ON BICOMPACT SEMIGROUPS

Katsumi NUMAKURA

We shall investigate in this note the structure of a minimal
ideal of a bicompact semigroup, and to extend the theory of Suschke-
witsch’s kernel [1] (which he calls “ Kerngruppe ”) of finite semigroups
to bicompact semigroups.

If S is a bicompact semigroup, then S has a minimal ideal K,
and K is completely simple in the sense of Rees [2] and is decomposed
into groups which are isomorphic one another and have no element
in common. Further, we shall show that minimal ideals (left, right
and two-sided) of S are bicompact and closed in S. If S contains
zero element, then K is zero alone, while if § has no zero, then X
is a completely simple semigroup without zero.

1. A set S is called a semigroup, if in S a single-valued product.
ab is defined for every pair a,b of S such that for product the
associative law holds:

(ab)c = albc).

By a sub-semigroup of S we mean a non-vacuous subset A of S
with the property A°c A, i.e. abe A for every a,b in A. By a left
ideal of S we mean a non-vacuous subset L of S such that SLc L.
Analogously, we can define a right ideal R of S. If M is both a left
and a right ideal of S, then M is called a (fwo-sided) ideal of S.

An element ¢ of S is called an idempotent, if ¢® = e. An element
0 is termed zero, if Ox =0 =x0 for all ¥ in S. Then it will easily
be seen that the zero of S, if it exists, is uniquely defined and is an
idempotent. An element 1 is termed the identity of S, if 1x = x = x1
for all ¥ in S. Then the identity of S, if it exists, is uniquely
defined, and is an idempotent.

2. If S is a semigroup and at the same time it is a topological
space (in this note a topological space means a Hausdorff space), and
moreover, the multiplicative operation in the semigroup S is conti-
nuous in the topological space S, then S is called a fopological semi-
group. If a sub-semigroup 7 of S is closed (open) in the space S,
then we shall call 7 a closed (open) sub-semigroup etc.
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It is clearly to be seen that a sub-semigroup 7 of S is itself a
topological semigroup under the relative topology.

If a topological semigroup S is bicompact as a topological space,
S is called a bicompact semigroup.

Let T,, T, be two bicompact subsets of a topological semigroup
S, then 7.7, is also bicompact. For let us consider the product
space T, x T3, then by Tychonoff’s theorem 7T, x T, is a bicompact
topological space, and 7. T, is a continuous image of T, x T,. From
this it follows that 7,7, is bicompact. In particular, if S is bi-
compact, and g€ S, then aS, Sa, S?, ------ are all bicompact and closed
in S. '

3. Lemma 1. Let S be a topological semigroup and B* be a bi-
compact subset of S. Let A = {1} be an index system and A
={a,; a,€S, A€ A}, B ={b,; b€S, A€ 4} be subsets of S whose ele-
ments correspond to the same index system .A. Moreover, we suppose
that Bc B* and a€ A. Then there exists be B such that abeC,
where C = {a,\b,; A€ 4}.

Proof. We denote by 3, = {V.(@); r€ T} a complete system of
neighborhoods of the element ¢. And put A, = V.(a) nA, then since
a€ A, A, is not empty. By B, we denote the set of elements of B,
whose elements have the same indices with those of elements of A,.
Let B ={B,; re T}, then B is a family of subsets of B* with the

finite intersection property. For, let B, , - » B, be any finite
number of sets in B, and A.,i=1,-, n, are the corresponding sub-
sets of A. Then, since V,t(a), 1=1,2, - , #, are neighborhoods of the

element ¢ and 33, = {V.(a); € T} is a complete system of neighbor-
hoods of a, there exists a neighborhood V,O(e Sw,w€T) of a such
that V, (a)c 3V7‘(a). Let A, = V. (@nA and denote by B, the sub-
fml
set in B which corresponds to A,_o, then it is clear that
¢ &= B.cnB,.
i=1
Thus, B has the finite intersection property. And since B* is bi-
compact we have NnB,==¢. Let be nB, and V(ab) any neighborhood
TeT T¢T

of ab, then there exist neighborhoods V. (a) of ¢ and V() of_ b suclx_
that V,(e) V(b)c V(ab), where V(@) e >, c€ T. Since be nB., be B,

TeT

and V) nB,+=¢. Let b, be any element of V(b)) nB,, then, since
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b, € B,, there exists an element a,, such that ¢ €A, = V.(a) n-A.
Hence a5, € V.(a) V(b)c V(ab). On the other hand @b, €C. Hence
ViabynC==¢. Thus, abeC.

