ON THE STRUCTURE OF MAXIMAL HILBERT
ALGEBRAS

Osamu TAKENOUCHI

In our previous paper [12]”, we considered the unicity problem of
the maximal extension of a given Hilbert algebra, and established the
most fundamental property of a maximal Hilbert algebra ([12; Theorem
2]). We argued also the decomposition of maximal Hilbert algebras
with respect to their centres, and, on doing it, we noticed that there
exist two different types of them, i.e., the simple ones and the purely
non-simple ones. The decomposition theorem to these types was given
in [12; Theorem 5] with a sketch of the proof, and we announced that.
further arguments concerning the decomposition would be given in
some other paper. The chief airh of this paper is to give it.

In §1 a short cut of the known results is given, and §2 is devoted to-
the more detailed exposition of the decomposition of a given Hilbert
algebra into the simple components and the purely non-simple compo-
nent. A simple Hilbert algebra is one for which the algebras of left
and right multiplication constitute a couple of factors in the sense of
F.J. Murray and J. von Neumann ([4]), and we are led naturally to
make use of their theory. The main problem here is how the dimen-
sionality functional can be expressed by means of the terms of the
Hilbert algebra. These are discussed in §3. The reduction theory of a.
purely non-simple Hilbert algebra into simple ones is given in §4. This
idea, though here only applied to the separable case, can be applied in
~the non-separable case. But in the most general case we do not
yet succeed in proving simplicity character and that will be a future
problem.

8§1. Sketches of the known results and a lemma.

A Hilbert algebra U in a Hilbert space 9 is defined as follows ([6]) :

(i) It is a dense linear manifold in .

(ii) Between the elements of 2, a multiplication law is defined
such that, with respect to the linear operation defined in $ and this.

1> Numbers in brackets denote the numbers of literatures at the end of the paper.
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multiplication operation, 2 constitutes an algebra over the field of
complex numbers.

(iii)y To each a € ¥, an element ¢* in A is corresponded so that, for
any b, ce ¥,

(ab, ¢) = (b, a*c), (ba, ¢) = (b, ca*).

The operation ¢ — a* is called the adjoint operation.
(iv) The operator T associated with a € %, which is defined on %A
:and makes correspond ax to every x € U, is bounded :

I TRx | <r.|l x| (1. >0, x € A).

‘Thus this operator has a continuous extension 7, over the whole space
9. Thus extended operator 7, is called the operator of left multipli-
cation.

(v) Anelement fe  satisfies 7,f = 0 for any x € ¥, if and only
if f=0.

From these assumptions follow immediately ([6]), that the adjoint
element ¢* is uniquely determined for ¢ € ¥ and, (a, ) = (b*, @*), («a +
Bb)* = @a* + Bb*, (ab)*= b*a*, etc.,, and that the right multiplication
operation S, is also bounded and satisfies the analogous property
of (v).

An element »# € A is called a unit if #°= %, u*= », for which the
-associated operators T, S, are both projection operators.

A Hilbert algebra would have generally many extensions other
‘than itself, but among them the maximal one exists (and, of course, is
uniquely determined). This extension is consisted of such elements f of
9 for which either of the two conditions

(1.1) | S:fIl < rsilx|| (forany xe¥, r, >0 is fixed),
(1.1%) Tl < rrllx|] (forany x€?, r; >0 is fixed)

is satisfied ((12, Theorem 1]). The operator, which assignes to every
x € A the element S, f, will be denoted as T, and similarly S? is defined.
Thus (1.1) and (1.1’) can be restated that T} or S} is bounded.

Thus to give the complete definition of a maximal Hilbert algebra,
we have to add one more axiom: «

(vi) If T} or S;is bounded for an f€ 9, then f must be in A,”
to the axioms (i):--(v) listed above ([12; Theorem 2]).

We shall use later the following
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Lemma 1.1: 9,, . be Hilbert spaces, and in each of them a Hilbert
algebra N, ¢ = 1, 2) be given. Suppose that they are isomorphic in the
following sense :

(i) Between Hilbert spaces 9, and 9., a linear isomelric mapping
exists which maps whole D, onto whole D,.

(il) Under this mapping, N, corresponds to N, isomorphically as Hil-
bert algebras.

Then, denoting the respective maximal extensions as A7, A, A cor-
responds to N under this mapping isomorphically as Hilbert algebras.

