ON THE REPRESENTATIONS OF GROUPS OF
FINITE ORDER

Masaru OSIMA

Introduction.

The representations of a group @ of finite order g were first
studied by G. Frobenius” in his theory of group characters. The
coefficients of the linear transformations are taken as- complex num-
bers, but we may take them as the eléments of an algebraically
closed field of characteristic 0. Recently the modular representations
of @ (i.e. representations of & by matrices with coefficients in a
modular field) which were first treated by L. E. Dickson®, has been
studied by R. Brauer and C. Nesbitt jointly and very interesting
results have been obtained”. In the present paper, we shall give a
new method to the theory of group representations which enables us
in particular to prove the orthogonality relations for group characters
in a quite natural way.

In Part I, we study the properties of the regular representations
of algebras. Let A be an algebra with unit element. Let A’ be an
algebra anti-isomorphic to A and ¢ — ¢’ an anti-isomorphism between
A and A’. If we denote by S{z) and R(a) the left and the right
regular representations of A, then a x b’ — S(@R’'(b) is a represen-
tation of the direct product A x A’ where R’(d) is the transpose of
R(p). We can derive the properties of the regular representations of
A by studying the structure of the representation S(e) R‘(b) of A x A'.
Theorem 1 and Theorem 2 play a principal role in our theory. Ap-
plying Theorem 1 to the group ring of & we can obtain the ortho-
gonality relations for group characters. The relations for the induced
characters of & are derived from Theorem 2. In Parts II and III, we
study the ordinary representations and the modular representations
of & respectively. In particular, we can obtain a simple proof of the

1) All of Y¥robenius’ papers were published in the Sitzungsber. Preuss. Akad.
A complete list of titles is to be found in Speiser (18). Three treatments of the theory
were given by Burnside (7), Schur (16) and Noeter (14). Cf. also the accounts in
Dickson (10), Speiser (18> and Waerden (20).

2) Dickson (8), (9.

3) Brauer (2). Brauer-Nesbitt (4), (6).
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fundamental relation between the Cartan invariants and the decom-
position numbers of &”. The last Part deals with the represen-
tations of ® by collineations.

I. Regular representations of algebras.?

1. Let A be an (associative) algebra with unit eclement 1 over
an algebraically closed field K, and N be the radical of A. Let

E=A1’N=AI+E_,+ ...... + A,

be a decomposition of residue class algebra A = A/N into a direct
sum of simple two-sided ideals A,. Denote by E;, E., - , E, the
unit elements of 4,, A,, - , 4,. Each E, can be decomposed into
a sum of mutually orthogonal idempotent elements &,,,, &,z === .
&\, s Such that left ideals Aé, ; as well as right ideals &, ;A are
simple. There exist mutually orthogonal idempotent elements e,,, in
A such that ¢, ,, (mod N) =¢,,, (A=1,2, ----- sy £=1,2, ceeree, F(A).
If weput Ey,=@¢,,,+ €, + - + e\, 50, then E, + E;, + oo + E,
=1. A is a direct sum:

A=Ae,  + - + Aei, sz + Ae.,, + oreees + Aea, ym
[A=¢ A+ reee +e, A+ e At e + €y, 1 Al

The idempotent elements e,,, are primitive and the left ideals Ae,,;
as well as the right ideals e, ,A are directly indecomposable. Fur-
ther Ae,,; [ex,;A] with one and the same first suffix 4, and only
those are (operator-) isomorphic to each other:

Ae)\'] = Ae,\,g = eenenn ’—‘_—-"Ae)\‘f(,\) [e,\,]A = e,\'QA %’ i %’e)\,j(,\)A].

- For the sake of simplicity, let us denote one of e,,; (¢ =1, 2, -----,
F), say e,,,, by e,. Incidentally we denote &,,, by &,. Let U, and
V. be the indecomposable representations of A belonging to the left
ideal Ae, and the right ideal e, A respectively. Then

F, F, =
V)\ 4 ( )

el )
* M);' N)‘

where M, and N, are (reducible or irreducible) representations of A

1) See Brauer-Nesbitt (4), Nakayama (1I) and Brauer (3).
2) CE. Brauer-Nesbitt (5), Nakayama (11) and Nesbitt (13D.
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and F, is the irreducible representation of A belonging to Ae, [, A).
All these are well known.

Let me,, w1, «---- , m be a basis of A. For every ¢ in 4, we
have equations

1.1) am, = 33 Sam,

Ma = D\ T My
K

where the coefficients s,, and 7., lie in K. We then obtain two re-
presentations of A by associating the matrices S(a@) = (s.), R(@) = (7..)
with a. These representations ¢ — S(@) and ¢ - R(@) are called the
left and the right regular representations of A respectively. Since
equations (1.1) become in matrix form

1.2) a(m, My ---- my) = (M, My -eeeee m)S(a)
(72, My oeeoee m,)a = (mymy oo m,) R'(a)
we have
1.3) a(m, My e e m)b = (m,mg e m,) S(a) R' (B).

Let A’ be an algebra anti-isomorphic to A and ¢ —» 4’ an anti-iso-
morphism between A and A’. Then @ — R'(a@) is the left regular
representation of A’. Since S(@R’'()) = R'(0)S(a) for any a, be A,
a x b—S@R'(b) is a representation of the direct product A x A’
(1.3) shows that the representation S(@R'(D) of A x A’ belongs to the

A-two-sided module A. Since @ — F(a) (A=1, 2, ------ , #) are the
irreducible representations of A’, the distinct irreducible representa-
tions of A x A’ are given by F (@) x F{(d) (v, A =1, 2, «-... , #) accord-

ing to our assumption concerning K. Let ¢, denote the multiplicity
of F.(a) x F{(b) as irreducible constituent of S(@)R’(d);

1.4) S@R'(b) — KZACM(F‘(G) x F;(d))

(the sign — indicates that two representations have the same irre-
ducible constituents).

Lemma 1. Let AoA 0A.D - 2A, =0 be a composition series
of two-sided ideals of A.

1) If AexoA;..e., then the A-left-module A.e.! A,..e. is simple
and Ae, = A,..e, for n==2A.
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2) If eA;neA,,,, then the A-right-module e A,!eA,., is simple
and e A, = e ,A,,, for v=Er.

3) If Ael Ay, e = Ae,, then e A,] e A, ~ éA, and conversely.