In a semigroup S, if axr = ay(¥a = ya) implies ¥ =y for every
a, %, % in S, then S is called a semigroup satisfying the left (right)
cancellation law. S is called a semigroup satisfying the cancellation
law, if it satisfies both the left and the right cancellation law.

Lemma 2L. Let S be a bicompact semigroup satisfying the left
cancellation law, and B be a closed subset of S. If p€ S, pBc B, then

pB=B.

Proof. From the assumption, we have BopBop’Bo----- . Put
P={p;iz=viand P={P,;v=12 - }, then it is clear that %5
is a family of subsets of a bicompact space S with the finite inter-
section property. Hence

npP, == ¢.
y=1

Let ¢ be any element of nP Then we shall show that n p’B

=gB. Let gx(x € B) any element of gB and Vi(gx) be an arbltrary
neighborhood of gx, then there exists a neighborhood V(g) of g such
that V(g)xc Vigx). Since g€ nP,,, ViggnP,3=9¢ for v=1,2, ------

Therefore, an integer i, ex1sts so that p**ve V(g) for v=1,2, -..... .
Hence, p**twx € V(g)x € V(gx). On the other hand, p**-x €p**“Bcp*B.
Hence Vigx) np*B==¢ for v =1,2, -- - , and so gx€p'B = p'B for
v=12 . This shows that ¢Bc n p'B.

i=l o

Conversely, if ' be any element of np'B, then »’ can be written
i=1 .

in the form p =p%,, 1 =1,2, --.--- , where b,€ B. Now, let B =
{b;i=1,2, ... }and P={p"; n=1,2, ---... }, then by Lemma 1
there exists an element b€ B’c B such that gb€ {p%,; i = 1, 2, ------}

=p =p. Thus p' = gbegB. This shows that np'BcgB. And we
have N'B = gB. -

Analogously, 1f we replace B by pB, we can conclude n p’(pB)
= q(pB). Since n p‘B = n p‘(pB) we have gB = gpB. Applymg the

left cancellation law, if follows that pB = B. This proves Lemma 2L.
Similarly, we obtain the following two lemmas:
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Lemma 2R. Let S be a bicompact semigroup satisfying the right
cancellation law, and B be a closed subset of S. If peS, chB then
Bp = B.

Lemma 2. Let S be a bicompact semigroup satisfying the can-
cellation law, and B be a closed subset of S. If peS, Bpc B and.
DPBc B, then Bp = B = pB.

From Lemma 2 it follows
Theorem 1. A bicompact semigroup salisfying the cancellation
law is a group. :

4. Lemma 3. Let S be a bicompact semigroup and a an element
of Sand let A ={a*; n=1,2, - Y. Then A contains a commuta-
tive closed group D.

Proof. Let A, ={a';i=v}and A ={A,;v=1,2, ----.- }. Then
in the same way with Lemma 2L D = nAv =+ ¢.

Now we shall show that D is a commutatlve closed group. It is
easy to see that D is a commutative closed sub-semigroup of S. It
remains to show that D forms a group. To prove this it is sufficient
to show that xD = D for all ¥ in D. Suppose that there exists y in
D such that yD £ D, then there is z in D so that z€yD, that is,
z2=Lyx, for every x, in D. Therefore, there exist neighborhoods
Vi) of », Vix)) of x, and V,(2) of z such that V,(z) n V,(») Vix,) = ¢.

