ON SOME CHARACTER RELATIONS OF
SYMMETRIC GROUPS

Masaru OSIMA

1. Let » be a natural number and let

(1) n = e, + ay + -0 "+ a,, a1§i1a2>~-—---ga,,>0

be a partition (a;) of # into % natural numbers «,. By a diagram
T = [a;] corresponding to this partition we mean an arrange-
ment of # nodes into %~ rows consisting of a,, a,, :---e- , @, nodes.
The number m(n) of distinct diagrams of # nodes is equal to the
number of irreducible representations of the symmetric group 3,.
We set m(0) =1. If p is a fixed prime number, then the number
s(n) of diagrams without p-hook® is equal to the number of p-blocks
of highest kind”. Let

(2) n = kp+7, 0 r < p.

By R. Brauer®, the number of p-blocks of &, is equal to }:] s(z— Ap).
A=0
Now we define /(1) and /*(2) by

@) I = 3w em@)  (Sh=4 0S4
(4) *@ :m v:%.}.. v —?172(91)7)1(:/3) "”"’n(yl’—l-) ov=140<y, <)

Let 7, be a diagram of &,_,, without p-hook. Then 7, determines
uniquely a p-block B, of &,, and the number of ordinary irreducible
characters in B, is given by /(A)®. Hence we have

(95) m(n) = és(n—/‘.p)l(i).
Lemma 1. 1) — 1*¥(2) = i‘ (i — Bym(B),

1) For the notion of hooks, see T. Nakayama, On some modular properties of the
irreducible representations of symmelric groups 1. 11, Jap. J. Math. 17 (19419 : we refer
to these papers as NI and NII.

2) See NII. p. 413.

3> R. Brauer, On a conjecture by Nakayama, Trans. Roy. Soc. Canada, 41 (1947).

4) T. Nakayama and M. Osima, Note on blocks of symmetric groups, Nagoya Math.
J. 2195D).
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Proof. From our definition

) = 33050 = my) = PP + 31146 — dym,).

Let C,, C;, -+ , Cneiy be the classes of conjugate elements in
©,. If C, contains an element G such that G is a permutation com-
posed of cycles of lengths «a,, ay, - - y @ (), 2 ag = e = a, > 0),

then C, is characterized by a partition (a;). Hence we denote C, by
“Cay).

Lemma 2. The number of classes C(a)) in &,, such that a, = 3,p
(¢ =1,2, ) is equal to wi(k).

Proof. Every C(B,p) determines uniquely a class C(B) in S,,
and conversely.

A p-regular element of &, is an element whose order is prime
to p; the other elements are said to be p-singular. Similarly, we
denote the classes of conjugate elements as p-regular or p-singular
according as the elements of the classes are p-regular or p-singular.
Let us denote by m2* (%) the number of p-regular classes in &,. Then
we have

Lemma 3. mn) — m*(n) = ﬁ m*(n — BOYM(B).

Proof. If C(a;) is a p-singular class, then at least one «, is
divisible by p. Let .

ayyy = BiD, axgy = Bo, e, any = B
By = Bz e = B, >0 and the remaining a, be prime to p. Such
a;, we denote by 7., 7z, ¢ s Thes '

TLZ Tass v 2T >0, (r;» p) = 1.

If 338, = B, then C(«,) determines uniquely C(8,) in &; and p-regular
C(r) in &,,,. Since the converse is also valid, we obtain our
assertion by Lemma 2,

Theorem 1. Let m*(n) be the number of p-regular classes in S,.
Then m*(n) = Es(n — Ap)*(2).

Proof. Our assertion is evidently wvalid when %2=0, that is,
n<p Let >0 and assume that the theorem is true for &, g,
B=12 ... » k). Then we have
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mHn — ) = S s(n — (8 + D)) = 33 stn — ADNI*(2 — B)

Hence it follows from Lemma 3 that
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= m(n) — i S(n — Ap)*(A).

A=L

Whence we have m*(n) = A}Ii_‘,s(n — AP)NF(A).

2. Let x,, xg, +=---- , *moy De the distinct ordinary irreducible
characters of ©,. Let us denote by C(G) a class of conjugate ele-
ments which contains an element G. Since G™'e C(G), we have

(6) 2w(G) = w(G™) i=12, - . m(n).

From the orthogonality relations for ordinary group characters, we
have

(7) S GG = ’g@’xf(c,mcy)
_ (n(G) for C(G,) = C(G.y
B {0 for C(G) = C(G.)

where #n(G,) is the order of the normalizer N(G,). If V is any
p-regular element of &,, then among m(n) characters x,(V), z(V),
------ s Amy( V), there exist m*(n) linearly independent (V). In the
following we shall determine all linear relations between x,(V), (V).
------ s Zmmy(V) by Murnaghan’s recurrence rule®.

Murnaghan’s recurrence rule. Let H,, H;, ------ be the totality of
g-hooks in the diagram T, and let r, be the height of H,. If Q is an
element of ©, containing a g-cycle and if @ is the permutation of
n — g letters obtained from Q by removing this cycle, then

(T @) = (1) y(T—H;: @ + (-1 uT—H:: Q) + -

1) F.D. Murnaghan, On the representations of the symmetric group, Amer. J. Math.
59 (1937). Ci. also NI, Appendix.
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where x(T), 2(T — H,) denote the characters belonging to the diagrams
T,T— H,. If T possesses no g-hook, then x(T: Q) = 0.

