ON THE CARTAN INVARIANTS OF ALGEBRAS

Masaru OSIMA

1. Let A be an algebra with unit element over an algebraically closed field K and let

$$(1) A = A^* + N$$

be a splitting of A into a direct sum of a semisimple subalgebra A^* and the radical N of A. We shall denote by

$$A^* = A_1^* + A_2^* + \cdots + A_k^*$$

the unique splitting of A^* into a direct sum of simple invariant subalgebras. Let $e_{i,\alpha\beta}(\alpha, \beta=1, 2, \dots, f(i))$ be a set of matrix units for the simple algebra A_i^* . We denote by F_1, F_2, \dots, F_k the distinct irreducible representations of A and we set for a in A

$$(3) F_i(a) = (f_{\alpha\beta}^i(a)).$$

Let

be the Cartan basis¹⁾ of A. An element a of A, expressed in terms of the Cartan basis elements will have the form

(5)
$$a = \sum_{u,\alpha\beta} h_{\alpha\beta}^{u}(a) e_{i_u,\alpha} b_u e_{j_u,1\beta}.$$

For a fixed u, we arrange the coefficients $h_{\alpha\beta}^u(a)$ in a matrix $H_u(a) = (h_{\alpha\beta}^u(a))$. The additive group $H_u(a)$ is called an elementary module of A. In particular, for $b_i = e_{i,1}$ we have $H_i(a) = F_i(a)$, that is,

$$h^{i}_{\alpha\beta}(a) = f^{i}_{\alpha\beta}(a) \qquad (i = 1, 2 \cdots k).$$

Let d_1, d_2, \dots, d_n be a basis (d_s) of A. Then

(7)
$$d_{s} = \sum_{u,\alpha \beta} h_{\alpha\beta}^{u}(d_{s}) e_{i_{u},\alpha i} b_{u} e_{j_{u},i\beta}$$

¹⁾ See Nesbitt [3], Scott [5].

or in matrix form

(8)
$$(d_s) = (e_{i_u,\alpha_1}b_u e_{j_u,\beta_1})(h_{\alpha\beta}^u(d_s))$$

 $(u, \alpha, \beta \text{ row index}: s \text{ column index})$. Since (d_s) is a basis of A, $(h_{\alpha\beta}^u(d_s))$ is a non-singular matrix. Hence we have

Lemma 1. If (d_s) is a basis of A, then $h_{\alpha\beta}^u(d_s)$ $(u=1, 2, \dots, t; \alpha=1, 2, \dots, f(i_u); \beta=1, 2, \dots, f(j_u))$ are linearly independent. In particular, we obtain from (6)

Lemma 2. If (d_s) is a basis of A, then $f_{\alpha\beta}^i(d_s)$ $(i = 1, 2, \dots, k; \alpha, \beta = 1, 2, \dots, f(i))$ are linearly independent.

We denote by χ_i the character of F_i . Then $\chi_i(a) = \sum_a f_{\alpha a}^i(a)$. By Lemma 2

Theorem 1. Let (d_s) be a basis of A. Then $\chi_1(d_s)$, $\chi_2(d_s)$,, $\chi_k(d_s)$ are linearly independent.

Now we can prove the following theorem by a procedure similar to that of Brauer and Nesbitt¹⁾.

Theorem 2. Let M_1 and M_2 be two representations of A. If both $M_1(d_s)$ and $M_2(d_s)$ have the same characteristic roots for every d_s of a basis (d_s) , then M_1 and M_2 have the same irreducible constituents: $M_1 \leftrightarrow M_2$.

2. In this section we assume that A is an algebra with unit element over an algebraic number field K and that the irreducible representations Z_1, Z_2, \dots, Z_k of A in K are absolutely irreducible. Let J be a domain of integrity in the algebra A in the following sense²⁾: (1) J is a subring of A; (2) J contains n linearly independent elements of A; (3) the elements of J when expressed by a basis $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ of A have the form $\sum a_i \varepsilon_i$ with $a_i = b_i / w$ where w is a fixed denominator in K and b_i are integers of K; (4) J contains the ring v of all integers of v. Every ideal v of generates the ideal of v which may be denoted by v again. Let v be a fixed prime ideal of v. We denote by v the ring of all v-integers of v. Then v and v generate a subring v of v has a basis v, v, v, v, such that every v of v can be written uniquely in the form

¹⁾ Cf. Brauer and Nesbitt [2], p. 3.