Proof. If F(a) x F(b) belongs to the A-two-sided module
A,/ A, then the A-left-module A;/A,,, is a direct sum of f(3)
simple left-moduli isomorphic to Aé,, and the A-right-module A4,/ A4,,,
is a direct sum of f(«) simple right-moduli isomorphic to 2,4 :

Al/Ai+l = S.IR, + %2 + """ + m]“\, ’ C;IRS = Aé,;
A A 2R+ Ry + oeenee + Rres s N, =~ &A.
Since A, is a direct sum: A, = AE, + AE; + «---- + AE,, we

have for the A-left-module A,/ A4,,,
AlA,., = AE | AnE + AE A LE, + o + AE, | A B,
= (A AL )E 4+ (A A)E: + oo + (A As)Es.
While we have
(A A E = Ry + R+ oo + Ry ) B =0 (=2

since N.E,~ ¢ AE, = 0. This shows that AE,= A, ,E, for n==2
and
Ai/Ai+l = AiEA/A£+1EA
= Ay, [ Apser, s + oo + Al s/ A, 109+

We then have Ag,/ A, e, ~ A¢, and Ae,= A;,e, for x==i Simi-
larly, we have for the A-right-module A,/ A,.,,

Ai/AHx = Ean. / EKA{+1 ’ E,,Ai ! EyAi-H = 0 (V -—lf—‘ IE).

Hence ¢ A,/¢A;, =~ 6,4 and ¢, A, = ¢,A,,, for v &=«r. This completes
the proof.
From the composition series of A in Lemma 1, we have

Ae‘\ E- A.e;\ = § A,.e;\ = 0.

We can choose a subsequence Ae, = Be,, Bey, - s Buoer =0 from
this sequence such that B¢, > B,,.e, and every A, is equal to one
of them. According to Lemma 1

Ae,\ -] .Ble,\ D renese s } m(}\}ek = 0
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is a composition series of the left ideal Ae,. We obtain readily from
Lemma 1 the following

Theorem 1. Let ¢, denote multiplicity of Fa) x Fi(b) in
S(@)R'(b), Then
l) {UA(a) And zcxkFx(a)
Via) — ;chF @)

2 S@R'®) — 3 U x K@ — SFa) x V).

Theorem 1 shows that the ¢, are the Cartan invariants of A. Let
m(2) and n(x) be the lengths of composition series of Ae, and e,A.
Then

Sm() = Sty = o =7
Corollary. If A is semi-simple, then
(1.5 S@R'(b) = X F.a) x F.(b).

As one can easily see, we can replace in Lemmal A by any
two-sided ideal % of A. Hence, if Uf¥ and V}* are the representa-
tions of A belonging to e, and ¢, then

GA \ H, =
a0 o )
x U} | 4

Uk — S hoF.la)
WwH;%ma

and
(1.6) {

2. Let B and C be two subalgebras of A having the unit ele-
ment 1 in common with A. Define E® and ¢ of B in the same
way as we defined E, and ¢, of A. Let B be the residue class
algebra of B with respect to its radical, and let &"” be the residue
class containing e®. Let F®, F®, ...... , F" be the distinct irreducible
representations of B. We denote by U™, U™, ...... , UM and VO, Vi,
------ , V¥ the indecomposable constituents of the left and the right
regular representations ot B respectively, where U and V&V belong
to Be® and e’B. We call the representations of A belonging to
Aet" and ¢4, the induced representations of A from UM and V.,
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and denote by U™ and V. Similarly we can define F&, U, Vi,

UPand V@ A=1, 2, «eo- , m) with respect to C. Let S(a) and R(a)
have the same meaning as in section 1. Then & x ¢’ - S@®)R’(c) for
b€ B and ceC, is a representation of the direct product B x C’ and
belongs to the B-C-double-module -A. The distinct irreducible repre-
sentations of B x C’ are given by F®®) x (F®(c) (k =1, 2, «-+- ,
l; 2=1,2, ...... , m). Corresponding to Lemma 1, we have

Lemma 2. Let AoM,oM,>-.--.. >M,=0 be a composition series
of B-C-double-module A. Then

1) If MgPoM,,.e?, then the B-left-module MeP | M,,.e is
simple and Me® = M,,e® for n=E 4

2) If ePM,5ePM,,,, then the C-right-module e M,|ePM,,, is
simple and "M, = "M, for v=r«. -

3) If MeP| M, = Be, then "M, e>M,,, ~ &2C, and con-
versely.

Proof. If FOb) x (F®(c)) belongs to the B-C-double-module
M,/ M,,, then the B-left-module M,/ M,,, is a direct sum of f.(3)
simple left-moduli isomorphic to Be{”, and the C-right-module M/ M,,,
is a direct sum of f,(x) simple right-moduli isomorphic to e@C:

M/M+l = @] + @g + oo + @fz(A)) @u = Eé:’zl)
M/Mq.l = 511 -+ Eg s SRR + zj,(x) ’ In = e,(\:‘)é.

Since M, is a direct sum:
M, = MIE® + M\E® 4 +oeeo + MLES
= EMM, + EPM, + - + EOM;,
we have in a quite similar manner as Lenfma 1
M| M., = M(E® | M;.,.E®, ME®|IM.EP =0 (232
MM, = E’M, | ESM,,,, EPM/EPM,, =0  (v=k«).
Hence we obtain readily our assertions.
As an immediate consequence we have
Theorem 2. Let o, denote the multiplicity of FP(B) x (F¥(c))
i SOVR'(c). Then
TP @) — 3 0uFP®) (for beB)

1) -
V&) — ;mFF’(c) (for ceCj
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2 SBR©O — SFXE) x (VP@) — TR0 x FPE)-

Corollary. Let o, denote the multiplicity of F®(c) x (FP(0)) in
S(OR'(B). Then

UM(c) — > A F® () (for ceC)
1) -
VD) — X ot FA0) (for be B)

2 SOR®) — SFP@ x FO0) — 3 000 x FELO).

In particular, for C = A, we have the following relations®

U0) — D7aFO0) (for b€ B)
2.1) _ .
V®(a) — ,?r.aFA(a) (for a€ A)
U®(@) — S =kFi(a) (for a€ A)
2.2) A
Vib) — DaiFO0) (for b€ B)
)3 SBR'(@) — SIFP(®) x (V®(@) — S UB) x Fia)
(2.3) x K
S@R'(®) — @) x Vi) — S UP@) x FLO)

Further, for C = B, we have

UP0) — 3 0aF00)

VOWO) = S oaFLO0)
A

24) (for b€ B).

