ON SOME CHARACTER RELATIONS OF SYMMETRIC GROUPS

Masaru OSIMA

1. Let n be a natural number and let

(1)
$$n = \alpha_1 + \alpha_2 + \cdots + \alpha_n$$
, $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n > 0$

be a partition (α_i) of n into h natural numbers α_i . By a diagram $T = [\alpha_i]$ corresponding to this partition we mean an arrangement of n nodes into h rows consisting of $\alpha_1, \alpha_2, \dots, \alpha_n$ nodes. The number m(n) of distinct diagrams of n nodes is equal to the number of irreducible representations of the symmetric group \mathfrak{S}_n . We set m(0) = 1. If p is a fixed prime number, then the number s(n) of diagrams without p-hook¹⁾ is equal to the number of p-blocks of highest kind²⁾. Let

$$(2) n = kp + r, 0 \le r < p.$$

By R. Brauer³⁾, the number of p-blocks of \mathfrak{S}_n is equal to $\sum_{k=1}^{k} s(n-\lambda p)$. Now we define $l(\lambda)$ and $l^*(\lambda)$ by

$$(3) \quad l(\lambda) = \sum_{i} m(\lambda_1)m(\lambda_2)\cdots m(\lambda_p) \qquad (\sum_{i} \lambda_i = \lambda, \ 0 \leq \lambda_i \leq \lambda)$$

$$(3) \quad l(\lambda) = \sum_{\lambda_1, \lambda_2, \dots, \lambda_p} m(\lambda_1) m(\lambda_2) \dots m(\lambda_p) \qquad (\sum \lambda_i = \lambda, \ 0 \leq \lambda_i \leq \lambda)$$

$$(4) \quad l^*(\lambda) = \sum_{\nu_1, \nu_2, \dots, \nu_{p-1}} m(\nu_1) m(\nu_2) \dots m(\nu_{p-1}) \qquad (\sum \nu_i = \lambda, \ 0 \leq \nu_i \leq \lambda).$$

Let T_0 be a diagram of $\mathfrak{S}_{n-\lambda p}$ without p-hook. Then T_0 determines uniquely a p-block B_{σ} of \mathfrak{S}_n , and the number of ordinary irreducible characters in B_{σ} is given by $l(\lambda)^{4}$. Hence we have

$$m(n) = \sum_{\lambda=0}^{k} s(n-\lambda p) l(\lambda).$$

Lemma 1.
$$l(\lambda) - l^*(\lambda) = \sum_{\beta=1}^{\lambda} l^*(\lambda - \beta) m(\beta).$$

¹⁾ For the notion of hooks, see T. Nakayama, On some modular properties of the irreducible representations of symmetric groups I. II, Jap. J. Math. 17 (1941): we refer to these papers as NI and NII.

²⁾ See NII. p. 413.

³⁾ R. Brauer, On a conjecture by Nakayama, Trans. Roy. Soc. Canada, 41 (1947).

⁴⁾ T. Nakayama and M. Osima, Note on blocks of symmetric groups, Nagoya Math. J. 2 (1951).

Proof. From our definition

$$l(\lambda) = \sum_{\lambda_p=0}^{\lambda} l^*(\lambda - \lambda_p) m(\lambda_p) = l^*(\lambda) + \sum_{\lambda_p=1}^{\lambda} l^*(\lambda - \lambda_p) m(\lambda_p).$$

Let C_1 , C_2 ,, $C_{m(n)}$ be the classes of conjugate elements in \mathfrak{S}_n . If C_{ν} contains an element G such that G is a permutation composed of cycles of lengths α_1 , α_2 ,, α_k ($\alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_k > 0$), then C_{ν} is characterized by a partition (α_i). Hence we denote C_{ν} by $C(\alpha_i)$.

Lemma 2. The number of classes $C(\alpha_i)$ in \mathfrak{S}_{kp} such that $\alpha_i = \beta_i p$ $(i = 1, 2, \dots)$ is equal to m(k).

Proof. Every $C(\beta_i p)$ determines uniquely a class $C(\beta_i)$ in \mathfrak{S}_k , and conversely.