²⁾ See Brauer [1].

$$\alpha = c_1 \eta_1 + c_2 \eta_2 + \cdots + c_n \eta_n, \quad c_i \text{ in } v^*.$$

The η_i can be chosen in J. The ideal \mathfrak{p} generates an ideal of \mathfrak{o}^* and an ideal of J^* , both of which will be denoted by \mathfrak{p}^* . We denote the residue class of an element α of J^* (mod \mathfrak{p}^*) by $\bar{\alpha}$. We have

(10)
$$\bar{v} = v^*/v^* \cong v/v$$
; $\bar{A} = J^*/v^* \cong J/v$

for the residue class field and residue class algebra. The elements $\overline{\eta}_1, \overline{\eta}_2, \dots, \overline{\eta}_n$ form a basis of \overline{A} with regard to \overline{v} . Let $S(\alpha)$ and $R(\alpha)$ be the left and the right regular representations of A, formed by means of the basis (η_i) . Every α of J^* is then represented by matrices $S(\alpha)$ and $R(\alpha)$ with coefficients in v^* . Hence $\overline{\alpha} \to S(\overline{\alpha})$ and $\overline{\alpha} \to R(\overline{\alpha})$ give the left and the right regular representations of \overline{A} , formed by means of the basis $(\overline{\eta}_i)$. We denote by F_1, F_2, \dots, F_m the distinct absolutely irreducible representations of \overline{A} . Let us assume here that all F_k lie already in \overline{v} . Then we have

(11)
$$S(\alpha)R'(\beta) \leftrightarrow \sum_{i,j} c_{ij}Z_i(\alpha) \times Z'_j(\beta),$$

(12)
$$S(\bar{\alpha})R'(\bar{\beta}) \leftrightarrow \sum_{\kappa,\lambda} c_{\kappa\lambda}^* F_{\kappa}(\bar{\alpha}) \times F_{\lambda}'(\bar{\beta})$$

where c_{ij} and $c_{\kappa\lambda}^*$ denote the Cartan invariants of A and \overline{A} respectively. We may assume that Z_i represents the elements of J^* by matrices with coefficients in \mathfrak{o}^* . Then $Z_i(\overline{\alpha})$ gives a representation of \overline{A} . Let $d_{i\kappa}$ denote the multiplicity of $F_{\kappa}(\overline{\alpha})$ in $Z_i(\overline{\alpha})$:

(13)
$$Z_{i}(\overline{\alpha}) \leftrightarrow \sum_{\kappa} d_{i\kappa} F_{\kappa}(\overline{\alpha}).$$

The d_{ik} are called the decomposition numbers of A.

Theorem 3. Let c_{ij} , $c_{\kappa\lambda}^{\#}$ be the Cartan invariants of A and \overline{A} . Then

$$c_{\kappa\lambda}^* = \sum_{i,j} d_{i\kappa} c_{ij} d_{j\lambda}$$
,

where $d_{i\kappa}$ are the decomposition numbers of A.

Proof. From (13) we have

$$\sum_{i,j} c_{ij} Z_i(\overline{\alpha}) \times Z'_j(\overline{\beta}) \leftrightarrow \sum_{i,j} c_{ij} (\sum_{\kappa} d_{i\kappa} F_{\kappa}(\overline{\alpha})) \times (\sum_{\lambda} d_{j\lambda} F'_{\lambda}(\overline{\beta}))$$

$$= \sum_{\kappa,\lambda} (\sum_{i,j} d_{i\kappa} c_{ij} d_{j\lambda}) F_{\kappa}(\overline{\alpha}) \times F'_{\lambda}(\overline{\beta}).$$

¹⁾ See Osima [4].

By (11), $S(\bar{\alpha})R'(\bar{\beta})$ and $\sum_{i,j} c_{ij}Z_i(\bar{\alpha}) \times Z'_j(\bar{\beta})$ have the same characteristic roots for every $\bar{\alpha}$ and $\bar{\beta}$. Hence it follows from Theorem 2 that

(14)
$$S(\bar{\alpha})R'(\bar{\beta}) \leftrightarrow \sum_{i,j} c_{ij} Z_i(\bar{\alpha}) \times Z'_j(\bar{\beta}).$$

Consequently we have from (12)

$$\sum_{\kappa,\lambda} c_{\kappa\lambda}^* F_{\kappa}(\overline{\alpha}) \times F_{\lambda}'(\overline{\beta}) \leftrightarrow \sum_{\kappa,\lambda} (\sum_{i,j} d_{i\kappa} c_{ij} d_{j\lambda}) F_{\kappa}(\overline{\alpha}) \times F_{\lambda}'(\overline{\beta}),$$

so that we obtain

$$c_{\kappa\lambda}^* = \sum_{i,j} d_{i\kappa} c_{ij} d_{j\lambda}$$
.

We set $C = (c_{ij})$, $D = (d_{ik})$ and $C^* = (c_{k\lambda}^*)$. Then

$$C^* = D'CD.$$

This shows that if C is a symmetric matrix, then C^* is also symmetric. If A is semisimple, then C is a unit matrix. Hence, from (15) we obtain

$$C^* = D'D.$$

REFERENCES

- R. Brauer, On modular and p-adic representations of algebras, Proc. Nat. Acad. Sci., 25 (1939).
- [2] and C. Neseitt, On the modular representations of groups of finite order, University of Toronto Studies, Math. Series No. 4 (1937).
- [3] C. Nesbitt, On the regular representations of algebras, Ann. of Math., 39 (1938).
- [4] M. Osima, On the representations of groups of finite order, Math. J. Okayama Univ., 1 (1952).
- [5] W. M. Scott, On matrix algebras over an algebraically closed field, Ann. of Math., 43 (1942).

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received January 20, 1952)