Theorem 1 and (2.3) yield
(2.5) S@R'() — by U@ x F(b) — > U®@ x FLO).

If we set B* = B/(BnN), then B* is a subalgebra of A =A/N.
Since BN N is contained in the radical of B, B* has the same irre-
ducible representations F® (k =1, 2, ++«--- , D) with B; Let U} be the
indecomposable constituent of the left regular representation of B*
corresponding to F. Then we get

Uk

U = ( .
* W.

1) Cf. Nakayama (11) p. 335.
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Further, let us denote by U* the representation of A induced from
Ux. If Z7,$1)(a) >~ Sa,Ula) for ac A4, then
A

(2.6) Uta) =~ S anFi(@).

(2.5), applied to A and its subalgebra B*, gives
S@R'®) — 31 Fy@) x F) — 3 TU¥@) x (F)

where S@ and R(@) (for @€ A) are the regular representations of A.
We then have from (2.6)

Fid) — SanFo0).
Hence we have formulas
F®) — SaoFO0) (for b€ B)
2.7) - «
U"(D(a) — ga‘AU)‘(a) (fOI' aEA).

Similarly we obtain V®(a) >~ 3 a,V,(@ with the same a,,.
A

II. Ordinary representations of groups.

3. Let I'(®) be the group ring of a group & over an algebrai-
cally closed field K of characteristic 0:

re®)=GK+ GK+ -+ GK G=1

where G,, G, -+ , G, are the elements of ®. Instead of consider-
ing representations of &, we may consider representations of 7I'(®).
Let Z,,Z,, ------, Z, be the distinct irreducible representations of (.

To each Z; there corresponds a contragredient (irreducible) represen-
tation G — Z, (G™) (G € ®) which we denote by Z.,. Let S(G) and
R(G) be the left and the right regular representations of I'(®)
defined by a basis G,, G., - , G, Then

G; x G, - S(G)R'(GY

is a representation of the direct product ® x ®. Since I'(®) is semi-
simple, we have from (1.5)

@.1) S(G)R'(GTY) = E‘Z«(Gs) x Zu(G).
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Let C,, C., -+ , C, be the classes of conjugate elements in &
and let #, be the order of the normalizer R(G) of an element G
contained in C,. Then g, = g/#n, denotes the number of elements in
C,. Denote by C,» the class containing the elements reciprocal to
those of C,.

Theorem 3. Let (G, x G)) be the character of the representation
S(GIR (G of & x &. Then

Pv(G; x G) = ndy, (for G,eG,, G,€C,).

Proof. From GG, G; -+ G)G* = (G, G, -+ G)S(GYR(GY,
we have S(G)R'(G:Y) = (au(G, x G,)) where (ay(G; x G,)) possesses
one 1 in each column and row. If G;'G,G.== G, for any G,, then
G,G.G;' == G,, hence a,(G, x G,) =0 for any k. This implies that
(G, x G) =0 for v=£ x. Now we consider the case when G, = G,.
G.G.G' = G,, that is, a,(G, x G) =1 if and only if G, lies in N(G)).
Hence we have ¥(G, x G,) = »n,. Finally suppose that G, and G, are
conjugate in 8. From G, = G;'GG,, we find

S(G)R'(G?") = S(G)R'(G)R'(G7)R'(G;")
= R'(G)S(G)R' (G RN(G)) ™
This shows that (G, x G) = (G, x G,) = n,.
‘We denote by x; the character of Z,. The value of a character

% for the class C, will be indicated by x{”. From (3.1) and Theorem
3, we have the orthogonality relation for ordinary group characters:

3.2 EXE")X?‘) = 1,0y

We arrange z{” in matrix form Z = (") (¢ row index, v column
index). Then (3.2) becomes

(3.3) Z'Z = nd,» = T.

Since T in (3.3) is non-singular, we obtain # = m by a well known
manner. The number of distinct (absolutely) irreducible representa-
tions is equal to the number of classes of conjugate elements in ®.
We can derive from (3.2)

(3-4) %‘xg_‘zgv)xgv*) = g(?ij (i’ j = 1! 2: TRttty u)-
Further, (3.4) yields
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(3.9) p ZL(G) =

{g =1
Ge§

0 G == 1).

Here, x, means the character of the 1-representation.

4. Let  and & be two subgroups of &, and denote by &, £.,
------ » € the irreducible characters of $ and by &, &, ------, £, those
of & Let Z, and ¢, be the characters of & induced from &, and ¢£,.
From Theorem 2 we have :

a1 CH) = Sihoéy(H) (for He9)
. EAU) = gk‘AC‘(J) (for JeJ).

In particular, for & =&, we have following Frobenius’ theorem on
induced characters:

u(H) = ?liAEA(H) (for He 9y

4.2) N
&G) = 2 Inx:(G) ‘ (for Ge@®).

Further, from (2.4) we have

li(H) = 3gaéd(H)

-~ (for He D).
§(H) = ;qn&(H)

4.3)

From (4.2) it follows that

) = Sho(H) = (S hdnEdH).
‘Then (4.3) yields ga = ;lh‘lﬂ, or in m;atrix form
(4.4) Q = L'L

- where @ = (@), L = (1,). Theorem 3 and (2.3) yield for He 9

n(E) for C(G) = C(H)

‘where C(G) denotes the class of conjugate elements in & which con-
tains G, and where 7n(G) denotes the order of the normalizer N(G).
From (4.3) we obtain
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STEEDEHT) = 3 D qut(HEHT
Hed H S »

= Eq“: ng(H)S,\(H_I) = an
P HeO

where / denotes the order of . Hen;:e

S SVEHE(HT) = Sg.h = Sin(H).
c HeD 3 Hed

Consequently we have

(4.6) triga) = > n(H)/h.
H 9

Let us denote by C., GC,, -+ , C. the classes of conjugate ele-
ments in & which contain an element of $, and let H,, H., ------, H,
(H; € ©) be a complete system of representatives for these classes.

Theorem 4. The number of linearly independent characters of &
induced from the s distinct irreducible characters &, of © is equal to
the number k of those C, which contain an element of 9.