Since u V(x,) oD and D is bicompact as a closed subset of a bi-
x)«D

compact space S, We can choose a finite: covermg V(x\) =1, 2,
------ , &) of D, ie. u V(xA):D Let V(y), V(2) be neighborhoods
of ¥, 2, respectively, such that V(y)c n V ), Vigye n VA (z), and put

U Vix,) = @, then @ is an open set contamg D, and
Vo) n(Vne) =

Since y € D, there is an integer # = 1 so that a* € V(»), and since
z€ D, there exist integers v, such that v, > #, v, > v, G =12, -----)
and @€ V(z) for every »,. Putting r,=v, — =1 and A™ =
{@as; j=tt+1, - }, then, by the above method, N A“’==¢. And

t=1

it is easily shown that nAGc D. Choose an element # from nA‘*

tel t=1l
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then since € is an open set containg D, there exists a neighborhood

Vi(u) of u contained in @, and since # ¢ n A%, there exists an integer
t=1

z, 50 that @'« € V(). Then, a*€ V(2) and a% = @**x = a*a’x € V() V()
c V(»)@. This contradicts to V(z)nV(»)Q =¢. Hence, we obtain
xD = D for all ¥ in D, and D is a group.

As a consequence of Lemma 3 we have
Lemma 4. Every bicompact semigroup has at least one idempotent.

5. If a semigroup S contains no proper ideal at all, it is called
a simple semigroup. An idempotent f is said to be wunder another
one e if ef =f =fe. An idempotent e is primitive if there is no
non-zero idempotent under e. A simple semigroup S is said to be
completely simple if every idempotent element of S is primitive, and
for each a€ S there exist idempotents e and f such that ez = ¢ = af.

Lemma 5. A mecessary and sufficient condition for semigroup S
to be simple is that SxS = S for all x of S.

Lemma 6. If S is a simple semigroup and e is an idempotent of
S, then eSe is also a simple semigroup.
The above two lemmas can be proved in the same way with [2].

Lemma 7. A bicompact simple semigroup S is completely simple.
Proof. Let a be any element of S. Then, since S is simple,
there exist b, ¢ such that bac = @. Then, by simple induction, d*ac®
= q for all integers n. Let B={b"; n=1,2, --.--. LW B, ={b;iz=v}
and D, = nB,, then by Lemma 3, D, is a commutative closed sub-
1]
group of S Analogously, let C={c¢*; =1, 2, ------ L C,={c; i= v}
and D, = n C,, then D, is also a commutative closed sub-group of S.

We denote by e, and e, the identities of the groups D, and D,,
respectively. Then, we shall show first that e,ac’ = a, where ¢ € C.

Let H={ba; n=1,2, --.-.. }. In Lemmal, if we replace A by
H, Bby C, 4 by {1,2, -..... }, B* by S and a by e,q, then it is easy
to see that all the conditions of Lemma 1 are satisfied for H, C and
¢,2. Hence from Lemma 1 we can conclude that there exists ¢ € C
such that e,ac’ € {b"ac*; n =1, 2, ------ } = {a} = a. This shows that a
can be written in the form @ = e¢ac’, where ¢’ € C. Analogously, a
can be written in the form a = b'ae,, where # € B. Hence
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e;,a = eb(e,-,a(,") = (ebeb) (ac,} = ede’ =a
ae, = Haee, = Ha)ee,) = blae, =

8

and ¢,, ¢, are idempotent.

Let e be any idempotent of S, and f be an idempotent under e.
Then f = efe€eSe, and by Lemma 6 eSe is simple, so that there
exist x, ¥' in eSe such that xfx’ =e. Putting ¥f=y» and fx' =Y/,
we obtain yfy = e, yf =y and fy =3’. Then yy = yfy’ =e. Then,
by induction, since ¥/’ = e, we have y’fy™ = ¢ for all integers .
Then as above proved, we can choose idempotents g, 2 in eSe such
that gfA' =e and g'fh =e, where g’ and % are contained in
{y; n=12, - 4 and {y*; n=1,2, - }, respectively. Then,
since ¢ is the identity of eSe, we have |

g=ge=g-gfl =gfh =e,
IH =e-fll = gfl = e,
henceforth
f = f.e = f.fh’ =f12, = @.
Thus, e is the only idempotent contained in eSe, and e must be
primitive. (In the latter half of the proof of this lemma, we limited

ourselves in a bicompact semigroup eSe). Hence S is completely
simple.