A p-regular element of \mathfrak{S}_n is an element whose order is prime to p; the other elements are said to be p-singular. Similarly, we denote the classes of conjugate elements as p-regular or p-singular according as the elements of the classes are p-regular or p-singular. Let us denote by $m^*(n)$ the number of p-regular classes in \mathfrak{S}_n . Then we have

Lemma 3.
$$m(n) - m^*(n) = \sum_{\beta=1}^{k} m^*(n - \beta p) m(\beta).$$

Proof. If $C(\alpha_i)$ is a *p*-singular class, then at least one α_i is divisible by *p*. Let

$$\alpha_{\lambda(1)} = \beta_1 p, \quad \alpha_{\lambda(2)} = \beta_2 p, \dots, \alpha_{\lambda(\ell)} = \beta_\ell p$$

 $\beta_1 \ge \beta_2 \ge \cdots \ge \beta_t > 0$ and the remaining α_t be prime to p. Such α_t we denote by $r_1, r_2, \cdots, r_{h-t}$:

$$r_1 \geq r_2 \geq \cdots \geq r_{n-1} > 0, \quad (r_1, p) = 1.$$

If $\sum \beta_i = \beta$, then $C(\alpha_i)$ determines uniquely $C(\beta_i)$ in \mathfrak{S}_{β} and p-regular $C(r_j)$ in $\mathfrak{S}_{n-\beta p}$. Since the converse is also valid, we obtain our assertion by Lemma 2.

Theorem 1. Let $m^*(n)$ be the number of p-regular classes in \mathfrak{S}_n . Then $m^*(n) = \sum_{\lambda=0}^k s(n-\lambda p)l^*(\lambda)$.

Proof. Our assertion is evidently valid when k=0, that is, n < p. Let k > 0 and assume that the theorem is true for $\mathfrak{S}_{n-\beta p}$ $(\beta = 1, 2, \dots, k)$. Then we have

$$m^*(n-\beta p) = \sum_{n=0}^{k-\beta} s(n-(\beta+\sigma)p)l^*(\sigma) = \sum_{n=0}^{k} s(n-\lambda p)l^*(\lambda-\beta).$$

Hence it follows from Lemma 3 that

$$m(n) - m^*(n) = \sum_{\beta=1}^k \left(\sum_{\lambda=\beta}^k s(n-\lambda p) l^*(\lambda-\beta) \right) m(\beta)$$

$$= \sum_{\lambda=1}^k \left(\sum_{\beta=1}^\lambda l^*(\lambda-\beta) m(\beta) \right) s(n-\lambda p)$$

$$= \sum_{\lambda=1}^k \left(l(\lambda) - l^*(\lambda) \right) s(n-\lambda p)$$

$$= m(n) - \sum_{\lambda=1}^k s(n-\lambda p) l^*(\lambda).$$

Whence we have $m^*(n) = \sum_{\lambda=1}^k s(n-\lambda p)l^*(\lambda)$.

2. Let $\chi_1, \chi_2, \dots, \chi_{m(n)}$ be the distinct ordinary irreducible characters of \mathfrak{S}_n . Let us denote by C(G) a class of conjugate elements which contains an element G. Since $G^{-1} \in C(G)$, we have

(6)
$$\chi_i(G) = \chi_i(G^{-1})$$
 $i = 1, 2, \dots, m(n).$

From the orthogonality relations for ordinary group characters, we have

(7)
$$\sum_{i=1}^{m(n)} \chi_i(G_{\mu}) \chi_i(G_{\nu}^{-1}) = \sum_{i=1}^{m(n)} \chi_i(G_{\mu}) \chi_i(G_{\nu})$$

$$= \begin{cases} n(G_{\mu}) & \text{for } C(G_{\mu}) = C(G_{\nu}) \\ 0 & \text{for } C(G_{\mu}) \neq C(G_{\nu}) \end{cases}$$

where $n(G_{\mu})$ is the order of the normalizer $N(G_{\mu})$. If V is any p-regular element of \mathfrak{S}_n , then among m(n) characters $\chi_1(V)$, $\chi_2(V)$,, $\chi_{m(n)}(V)$, there exist $m^*(n)$ linearly independent $\chi_1(V)$. In the following we shall determine all linear relations between $\chi_1(V)$, $\chi_2(V)$,, $\chi_{m(n)}(V)$ by Murnaghan's recurrence rule¹⁾.

Murnaghan's recurrence rule. Let H_1 , H_2 , be the totality of g-hooks in the diagram T, and let r_v be the height of H_v . If Q is an element of \mathfrak{S}_n containing a g-cycle and if \overline{Q} is the permutation of n-g letters obtained from Q by removing this cycle, then

$$\chi(T; Q) = (-1)^{r_1-1}\chi(T-H_1; \overline{Q}) + (-1)^{r_2-1}\chi(T-H_2; \overline{Q}) + \cdots$$

¹⁾ F. D. Murnaghan, On the representations of the symmetric group, Amer. J. Math. 59 (1937). Cf. also NI, Appendix.

where $\chi(T)$, $\chi(T - H_{\nu})$ denote the characters belonging to the diagrams T, $T - H_{\nu}$. If T possesses no g-hook, then $\chi(T:Q) = 0$.