Proof. If we arrange ;‘:(Hm) and ¢.(H;Y) in matrix form
W = (E(H), U= GJHY
(¢ row index; # column index). Then (4.5) becomes '
| WU = (0(Hyp)éu) = S.

Since S is non-singular, the rank of W is equal to 2 But we have
£.(G)y = 0 for every G ¢C,(v=1,2, e , k), whence the number of
linearly independent characters among £, &, e, Es is equal to k.

5. Let @ be a group isomorphic to & by correspondence
G.— G,. Then the elements G, x G, m=1, 2, --... , 8 of the
direct product @ x @ form the subgroup @, isomorphic to ®. We
can choose G,, G,, ------ , G, as a complete residue system of & x G
(mod &,): -

G xG = GG+ GG + -+ + G,8,, G. =1

Lemma 3. Let wus denote by D the representation of & x &
induced from a representation D of ®,. Then

D(G, x G)) = S(G.)R'(G;Y x D(G,)
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where S(G) and R(G) are the regular representations of ©.
Proof. We have

D(G, x G = (DGGn % GGy = (DGGoGi* x Go))u

where D(G, x G,) is defined to be the zero matrix for G, x G, not
contained in ®,. If we set M(G, x G,) = (D(G.GuGi* x G,))u, then

M(Gm) = (D(GkaGz-l))u = S(Gm) X 'If

where f is the degree of D and I, is the unit matrix of degree f.
Further we have
M(G,) = (DIGG* x G))u = R'(G;) % D(G, x Gy)
= R'(G;") x D(G,)

since we get G,.G;' = G, from GG, = G,. Hence
D(Gn x G) = (S(Gn) x I)(R(G") x D(G,)
= S(GWR'(G:Y) x DG,).

If we take G,, G,, - , G, as a complete residue system of
& x @ (mod &,), then we have in a same way, S(G,)R'(G;") x D(G,)
as the representation of @ x & induced from D. Of course we find

(6.1) S(GR(GM) x D(G,) = S(G)R(G;Y) x D(Gy).
In particular, for G, =1, we obtain
(5.2) S(G) x I, = R'(G™ x D(G) . (Ge®).

We have finally S(G) x I, = S(G) x D(G)®, since S(G) = R'(G™).
Further we can see that S(G,)R'(G;Y) is the representation of & x @,
induced from the 1-representation of &,.

Let us denote the irreducible characters of & by 2, 2% =+++<5 Zu.
Then the distinct irreducible characters of & x & are given by
1(Gu)x(Gy) G 7 =1,2, -+ere- , #). Since %(G)x,(G) (GE®) is a charac-
ter of ®, irreducible or reducible, we obtain formulas

(5.3) 1(Gx(G) = zk‘.amxk(G)

where the a,, are rational integers, @,, =0, and @ = @;.. Let us

1) Ci. Osima (15).
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denote by 7, the character of ® x & induced from z, of ®,. Then
from Lemma 3

(5.4) )?;(Gm X Gn) = E{xi(Gm)xi'(Gn)zk(Gn)
where 1y, is the character contragredient to x,.

Theorem 5. If  1(G)1(6) = S autGh then  1(G)1(C)
= Eja“kxj(G), that Z.S, Ay = Qpyz-

Proof. (4.2) applied to & x ® and its subgroup @,, gives
TGn x Ga) = Eaukxz(cm)Zj(Gn)'
Hence, by (5.4) we have
S W Cm el Gu)tGn) = 23 81t (Gn)2A G
Since x,, %z ceoee , X. are linearly independent, it follows that
2(G2(Ga) = ?aiﬁ:xj(Gn)'

Theorem 6. Let ¥§? be the value of x, for the class C, of con-
jugate elements in O. Then

Z 225 = g il «
Proof. From (5.3) and Theorem 5, it follows that

gxfg"xi’v”x?’ = % 21_‘: Aux1Y = &21(2 i Borimdi)
e
= 37 (X CuaGnurt)-
k,l m
On the other hand, from (3.2)
> A = nx” = g/ gy
Hence
3 (3 G Bt = gui”.
m N
Here, we multiply by x$*, and add over v, and use (3.4)

th Qb = > 17250,
= <

We shall derive some further relations for the a@;;,. By Theorem 5
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DV Ul = 20 Cualyn = 2 Gl »
&, 7 }", i k1

Thus we have

(5.5) LZE Qualyy = LZE Cuyy .

We can also show the following relations
g Cualyy = k}; Gly = %n——‘ XEV)Z?) .

In particular, from Theorem 6 we find

(5.6) LZE Ay = g Gy = EV_‘; x .
(5.7) ZS Gy = EL Qpre = Zy] 2.

6. Let Z,,Z,, e , Z, have the same meaning as in section 3.
Denote by X, X., ++-+- , X, the distinct irreducible representations of
a subgroup $ of 8. H - Z(H) (He9) is a representation of ©
which we denote by Z,(9$). Now we can distribute Z,, Z;, ------ y Lo

into a certain number of blocks with respect to © by the following
manner. We say that Z;, and Z, belong to the same block, if in the
sequence )

Zt('b)9 Zlc(‘i))! """ ’ Zl.(‘b)’ Zj('@)

any two consecutive Z,(9) have an irreducible constituent in common.
Thus 2., Z,, -+ , Z, appear distributed into » “$-block” %B,, 8.,
eeeee, B,. Further we say that all the irreducible constituents of
Z(D) belong to B,, if Z; belongs to B,. Denote by X} the represen-
tation of & induced from X,. Then, as we can easily see, all the
irreducible constituents Z; of )a(} belong to the same block. Let us
set :
©6.1) M = n GG,

Ge®
Then M(c ) is an invariant subgroup of ®. Let C,, C., -+ ,C, be
the classes of conjugate elements in & which contaill an element of
M. We denote by C¥ the sum of all elements in C,. Since C¥ is
a sum of complete classes of 9, we have

(6.2) X(GCEG) = X\(C¥) = 0Py



ON THE REPRESENTATIONS OF GROUPS OF FINITE ORDER 47

where k(1) is the degree of X, and I, is the unit matrix of degree
k(). Let 4(®). and A(P) be the centers of group rings I'(®) and
r'(9), and let o, be the character of 4(®) determined by . Then
Z(C¥) = o(C)I,. Since

X,
Z(9) = '
X\

we have from (6.2)

X{C ), 0 b |

ZJ(C—’T ) = . . = . .
X(C) N

Then it follows that
(6.3) 0(CF) = pP = s = o

Theorem 7. The two irreducible representations Z, and Z, belong
to the same -block if and only if x,(M)|f, = x,(M)!f, for all Me M.