This will be observed at once from the method of construction of
maximal extension.

We used the notation S and T to denote the whole set of operators
of right and left multiplication and M and M’ their respective commuta-
tor algebras of operators®. These M and M’ are commutator algebras.
to each other, and was called the algebras of left and right multipli-
cation resp., and Z = M n M’ the centre of . Moreover, for any Ae M
or M, A = {Aa; e A}c A ((12; Theorem 3, 4, Definition 3]).

§2. Central decomposition of a maximal Hilbert algebra.

First we mention a more detailed proposition than [6; Theorem
4, 7]

Lemma 2.1: For an arbitrary projection operator P{==0)€e M or
M, the subset P of N contains a unit u.

Proof: We assume that Pe M. As P=0, PA==(0)?, so we can
take an g, =0, ¢ € PA. The element % = aa* is a self-adjoint element,.
and 0% and also belongs to P¥. If P=T7,, % is a unit, and this

meets our desired condition. In the general case, let 7, = f 2dE), be the
0

1) i.e. the set of all those bounded linear operators with domain $ which commute
with all A and A* where A « T or S, Here and in what follows, an algebra of operators.
means that it is not only an algebra in the algebraic sense but also it is closed with
respect to the adjoint operation (of operators) and closed with respect to the weak topo-
logy of operators. CI. [5; 1I].

2) If PY is consisted of 0 only, we see for an arbitrarya ¢, Pa =0, (1 — P)a =a,
thus (1 — P)A =9A. But if P were not 0, this induces a contradiction, since A is dense
in .

3) As Th= Tue* = ZZf:*Tg*, we have, for any fe®, (To.f, O = Ta*x f |2
Thus /2= 0 implies Tu* = 0, or a*=0, so a = 0.
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spectral form of 7,”°. Then [6; Theorem 4, 7] shows that for a suita-
bly chosen ¢ > 0, there exists a unit #, such that 7,, =1 — E,==0.
‘Thus for an x€ 9 with Px =0, 7,x is also 0, or what is the same
Ex =%, PT,=T:,"=T,, and a fortiori 1 — P E, or1 — E,<P.
‘Therefore we have for an arbitrary 2> 0, 1 — E, < Pso that P7,, =
Pl —-E)=1-E,=T,,. From this, it follows Pu. = %,, and this #,
is the desired one. '

Lemma 2.2: The subspace WM of © invariant under all the opera-
tors of left multiplication, has as its projection operator what belongs to
M': Py e M (The converse statement that for a projection operator
Pe M, its corresponding subspace is invariant wunder all T, (a€N) is
evident). In the same way, for the subspace W invariant under all S,
(@ € A), we have Py, € M.

Proof . As T,Mc M (a e A) means Py, is commutative with all T,
{@ € A, our proposition is clear.

Remark : This subspace I invariant under T was defined by W.
Ambrose as the left-ideal of an H-system ([2; §4]). Thus the 2-sided
ideal in his sense ‘is the subspace 9% whose corresponding projection
-operator Py, belongs to Z. As to the ideal defined by H. Nakano ([6;
§5]) we shall call our attention in Lemma 2.6.

Lemma 2.3: Let U be the set of all units in A. Then for any
PeMr e M)

@1) U{T.; uell, T,<P®=P (or U {S,; u€Nl, S,< P} =P).

1) We choose the resolution of the identity Ex(—oco < 1 < o0) always to. be con~
tinuous to the right. -

2) If an operator A belongs to either M or M', we have for an arbitrary @ ¢ %,
ATz = T4y or ASy = Suq resp. This is a simple corollary to [12; ‘Theorem 5].

3) Take a family of projeztion operators {Pa}rea and their corresponding family of
subspaces T = PrP. Let M be the smallest subspace comprising all the subspaces P\
(A« A, then its corresponding projection operator P = Py has the following properties :

(i) PAP (Qe¢d) and ’
(ii) I Pis a projection operator such that Px < P (4 ¢ 4), then necessarily
P < P
‘Thus in accordance with the usual notation in the theory of lattices, we can write this
projection operetor P as . UAP,\ .
€

Let all the Pa’s be contained in some algebra of operators M. Then, as Ma’s are all
invariant under any transformation belonging to M', 3! is too, and the above-mentioned
property (ii) shows P is a projection operator smaller than the maximal projection
-operator (Haupteinheit, see [7; Detinition 4]) of M. Thus

P = upPeM.
by [7; Satz 5]). ToAed
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More precisely, the set of u in (2.1) may be limited to any maximal family
of mutually orthogonal units satisfying the mentioned condition.