Let us denote by Q the elements of \mathfrak{S}_n containing at least one g-cycle. Then there exist m(n-g) classes $C(Q_1)$, $C(Q_2)$, \cdots , $(CQ_{m(n-g)})$ which contain the elements Q. If \overline{Q}_n is the permutation of n-g letters obtained from Q_n by removing a g-cycle, then $C(\overline{Q}_1)$, $C(\overline{Q}_2)$, \cdots , $C(\overline{Q}_{m(n-g)})$ are all the classes of conjugate elements in \mathfrak{S}_{n-g} . From (6), we have

(8)
$$\begin{cases} \sum_{i=1}^{m(n)} \chi_i(U) \chi_i(Q_{\nu}) = 0 \\ \sum_{i=1}^{m(n)} \chi_i(Q_{\mu}) \chi_i(Q_{\nu}) = n(Q_{\mu}) \delta_{\mu\nu} \end{cases}$$

where U is any element of \mathfrak{S}_n without g-cycle. Applying the recurrence rule to $\chi_i(Q_{\nu})$ in (8), we obtain

$$\begin{cases} \sum_{j=1}^{m(n-g)} R_j(\chi_i(U)) \chi_j^*(\overline{Q}_{\nu}) = 0 \\ \sum_{i=1}^{m(n-g)} R_j(\chi_i(Q_{\mu})) \chi_j^*(\overline{Q}_{\nu}) = n(Q_{\mu}) \delta_{\mu\nu} \end{cases}$$

where χ_j^* $(j=1,2,\dots,m(n-g))$ are the irreducible characters of \mathfrak{S}_{n-g} and $R_j(\chi_l(G))$ for any $G \in \mathfrak{S}_n$ is a linear combination of $\chi_1(G)$, $\chi_2(G), \dots, \chi_{m(n)}(G)$. Since $\chi_1^*, \chi_2^*, \dots, \chi_{m(n-g)}^*$ are linearly independent, we have from the first formula (9)

(10)
$$R_{j}(x_{i}(U)) = 0$$
 $j = 1, 2, \dots, m(n-g)$

for all elements U without g-cycle.

Lemma 4. Let T^* be a diagram of \mathfrak{S}_{n-0} . If T^* contains $\rho(r)$ g-hooks of the same height r, then we can obtain $\rho(r)+1$ distinct diagrams of \mathfrak{S}_n by adjoining a g-hook of the height r to T^* .

Proof. When $\rho(r) = 0$, our assertion is valid by T. Nakayama¹⁾. Hence, by induction with respect to $\rho(r)$, we can show that our assertion is true for any $\rho(r)$.

Let T_j^* be the diagram of \mathfrak{S}_{n-q} corresponding to χ_j^* , and let

$$T_{j,1}^{(r)}, T_{j,2}^{(r)}, \dots, T_{j,\rho(r)+1}^{(r)}$$

be the diagram of \mathfrak{S}_n obtained from T_j^* by adjoining a g-hook of the

¹⁾ See NII. p. 414.

height r. If we denote by $\chi_{j,\sigma}^{(r)}$ the irreducible character belonging to $T_{j,\sigma}^{(r)}$, then we can see that

(11)
$$R_{j}(\chi_{i}(G)) = \sum_{r=1}^{g} \sum_{\sigma=1}^{\rho(r)+1} (-1)^{r-1} \chi_{j,\sigma}^{(r)}(G) \qquad \text{(for all } G \in \mathfrak{S}_{n}).$$

Theorem 2. $R_1(\chi_i(G))$, $R_2(\chi_i(G))$,, $R_{m(n-g)}(\chi_i(G))$ are linearly independent.

Proof. If we set

$$M = R_i(\chi_i(Q_u)), \qquad Z = (\chi_i^*(\overline{Q}_u))$$

(j row index, μ column index: j, $\mu = 1, 2, \dots, m(n-g)$), then the second formula (9) becomes

$$Z'M = (n(Q_{\mu})\delta_{\mu\nu}) = D.$$

Since D is non-singular, we have $|M| \neq 0$. Hence $R_1(\chi_i(Q_\mu))$, $R_2(\chi_i(Q_\mu))$, \dots , $R_{m(n-g)}(\chi_i(Q_\mu))$ ($\mu = 1, 2, \dots$, m(n-g)) are linearly independent. This fact shows that the theorem is valid.