Proof. Assume that Z; and Z, belong to the same block. From
(6.3) it follows that w,(C¥)= w(C#), whence x(M)/f; = 2 (M)/f,.
Now we prove the converse. Let us denote by U, the set of those
elements of I"(®) which are represented by 0 in every Z; outside of
B,. Then A2 =1, 2, «-.-.-, 7) are ideals of I'(®), and I"(®) splits
into a direct sum: '

F(®) =g{1+%{g+ """ ‘I‘?«Ir.
‘We then have
r@ = r@nd + r@nd + - + )Y,

Let €, be the unit element of I"'(H)NW,. Then I'(HP)nA, =T(H)€,
and I'(®) e, = A,. But we find I'(®) €, = A,, since I'(®) = () €,.
This implies that €, is the unit element of 2,, and belongs to A{(®).
Then €, belongs to I'(G™*9G) for any G €@, whence €, is in I'(I).
Consequently €, belongs to

re) n4@®) = KC¥ + KC¥ + -+ + KC*

and, hence, is expressed by @.C* + a,C# + ------ + a,C* (@, € K). Since
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€, is represented by I in all Z; of %B,, and is represented by 0 in
every Z, outside of 9B,, there exists at least a class C, such
that «,(C¥) = 0,(C¥), ie. x(M)If;== 2n(M)y/f, for MeC,. This
completes the proof.

Theorem 8. The number of $-blocks of ® is equal to the number
of classes of conjugate elements in & which contain an element of M.

Proof. B,(a=1, 2, ----.. , 7) are in 1—1 correspondence with the
irreducible representations of
A@)nA@M) = KC¥ + KC¥ + ----.- -+ KC¥.

Hence we have r = /.,

Let 0, and 6, be two irreducible characters of 9, then ¢, and 0,
are called associated in ®, if there exists a fixed element G such
that 6,(M) = 0,G*MG) (MeMM). We can distribute the irreducible
characters of M into the associated classes. From Theorem 4, the
number of the associated classes is equal to /. Since the irreducible
constituents of Z, (M) are associated in &, $-blocks B, =1, 2, .-----,
l) are in 1—1 correspondence with the associated classes of Wt.

Let us denote by Z,, Z., ------, Z, a complete system of represen-
tatives for $-blocks %B,, B;, .-, B, and let Z,,,=2,, Z,,., - ,
Z, sy be the irreducible representations in 8,. We have from (3.4)
for M, e C,, M,e C,,

3 gM)1aM)talMy) = 33 fuon(CH)ta(M)
= }l] a’x(éf)dx(MJ) = gaw*-

k=1

where o (M) = 3 fure. (M) and f, is the degree of Z.,. From
p=1
Theorem 7

$(x) '
UK(MJ) = (pz:{f:p /fn)xa(Mj) = axxx(MJ)'
Hence we have

(6'4) ; bnxx(M)xu(Mj) = n(]"ll)aw.*
where b, = a./f. = 3. f%/fi. Further (6.4) yields
P

(6'5) MZW?KZK(M)ZI\(M_]-) = gaﬂ (for X in %x’ Ax in %A)°
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III. Modular representations of groups.

7. We consider representations of & in an algebraically closed
field K of characteristic p. Let F,, F., -+ , F,, be the distinct
irreducible representations and let U,, U,, ------, U, be corresponding
indecomposable constituents of the (left, for example).regular repre-
sentation of &. Let us denote by ¢, and 7, the characters of F,
and U,. We understand these characters in the sense of Brauer
and Nesbitt?: they are complex numbers and are defined only for
the p-regular elements®. We denote by C,, C., -+ , C. the classes
of conjugate elements which contain the p-regular elements. The
value of characters ¢, and », for the class C, will be indicated by
o and %{". Theorem 3, combined with (1.4), yields

>3 kaqp.(:)("f\m = nv’;uu* .
K, A
Since 7 = 3 coe™® by Theorem 1, we have
K 0
(7.1) %, Wl = ni*.

We arrange ¢{ and »{” in matrix form o = (¢{?), H = ({’) (A row
index, v column index). Then (7.1) becomes

(7.2) HO = ps,» = P.

Since P is non-singular, we get m = ¢ in a same way as in Brauer
and Nesbitt (6), and consequently

| H{+0,  |o|%o.
(7.1) yields the following
(7'3) 2 gy‘o‘(‘y)vs\v*) = gam\ (Ea A= 1; 2’ """ ’ m)v

As is well known, the ordinary irreducible representation Z,
determines a modular representation (reducible or irreducible) Z®.
Let. d, denote the multiplicity of F, in Z,. Brauer and Nesbitt.
called these d;, the decomposition numbers of .

Thl_ﬁcrem 9. If 4= Zd»“/’m then = > dnXs.
x 3

1) See Bgtmller-Nesbitt (6.

2) By a p-regular element of @, we understand an element whose order is prime
to p

3) See Brauer-Nesbitt (6) p. 558.
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Proof. From (3.2) and (7.1), we have
%‘. X = > 700 (v, £=1, 2, +e-er, m).
Hence
2 xi(v)xgu) — Etj X?) % di.z\(”;«”)
= 3 (3 dax®)el? = 9P,
This implies that », = %:dlm.
Theorem 10°, Jf x, = Z‘c}d,,cqp,t and 7, = E‘]C.o‘f/’u then
Co = O = 2 dudl.
Proof. According to Theorem 9, we have
o= dan = Sda Xdupe = X (33 didin )0
and hence ¢, = 3)d,d, = Cx..
If we set (c,‘:) =C, (d,) = D, then
(7.4) C=DD

where D’ is the transpose of D. From Theorem 1, combined with
€ = €\, We can see that U, — V,, but in virtue of the fact that
group ring is symmetric®, we have certainly U, = V,. '

8. Let $ and & be two subgroups of . Let us denote by of,
PFy eesen , ¢f the irreducible characters of © and let 7, »¥, ------ , 7k
be the corresponding indecomposable characters of the regular repre-
sentation of . Similarly we define ¢, and », A =1, 2, +-----, ) for
J. Further we denote by &*, 7*, ¢x and 7 the characters of &
induced from ¢}, 7¥, ¢, and 7, respectively. Theorem 2, applied to
the group ring of ®, yields '

81 H) = 3) o0F(H) (for p-regular elements H € D)
1) ’ ,
75 = Dl enen) (for p-regular elements Je€ ).
A

In particular, for & = @, from (2.1) and (2.7) we have formulas®

1) H. Nagao has obtained independently a simple proof for this theorem using
the properties of the induced characters of ®.