Let us denotc by @ the elements of ©, containing at least one
g-cycle. Then there exist m(n — g) classes C(Q,), C(Q,), -+ (C Quitn-)
which contain the elements . If @, is the permutation of n# — g
letters obtained from €, by removing a g-cycle, then C(Q), C(@.),
------ y C(@min-,) are all the classes of conjugate elements in &,_,.
From (6), we have

2@ = 0
) {m

S QIQ) = 1@,

where U is any element of &, without g-cycle. Applying the re-
currence rule to x,(€.) in (8), we obtain

m(n-g) —

j).:_: RJ(Xz(U))Zf(Qv) =0
( 9 ) m(n~-9) —

?:‘1 Rx(Q@M3(Q.) = n(Q,.)0,,
where ¥} (j=1,2, ---... , m(n — g)) are the irreducible characters of
&,.-, and R,(x(G)) for any Ge€©S, is a linear combination of x,(G),
2 (€) RETOReS s Xmey(G).  Since x¥, x¥, - s Xa-p are linearly independent,
we have from the first formula (9)
(10) R(x(U)) =0 7=12 » mn — g)

for all elements U without gicycle.

Lemma 4. Let T* be a diagram of ©,_,. If T* contains o(r)
g-hooks of the same height 7, then we can obtain p(r) + 1 distinct dia-
grams of &, by adjoining a g-hook of the height r to T*.

Proof. When po(r) = 0, our assertion is valid by T. Nakayama®.
Hence, by induction with respect to p(r), we can show that our
assertion is true for any p(7).

Let T} be the diagram of &,_, corresponding to ¥, and let

TR, Tih, e S

be the diagram of &, obtained from 7'} by adjoining a g-hook of the

1) See NIL p.414.
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height . If we denote by {7, the irreducible character belonging to
7§, then we can see that ‘
q

an R(2(G)) = “’33‘(_1)“115?,(6) (for all Ge&,).

rm] o=

Theoram 2. R,(x(G)), Rn(z';(G)), ------ y Buo-a(t(G)) are linearly
independent.

Proof. 1f we set
M = Rj(xi(Qn.))x zZ = (ZT(Q‘A))

( row index, 2 column index: j, 2 =1, 2, - .- , m(n — g)), then the
second formula (9) becomes

Z'M = Q)3 = D.

Since D is non-singular, we have |M | 0. Hence R,(x(@.)),
R(2( Q)+ s Rutn-py(1(Q)) (=1, 2, «o-oev , m(n — g)) are linearly
independent. This fact shows that the theorem is valid.

If we put, in particular, g=1p (A =1, 2, .---.- , B in (10), then
we obtain o :

12) RM((V)) = 0 F=1,2 ceeee s M — Ap), A=1,2, e, k.

where V is any p-regular element of &,.

Lemma 5. m(n) — m*(n) < i‘, mn — ip).
. A=l
_ For the sake of simplicity, we set # = m(n) — m*(n) and v =
Stmn — ip). Let us denote by

A=l

13) C(P®), C(PP), weee » C(PER)

the p-singular classes in &, such that P® contains a Ap-cycle but
does not contain a 4ip-cycle (A< ). Then CPM) (=1, 2, «---..
d@), 2=1,2, - , k) give all the p-singular classes in &,. Hence
14) u = S1dQ@).

A=1

Let P be an element of &,_,, obtained from P® by removing a
ip-cycle. Then, similarly as (9), we have

1) By a matrix of type (a, b). we understand a matrix with- @ rows and b
columns.
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m{n—Ap —
b ROGPONPEP) = n(PM)3,,

(15) o

S RPGPEMPPD) = 0 (& == ).

J=1
If we set

My = RP@PS), 2 = PEP)
(j row index, x, v column index: j =1, 2, -+ , mn—ap), v=1,2,
...... > d(’f)z n = 1, 2, veeran d(d))’ then (15) becom%
(16) {ZA'MM = W(PMs,) = D,
Z'\,M/\/c = 0.
Hence we have
le Ml M12 ...... Mw l)1
Z:; My My M\ | D
2 \My My o.M, D

Since D, A =1, 2, «...., k) are non-singular, the matrix (M) («, 2 =
1, 2, ... , k) which is of type (v, %) has a rank uzgd(l). This
=1

implies that there exist # linearly independent R™(x(P)) among v
R{M(x,(P)) where P is any p-singular element of &,. This fact, com-
bined with (12), shows that if Rx(V)) = Sax(V) = 0 for all p-regular
elements V, then R(x(G)) (for any G€S,) is a linear combination of
R G)).

The relations (12) seem to be useful to determine the irreducible
modular characters of &,, but we have only succeeded to determine
the characters belonging to the p-blocks of next-highest kind.

In the forthcoming paper, we shall study the properties of
RM(x(G)) in detail.
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