—1

R:. =0, R}R} = R;.

§ 6

In the paragraph, we consider the case » =2. Let Kix) be the
Gaussian total curvature of V,. Then it = K1. Let us consider the
conditions in Theorem 1’. From (35) and (36), we get

K1 = %_(T + 0%
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By (9');it follows that- K is a constant. Furthermore, we get

2K = %—(T + 0T,

that is 7 = —¢% ‘/gz + 16K . Hence we get
g - _—C%F 1/Zﬂ+16KL

By (36) and the above relation, we get

4 = _CleF Ve + 16K
= . .

Then, we can easily see that (31) is satisfied by these quantities.
Thus we obtain the following theorem.

with the properties I) and II), it is necessary and sufficient that V., is
a surface with constant curvature.

Theorem 3. In order that we can imbed a given V, into a V,
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