2) See Brauer-Nesbitt (5). Cf. also Nakayama-Nesbitt (12).

3) Nakayama (11) p. 368. Brauer-Nesbitt (6) p. 582.
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WH) = 3 zu0f (H)
®.2) N g

ﬂf (G) = %.: TpAWA(G/)
8.3)

(h(H/) = %n &o)Po (H/)
7:'(G’) = ; apAvA(G,)

where G’ and H’ mean the p-regular elements of & and 9 respec;
tively. Finally, from

339G H) = ; X (G (H")

or from (8.3) directly, we have formulas

{%(Hl) = 2.: Bpﬁ? (H")
8.4)

¢HG) = ZA,BPM\(G')-

Let x; and ¢, be the ordinary irreducible characters of & and 9.
We can prove easily the following formulas

u(H") Z‘. myey (H')

8.5)
‘77;;*(61) = >‘_x m{pxi(G,)
[E(H) = 3 g0t (H))

(8.6)
"7;;*(H') = %1 Ny v(Hl)

8.7

oF(H) = Efwco?f(H')
n(H) = Efw’o,(H'

Further, from (2.4) we have

PXHH) = 3 00X H)
8.8 P

2 (H) = 3 0,0*(H).
If we put ' '

W= (wpu-)’ M= (mip)’ R= (rpo-)) A= (“’pl\): B = (B,u\)p V

then we obtain from the above formulas
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(8.9) W= MM-= ACA’' = C*BA' = C*R’
where C* = (¢*) has the same significance for © as C has for G.

Theorem 11°, The number of linearly independent characters of
® induced from the k distinct irreducible characters ¢f of © is equal
to the number of the classes of conjugate elements which contain a
D-regular element of .

Proof. We have for p-regular elements H;, H; of

o B E EH — {n(Ho for C(H) = C(H)
> Ce VI T = 0 for C(H,) == C(H)

where C(H) denotes a class of conjugate elements in & which con-
tains H. Then we can obtain our assertion in the similar way as
Theorem 4. ]

Similarly in section 6, we can distribute the indecomposable
representations U,, U,, -+ , U, into a certain number of blocks
with respect to ©. We say that U, and U, belong to the same block,
if in the sequence

(];:(‘b)’ Uu(‘@)s """ , (]u(‘b): U)\(‘b)

any two consequtive U,(H) have an irreducible constituent in common.
Thus U, U,, - , U, appear distributed in s “ $*-blocks ” B¥, B¥,
------ , Bt. We also say that F, belongs to B* when U, belongs to
B7. Then we can see that all the irreducible constituents F, of U,
belong to B%. Moreover all the irreducible constituents of the
modular representation Z, of & which is determined by the ordinary
irreducible representation Z, belong to the same block. If Z; contains
F, in B* as ips irreducible constituent, then we say that Z, also
belongs to B*. Let M have the same meaning as in section 6.

Theorem 12%. The ordinary irreducible representations Z, and
Z, belong to the same $*-block, if and only if

gMy M)/ f, = gMx(M)/f, (mod )
for all Me W, where v is a fixed prime ideal divisor of p in K*.

1) Nakayama (11) p. 3G6,

2) Cf. Brauer-Nesbitt (6) p. 562,

3) We choose the algebraic number field K* so that the absolutely irreducible
representations of @ can be written with coefficients in K%,
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By Theorem 7, we have

Corollary. If Z, and Z, belong to the same $-block, then they
belong to the same D*-block.

9. Let @ and ®, have the same meaning as in section 5. Since
@®, is isomorphic to &, the characters ¢, and », of @ may be con-
sidered as the characters of &,. Denote by %, and %, the characters
of & x & induced from ¢, and %, of @,. Lemma 3 holds also in the
modular case, and hence for p-regular elements G,, G, of &, we
have

?o'“(Gt X Gj) = EK Wx(G-t)"?x'(G,;)(”p(GJ)

(9.1) %-M(Gi X Gj) = g ¢x(Gi )vx'(GJ)v“(GJ)
= g vK(Gi)wx‘(Gj)vn(GJ)

where ¢. and . are the characters contragredient to ¢, and 7,.

Theorem 139, If 3(G)2\(G) = 3] 7au0.(G) for p-regular elements

"

G of G, then 7.(G)9.(G) = 3] 7aua(G), that is, ma, = Teu -

A

Proof. Applying (8.2) to ® x & and its subgroup ®&,, we have

‘77#(G{ X GJ) = Zx}(Vx(Gt)’?x-(Gj)??y(Gj) = E'TKAM‘i’x(Gi)(PA(Gj)-

My A
This implies that 7.(G;).(G,) = ; Zeau?a(G).
Further we obtain the following

Theorem 14. For p-regular elements G of &

1) WK(G)q?A(G) = % aKMLq,I-L(G)
{(%(G)W(G) = g axkp’?A(G)

2) {%(G)’?A(G) = ; ﬁxhuﬂu(c)

vx'(G)(ap.(G) = ; BKA;L‘pA(G)'
Proof. Every indecomposable constituent of the regular repre-

sentation of & x & is given by U(G,) x U,(G,). Hence (8.3) and (9.1)
yield

1) H. Nagao has proved independently Theorems 13 and 14 by the same manner.
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;ﬂ(Gi X éj) = 2 ?K(Gi)‘/’x Gj)’?,a(G )
= 2 ax,\p:'?n(G )77,\(61)

This implies that ¢.(G,)7.(G;) = ;‘, a0, 7(G;). Similarly from (8.4) we

can obtain 2).
In particular, we can see that 8,,, = ¢.. Since (5.2) shows that

U, x D splits completely into U, U,, «--- , Un, by Theorem 14 we
find
9.2) F.(G) x U/G) =~ EA]H‘,\,LU,\(G)”.