If we put, in particular, $g = \lambda p$ ($\lambda = 1, 2, \dots, k$) in (10), then we obtain

(12)
$$R_i^{(\lambda)}(\chi_i(V)) = 0$$
 $j = 1, 2, \dots, m(n - \lambda p), \lambda = 1, 2, \dots, k.$

where V is any p-regular element of \mathfrak{S}_n .

Lemma 5.
$$m(n) - m^*(n) \leq \sum_{k=1}^{k} m(n - \lambda p)$$
.

For the sake of simplicity, we set $u = m(n) - m^*(n)$ and $v = \sum_{i=1}^{k} m(n - \lambda p)$. Let us denote by

(13)
$$C(P_1^{(\lambda)}), C(P_2^{(\lambda)}), \cdots, C(P_{\alpha(\lambda)}^{(\lambda)})$$

the *p*-singular classes in \mathfrak{S}_n such that $P_{\mu}^{(\lambda)}$ contains a λp -cycle but does not contain a $\lambda' p$ -cycle ($\lambda < \lambda'$). Then $C(P_{\mu}^{(\lambda)})$ ($\mu = 1, 2, \dots, d(\lambda), \lambda = 1, 2, \dots, k$) give all the *p*-singular classes in \mathfrak{S}_n . Hence

(14)
$$u = \sum_{\lambda=1}^{k} d(\lambda).$$

Let $\overline{P}_{\mu}^{(\lambda)}$ be an element of $\mathfrak{S}_{n-\lambda p}$ obtained from $P_{\mu}^{(\lambda)}$ by removing a λp -cycle. Then, similarly as (9), we have

¹⁾ By a matrix of type (a, b) we understand a matrix with a rows and b columns.

(15)
$$\begin{cases} \sum_{j=1}^{m(n-\lambda p)} R_j^{(\lambda)}(\chi_i(P_\mu^{(\lambda)})) \chi_j^{(\lambda)}(\bar{P}_\nu^{(\lambda)}) &= n(P_\mu^{(\lambda)}) \delta_{\mu\nu} \\ \sum_{j=1}^{m(n-\lambda p)} R_j^{(\lambda)}(\chi_i(P_\mu^{(\kappa)})) \chi_j^{(\lambda)}(\bar{P}_\nu^{(\lambda)}) &= 0 \end{cases} \qquad (\kappa \stackrel{+}{+} \lambda).$$

If we set

$$M_{\lambda\kappa} = (R_i^{(\lambda)}(\chi_i(P_{\nu}^{(\kappa)})), \qquad Z_{\lambda} = (\chi_i^{(\lambda)}(\overline{P_{\mu}^{(\lambda)}}))^{-1}$$

(j row index, μ , ν column index: $j = 1, 2, \dots, m(n - \lambda p)$, $\nu = 1, 2, \dots, d(\kappa)$, $\mu = 1, 2, \dots, d(\lambda)$, then (15) becomes

(16)
$$\begin{cases} Z'_{\lambda}M_{\lambda\lambda} = (n(P^{(\lambda)}_{\mu})\delta_{\mu\nu}) = D_{\lambda} \\ Z'_{\lambda}M_{\lambda\nu} = 0. \end{cases}$$

Hence we have

Since D_{λ} ($\lambda=1, 2, \dots, k$) are non-singular, the matrix $(M_{\kappa\lambda})$ ($\kappa, \lambda=1, 2, \dots, k$) which is of type (v, u) has a rank $u=\sum\limits_{\lambda=1}^k d(\lambda)$. This implies that there exist u linearly independent $R_{\kappa}^{(\lambda)}(\chi_i(P))$ among v $R_{j}^{(\lambda)}(\chi_i(P))$ where P is any p-singular element of \mathfrak{S}_n . This fact, combined with (12), shows that if $R(\chi_i(V)) = \sum a_i \chi_i(V) = 0$ for all p-regular elements V, then $R(\chi_i(G))$ (for any $G \in \mathfrak{S}_n$) is a linear combination of $R_j^{(\lambda)}(\chi_i(G))$.

The relations (12) seem to be useful to determine the irreducible modular characters of \mathfrak{S}_n , but we have only succeeded to determine the characters belonging to the p-blocks of next-highest kind.

In the forthcoming paper, we shall study the properties of $R_i^{(\lambda)}(\chi_i(G))$ in detail.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received January 10, 1951)