Theorem 2. A bicompact semigroup S has the unigue minimal
two-sided ideal K which is completely simple and bicompact.

Proof. Let E be the set of all idempotents in S, then by Lemma
4, E is not empty, We denote by e\, ¢,, - the elements of E.
Then, it is clear that the set K = nESeAS is a closed bicompact ideal
of S, if K=¢. Now, let SeAiS @ ;'1, 2,y ceeeen , m)-be any finite num-
ber of subsets in the family {Se,S; e, € E}. Then each SeAJS lj=m
contains the element

so that n Se, S+ ¢. Thus, {Se,S; ex€ E} is a family of subsets of
i=1

a bicompact space S with the finite intersection property. Since each
Se, S is closed, it holds

K = DSQAS:{:-'IJ.

e e E
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Suppose that K’ is a bicompact ideal of S. Then, by Lemma 4,
K’ contains an idempotent ¢ and it follows easily that

Kc SeSc K.

If M is a minimal ideal of S then SaS is a bicompact ideal of S
contained in M where ¢ is an element M. SaS being bicompact, it
follows

Kc SaS c M,

Therefore, K = M because M i$ a minimal ideal of S.

Now, let ¥ be any element of K, Then, KxK is obviously a bi-
compact ideal of S contained in K. On the other hand, KxK must
contain K. Hence, KxK = K. This shows that K is simple and
consequently, it may contain no other ideal of S than itself. There-
fore K is the minimal ideal of S.

In the following, the minimal ideal K which is completely simple
and bicompact is called the ‘kernel (Suschkewitsch’s Kerngruppe) ™
of S. ,

Since the kernel K of S is a bicompact semigroup it contains an
idempotent. One can easily see that for any idempotent ¢ of K the
relation

SeS = K.

. Especially, if S contains 0 then, by definition, K contains also 0.
Since 0 is an idempotent, it follows immediately

K = S0S = 0.

6. Lemma 8. A completely simple semigroup S with the identity
1 is a group.

Proof. Let x be an element of S. Then, since S is simple, there
exist elements b, ¢ such that bxc = 1. Then, xch, cbx are idempotents.
But, by the definition of a completely simple semigroup, 1 is a
primitive idempotent and so must be the only idempotent of S.
Hence xcb = cbx = 1, and every element x¥ has the inverse x~' = cb.
Therefore, S is a group.

Lemma 9. Let K be the kernel of a bicompact semigroup S.
Then, for any idempotent e of K, eK and Ke satisfy the left and right
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cancellation law respectively. Moreover, for arbitrary idempotents e, f,
eKf is a group.
Proof. let x,, x,, ¥ be elements of ¢K, and assume that

Y¥, = JYXz.

Then, we can determine the elements &, %, 2 of K such that
X, =6k, ¥, =ek, and y = ek. Since eKe is a completely simple semi-
group with ¢ as the identity, then eKe is a group. Therefore, the
element eke has the inverse element (eke)~! in eKe. From the relation
yx, = yx,, it follows immediately that

X, = ek, = (eke) (ekek,) = (eke)(ekek.) = ek, = x..

This shows that the left cancellation law holds in ¢K. Similarly, we
may prove that in Ke the right cancellation law holds.

Now, it is not hard to show that eKf satisfies the left and right
cancellation law. Since ¢Kf is a bicompact semigroup, it must be a
group by Theorem 1.

Theorem 3. Let K be the kernel of a bicompact semigroup S,
then K is decomposed into join of groups which have no element in
LOMmon.