Proof: Take a maximal family of mutually orthogonal units satis-
fying the condition #, €W, T, <P. Let @ = U \Tuh, then Q€EM.

Supposing that P==Q, P-— Q€M and ==0. Thus by Lemma 2.1, we
know the existence of a unit #, which is contained in (P — @)%. But
this clearly induces a contradiction, since u,€ (P — @)%c P, and
wu,= 0 (A€ 4) from 0 = Q (P — @) > T,,T,, =Ty, contrary to that
{'u,\}“_,x was the maximal set of mutually orthogonal units in P9. The
rest of the lemma can be shown in the same way.

Lemma 2.4: Take arbitrarily a projection operator P (== 0) belong-
ing to Z, then PA (cN) is again a maximal Hilbert algebra in M = P9
(defining the multiplication and the adjoint operation are the same as in
W. We write this algebra as N, whew we are considering in M. Iis
corresponding algebras of left and right multiplication M, and My are
identified with the algebra of operators My, and My, in M resp. which
are obtained by contracting all the operators belonging to M or M’ to the
subspace M. Thus, in particular, the centre Z, of U, is what we obtain
by contracting each operator of Z to M. ’

Proof: It is easily seen by verifying the conditions in the defini-
tion that ¥, is a Hilbert algebra. To prove that this is a maximal one
it only needs to show that for an f€ $ which satisfies

| Tra Pf|| <7 || Px | (for every x € 20),

we must have Pfe PN. But, as T,,= PT,= T.,P, Tp,Pf= T,Pf, and
from the assumed inequalities,

I LPAI<<r| Pl <% (for every x ¢ ).

‘This shows that the operator S}, is bounded on 2 but this is the same
to Pfe . Thus Pf = PPfe P, which was to be proved. .
Next we consider the algebra of left multiplication M,. For this
:sake, we note first that if ¢ is in 9(,, then its associated operator of left
multiplication 77 (a notation used only here) is the very one that is
-obtained by contracting 7, (in ) to M: T% = (7,)(s. ~ The same holds
for its operator of right multiplication. As in the above, Sp,= PS,=
S,P, we can assert for an arbitrary A € M that (AP)S,,= (PA)(S,P) =
PS,AP = S,,(AP) thus the contracted operator A, of A to M belongs
to M. Conversely if we take arbitrarily A, € M, the operator A in
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defined as A = A, P belongs to M. We can show this as follows. From
AS== APP P. Sar= APP SPzP s ASzz (AS:-)(P)P = (AP (SPz)(P))P . But (sz)(P)
=S}, as noted above and A, € M, or (S,,);» € S,, A-€S; we have

AS:I’: (Ap (S.P )(p))P = ((Szp )(P)AP)P
- (S]',)(p}PApP = S}-.,‘A = SSPA = S,A.

And a fortiori A € S'(=M) as we wanted to show. Moreover A= A, -
Therefore we have shown that M,= M(,,. In the same way M,=M(p,
and as their intersection Z = Z,,, as was asserted.

In the above proof we distinguished in two ways the operators in
R, The operator suffixed with P simply denotes the operator in 9,
that suffixed with (_P) denotes the operator which is contracted to I,
that is for an operator A in , A, means the contracted operator of
PAP to M.

Now we can decompose the maximal Hilbert algebra into a direct
sum of algebras of two types. For its sake, first we put the following

Definition 2.1: A projection operator P==0 belonging 1o the centre
of N is called minimal if

QEZ, 0L QP mean @ =0 or P.

Lemma 2.5: Take all of the minimal projection operators in Z,
and let them be { P\}..n. Then by denoting P.=1 — u P,, we see that

Aw A
(i) P,, P\(A€ A) are pairwise orthogonal projection operators.