Corresponding to Theorem 6, we have the following formulas

E al\xﬂﬂpxy. = E Bxy-has,up = E ¢,('v)77(v*)
Kb KB

20 Upullpy = 5 000

Ky M v

E TepaEepp = E Xy epToe = Z 775\”)77:3"*)
Kyt K v

33 BB = g 757957,
Ky p

9.3)

From (7.1) we have
2 gV = b 2 @ p B0 1Y
= E (2 B8 = PRV

e nn
Here, we multiply by »{", add over », and use (7.3)
‘}% Yo = 3 NP
On the other hand, we have
PP = 3 > Banel0l? = 3 oY) Br® )9S’
Consequently E“m:. o = Z Bt . This completes the proof of the

first formula (9 3). Now We shall prove the second formula (9.3).

3180 = 320 ) 800
L3 x awr
= 2 a&'y.’x’ E ‘BK'U'H'g"Jvl(T‘:)
K, u' ot
= 2 (2 a}\wzaxau)g'uvg‘:) = g(agu) .
o Ky ke

1) Cf. Osima (15).
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ot
514

Here, we multiply by ¢, add over v, and use (7.3)

S o = 20 00050,

Kyl v
Similarly 370 = 2,4 and 3 P90 = np{? yield last two
formulas (9.3) respectively. Furthermore from (9.3) we find

E TepaFuppt = > e Tprap — 25 B'\""‘Bf’"".
<, 1 cow ok

In particular, for A =1 in (9.3), we have®

D) B = D0 Bupr e = 2 Conllp
P

® Ky e

— Ecmagx,pp p— E’?f,”)
KoM v

Eamu: —_ vE (0!(;.0).

£

IV. Representations of groups by collineations®.

10. Let @ be a group of finite order g. We consider the
algebra

(10.1) #, ®) = UK + UpK + +--- + UK, Uy=1

G ={E,P, -+ , @} over an algebraically closed field K in which the
multiplication is defined by UrU, = 75,,Ur,. Here, the 7, , are non-
zero elements from K such that 7, g7pg,z = 7p.ez?e.z- (> @) is called
the collinear group ring of & with factor set » = {75,¢}. If Up - M(P)
is a representation of (», ®) by linear transformations, then M(P)M (&)
= 7, oM(PQ). Hence P — M(P) is a representation of & by collinea-
tions. In the sequence P — M(P) may be called the representation
of ® with factor set ». If P— N(P) is a representation of & with
factor set 7, then U, — N(P) is certainly a representation of (r, ®).
Hence we may consider representations of (r, ®) instead of consider-
ing representations of & with factor set ». The two representations
P — M(P) with.factor set » and P — N(P) with factor set 7', are
called associated if M(P) = k-N(P) for all P where the %2, are non-
zero elements from K. The factor sets 7 and 7’ are also called asso-
ciated. If » and 7’ are associated, then we find

1) See Brauer-Nesbitt (6) p. 579.
2) Cf. Schur (17), Tazawa (19).
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(10.2) ?’l”.Q = kpqu;érplQ.

Associated representations are regarded as not essentially distinct.

Now we assume that the characteristic of K 'is 0. Then (7, ®
is semi-simple. We denote by Z,, Z,, -+-+--, Z, the distinct irreducible
representations of (7, ®). Let C,, C,, ------ , C, be the classes of con-
jugate elements in ®. A class C, is called regular with respect to
7, if C, contains an element P such that 7, ,= 7, » for any @ of the
normalizer N(P). We shall denote by C,, C., +-+-- , Ca (d<m) the
regular classes. Since Z, is an irreducible representation of & with
factor set », we may set x,(U;) = x(S) where x, is the character of
Z,. We then have from U,UsU;' = 75 s73ip-t pUpgp-1

(10.3) %:(S) = 7p,s75sp-1, p2s(PSP Y.

Lemma 4. If S is contained in a non-regular class, then »(S) =
0@Z=1,2, . , ).

Proof. From (10.3) we find x/(S) = 7p, 575 »1:(S) for any Pe N(S).
By our assumption there exists @ € 9(S) such that 7, ¢75',== 0, whence
X((S ) =0. .

Since Z(U;)Z/(UgYH = 520 Z{(Uz), Upr — Z)(U5Y is an irreducible
representation of & with factor set r* = {r;!,}. We call this repre-
sentation contragredient to Z, and denote by Z,. If we denote by
%o the character of Z,, then from U;' = 77! ,-1U,-1 we have x,(P) =
wt(UrY) = 75t 10, (P7Y). . .

Let S(Up;) and R(U,) be the left and the right regular repre-
sentations of (r, ®) defined by a basis Uy, Up, :+-+--, U,. Then
Up x Uy - S(Ux)R'(UgY is a representation of the direct product
(7, ®) x (r%, @) with factor set {7, ¢75!r}. If we denote by 0(U, x Uy)
the character of S(U,)R'(Us", then we have from (1.5) @(U, x Us)
= g 1(Us)x:(Us™), that is

(10.4) OP x S) = g} 2:(P)x:(S).

Lemma 5. If Pis an element of N(S), then P — 75 p75's iS G
linear representation of N(S).

Proof. We have UgUpUs! = 75,75 sUs, UsQUs' = 75,075 sUs
(P, @ € M(S)), whence UUpU,Us' = 75,75 575,070 sUpU,. Then
UsUreUs™ = 7, p77. 575,07¢,5sUre- On the other hand, 'since PQ € N(S),.
we find UsUpUs* = 75, po776,sUpe. Thus we obtain (7, 577" ) (7s,e743)'s)

— -1
=75,1¢7/q,5°
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Lemma 6. Let n(S) be the order of the normalizer US). Then

n(S) for S in the regular classes
S 75, pTrs = { .
PR(S) 0 for S in the non-regular classes.

Proof. It follows readily from Lemma 5 and (3.5).

Lemma 7. #(S x S) = 3} 75,5755,

PeN(S)

Proof. Since Us(Uy Up ++--- UdUst= Uy Up -++-+- U)S(US)R' (U™,
we have our assertion in the similar manner as Theorem 3.