Proof. Let E’ be the set of all idempotents in X, and we denote
by G,. a group e,Ke,, where ¢,, ¢, belong to E’. Since K is a com-
pletely simple semigroup, then by the definition of a completely simple
semigroup, every ¢ of K is contained in one of the groups G,,.
Hence, it follows that

. K = U G;\“-
Avm
If two groups G,, and G,, have an element ¢ in common, then
el(,' =Cc = egc y

where ¢,, e, are the identities of G.» G., respectively. By multipli-
cation with the inverse ¢! of ¢ in the group G,, from the right
side, we have

e, = €38,
Analogously,

e, = €26 .
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Henceforth, ¢, = ¢, = e.

Then, G,, = eG,.ec eKe = ee.(eKe)e,e,.c e Ke, = G,.(e\¢,. € eKe and
eKe is a group), hence G,, = eKe. Similarly, G.. = eKe. Thus, G,,
= ¢Ke = G,.. Hence, either G,, = G,, or G, NG, = ¢.

Theorem 4L.. Let K be the kernel of a bicompact semigroup S,
then

(1) L= Ke is a minimal left ideal of S, where e is an idem-
potent in K.

(2) every minimal left ideal L of S can be expressed in the form
L = Ke, where e is an idempotent in K.

Proof. (1) Since L is bicompact and satisfies the right can-
cellation law by Lemma 9, then we obtain from Lemma 2R Lp = L
for every p in L.

Now, L' be a left ideal of S contained in L, then L = ILpc L’ for
pel’, and then L = L'. Thus, L is minimal.

(2) Let L be a minimal left ideal of 'S. Then for every ele-
ment ¢ of L, Ka is a left ideal of S contained in L so that L = Ka..
Henceforth, L is bicompact, and by Lemma 4, L has an idempotent e.
Thus, L = Ke.

Analogously, we have

Theorem 4R. Let K be the kernel of a bicompact semigroup S,
then

(1) R =eK is a minimal right ideal of S, where e is an idem-
potent in K.

(2) every minimal right ideal R of S can be expressed in the
form R = eK, where ¢ is an idempoient in K.

Corollary. A bicompact semigroup has at least one left aﬂd one
right minimal ideals.

Corollary. Every minimal ideal (left, right and two-sided) of a
bicompact semigroup is closed and bicompact.

Theorem 5. Let R and L be a right and a left minimal ideals
of a bicompact semigroup S, respectively, and K be the kernel of S.
Then LR = K and RL is a group.

This theorem is clear, by Theorems 4R and 4L..

Lemma 10L. If ¢ and f are two idempolents in K, then either
Ke = Kf or Ken Kf = ¢.
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By Theorem 4L, Ke, Kf are minimal left ideals of S. Hence, it
is easy to see that Ke = Kf or Ken Kf = ¢.

Similarly, we have
Lemma 10R. If ¢ and f are two idempotents in K then either
eK =fK or e KnfK = 9.

Theorem 6. The kernel K of a bicompact semigyoup S is the set
theoretical join of all minimal left (or right) ideals of S.

Proof. By Theorem 4L, K contains all minimal left (right) ideals
of S. Now, let @ be an element of K. Then by Theorem 3, there
exist idempotents e,, ¢, of K such that ¢,Ke, contains a@. Since
¢, Ke,c Ke,, then by Theorem 4L, Ke, is a minimal left ideal of S
containing ¢. Thus, K is the set theoretical join of all minimal left
ideals of S.

Similarly, one can prove that K is the set theoretical join of all
minimal right ideals of S.

Theorem 7. The groups G,, = e, Ke, are isomorphic one another,

Pyroof. By Lemmas 10L, 10R and Theorem 6, each group G,, is
contained in one and only one minimal left ideal Ke, and right ideal
¢, K. Then the idempotents in Ke, are right identities of G,, and
the idempotents in e,K are left identities of G,,, and isomorphisms
of the groups G,, can be established as the same way with that of
Suschkewitsch. '
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