If S, and S; are not conjugate in &, then as one can easily see
o(S; x S;) = 0. Further if S is contained in a non-regular class, then.
from Lemmas 6 and 7, (S x S) =0. Let S, S., ------, S; be a com-
plete system of representatives for the regular classes. Then we
have from above consideration

(10.5) (S, X S)) = 7(S,)0un -
Consequently (10.4) yields '
(10.6) > 1(S,)2e(Sh) = n(S,)on v Ad=1,2 ceee ,d).
If we set
Z = (%(S.)), Y = (2(S.))

(v row index: 7 column index). Then (10.5) becomes Y'Z = (1n(S,)8,,)"~
= V. Since V is non-singular, we have 2> d. Suppose that %z > 4.
Then %,(S,), 2:08,)s ==+ %:(S,) (v =1, 2, ---cee ,d) are linearly dependent :

%:alX1(Sv) = 0.

From (10.3) and Lemma 4 we can see that >}ax(P) = 0 for any
i

Pe®. But such a relation is impossible, whence we have k2 =d.
The number of the distinct irreducible representations of & with
factor set 7 is equal to the number of the regular classes of con-
jugate elements in ®. From (10.6) we can derive as usual

(10.7) vz;}g-,xf(s.,)xy(su) = goy

where g, = g/ n(S,).
Let (s, ®) be the group ring of & with factor set s = {s5,,}:

(5,8) = Ve K+ VoK + «-ee- + VK.
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We denote by S.(Up), R.(Ur) and S,(V,), R,(Vs) the regular repre-

sentations of (, ®) and (s, ®). Let Z®, Z®, «eeee, Z 1 2O, ZP, wouene ,
Z& and Z®, Z©O, «..... , Z® (t = 7rs) Be the distinct irreducible repre-

sentations of (7, ), (s, @), and (4, ®). The characters of Z{?, Z®
and Z{ we denote by x”, 2> and . Since Z{(Uy) X ZO(Vyp) is a
representation of an algebra (¢, @), we have

(10.8) 1(PYP(P) = 23 bepti(P).
A = (Ug x Vao)K + (Up X Vo)K + +oeenr + (Uy x VoK

is a subalgebra of (7, §) x (s; @) and is isomorphic to (¢, ®) = W, K +
WepK + ---.. + WoK. Hence we may denote 2 by (¢, ®).

Lemma 8. If D, is the repreSentation of (r,®) x (s, ®) induced
Jfrom a representation D, of (I, ®), then

D(Up x Vs) = SAUARAU: x D(Ws).

Proof. We can prove in the similar manner as Lemma 3.

Since 5, is representation of & x @ with factor set {7, ,Ss,z}
we may write

D(P x S) =~ S (P)R*(S) x D.S)

‘where R} is the representation of & contragredient to R,. Lemma 8
yields

SAP)R}(S) x D/(S) = S(S)RX(P) x D,(P).

In particular, for § = E, we have S.(P) x I, = R}(P) x D(P). Ap-
plying 4.2) to the direct product (», ®) x (s, ®) and its subalgebra
{t, ®), we obtain the following

Theorem 15. Let
#P(PYPP) = 35 byl (P).
Then
#{P(PYyP(P) = %‘.bmxS"(P)-

1) It r={rp,¢} and s = {sp, ¢} are the two [actor sets, then {fp,q} = 7p,¢Sr,¢}
is also a factor set.
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11. We shall study briefly the modular representations of &
with factor set®. Let (s, @) be the collinear group ring with factor
set ¢ = {45 o} Over an algebraically closed field K of characteristic p.
We set :

g = glpu, (g,’ p) = 1.

Any factor set {05} is associated with a factor set {o,,,} such that
0% o= 1 then necessarily 0% =1 for any P, Q€ ®. In the sequence
we may only consider such factor set o. Corresponding to a factor
set p, a factor set » = {rr o} is defined as complex numbers:

7r,e = Pr,q» The=

in the same manner as the modular characters were defined.. A class
C, is regular with respect to o if and only if C, is regular with
respect to r. Let CF,,CF, - , C*¥ be the regular classes which
contain an element whose order is prime to p. We denote by F,, F,,
+--..-, F, the distinct irreducible representations of (0, &) and by U,
U,y -oovee , U, the corresponding indecomposable constituents of the
regular representation of (o, ). If ¢, and %, are the characters of
F, and Up, then the modular characters of F, and U, are &, and %,

(residue classes mod p). We set ¢,(Up) = ¢x(@) and y(U,) = 7.(Q).
Now we have

Lemma 9. Let Q be an element whose order is prime to p. If
Q is contained in a non-regular class, then ¢\(Q) =0 (and hence &,(Q)
= 0).

Proof. We can prove in the similar manner as Lemma 4.

Let Q,, Q., ------ , &s be a complete system of representatives for
the classes Cf (v=1, 2, ----- , 5). We have from Theorem 1 and
Lemma 7
(11-1) % vk(Qv)qu'(Qu) = n(Qv)aw. (V’ Hn= 1_: 2; """ > S)

where ¢, is the character contragredient to ¢,. By (11.1) we have
t = s. Now suppose that £ >s. Then the modular characters ¢.(Q.),
@o(€,), +o-ee , P@y) (v =1, 2, veenen , S) are linearly dependent:

1) See Asano-Osima-Takahasi (1).
2) The value of these charactere are complex numbers as in section 7

and are
defined only for Up where @ has an order prime to p.
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%}ax‘ﬁA(Qu) = 0.

Then from Lemma 9 it follows that 33 ,5,(Q) =0 for any element
A
@ whose order is prime to p, whence we have finally 3} «,5,(G) =0
A

for any element G of &". But such a relation is impossible. Hence
{ =s. The number of the distinct irreducible representations of &
with factor set o is equal to the number of regular classes of con-
jugate elements in & which contain elements of an order prime to p.
It follows from (11.1) that

(11.2) 2 g @Q)en(@) = g

Corresponding to Theorem 15, we have the following formulas
for Qe C*

12(Q(Q) = wa«’,(f’(Q) :
(11.3) { #
yP(QWI(Q) = %"*.&"”(Q)
eP(Q)e(Q) = Z ag.e(Q)
(11.4) {
eP@)(Q) = % ak Q)
AL 7P(Q)(Q) = > B 70(Q)
) {viﬁ"(Q)w,‘f’(Q) = E ﬁ.‘m«)‘f’(Q)
where tp o = pp o0p,. In particular, we can prove from (11.4)
(11.6) FPG) x UPG) = Sa ab US(G). |
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