(iiy The centre of P does not contain any minimal projection
operators, when considered PN to be the maximal Hilbert algebra in P9,
as was done in Lemma 2.4,

(iiiy Each P (i€ A) has the centre composed of only the constant
multiples of the identily operator 15, : Zp,= {a-1p,}. Thus the algebra of
left multiplication M5, of P constitute a couple of factors in the sense of
F. J. Murray and J. von Neumann [4 ; Definition 3.13].

Proof: (i) As the projection operators P,(4i€ 4) are mutually
commutative, their binary products P,P,(4, #€ 4) are also projection
operators which are smaller than both of the factors, and € Z. Thus if
A=t p, PP, s P, or P, which means from the minimality of P, and P,
that P,P,= 0. Thus P,’s(1€ 4) are pairwise orthogonal. As to 7, all
the P’s(i€ A) belong to Z and Z is an.algebra of operators, 1 - 5
=}.UAP" is also in Z by footnote 3 in p. 4 and so P, e Z. Of course it is
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doubtless to say that P, and P,(1€ 4) are orthogonal. And there
exist no minimal projection operator < P,.

(ii) Owing to Lemma 2.4, the centre of P2 is Z.,. Take arbi-

trarily a projection operator P, == 0 in Z¢,. Then P, P, is a projection
operator in , €Z, < P, &=0. But from what was done in the above
(i), there exists no minimal projection operator in Z which is smaller
than P,, a fortiori Pp, P, is not minimal. Therefore the existence of a
projection operator Q € Z, 0 5 Q 5 P,, P, is sure, and for such a @, @ =
QuoPoy 50 0 % Qupy & Pryy Qg € Zpy. Thus Py, is not a minimal
projection operator, and a fortiori Z,, does not contain any minimal
projection operator.
(i) The centre of P is Z,,, and if Z,, 3 Pr,, Pp, P, is a pro-
jection operator which belongs to Z, and < P,,. Therefore P, P,=0
or P,. Butas (P, P\)¢ry= Pp,, Pp, itself is 0 or 1,,. Therefore Z,,
= {@-1,,}, where 15, is the identity operator in 9, .

Lemma 2.6: Let p be a linear manifold in N, which satisfies the
conditions

(i) for arbitrary x, ye ¥, xpy (= T.S,p)cp, and

(ii) v s closed in ¥,
then there exists a projection operator P in Z, such that p = PU. Thus,
by taking the multiplication and the adjoi'nt operation as the same as
in N, p itself is a (maximal) Hilbert algebra in the minimal subspace
|p] that contains p.

Proof: That p is closed in ¥ is the same as p = [p]n A.

We show first that T,pcp, S,pc b for the x € A. Take an arbitrary
acy, then xay =S,xaecp. Thus for any # € U, we have S,xacp also.
But if we take a maximal family of pairwise orthogonal units {z,}xca,
then as is shown in Lemma 2.3, E S « = 1, therefore from xa¢ =

( Y Su,\) xa, xa is the limit element of sums of S,,xa€ (p). Thus xae [p]

‘ and as xa €A, xa € [p]nA=yp, which means T,e€ p. But ¢ was an arbi-
trary element of p, 7,pbcp. That S, pcp is showr in the same way.

As 7, and S, are bounded, we see, from what has been shown,
T.[r]lc{p], S«[plc[p]. According to Lemma 2.2, this means that Py,
(= the projection operator on [p])€ Z. Thus P, Ac?, while Py c
[p), so PyuAcAn[p]=9p. On the other hand pc A imples p = Py b

w: ¥, and a fortiori Py, A =p. The rest part of this Lemma is
obvious by referring to Lemma 24.

Remark : The set p considered in the above was defined as the
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ideal in [6; §5], added with a further restriction that this is closed
under the adjoint operation., In our case this last condition of self-
adjointness is unnecessary, because of the maximal property of the
Hilbert algebra in consideration. By the way it may be mentioned that
we have shown that from xpycp (v, ye?) follows xbcp, pxcy,
though there may be no identity element e¢: ex = xe = x (for all x € )
in 2. Moreover, the subspace I satisfying 7, Mc M, S, McM for
every x € 2 was defined as the 2-sided ideal by W. Ambrose as was
remarked already, while for the linear manifold p of 2 considered in
this Lemma, [p] satisfies 7,S,[plc[p] for every pair x, ¥ € 2 and from
this we obtain 7,[p]c[p], S.(plc[p] for any x € A as is seen from the
above proof, therefore this [p] is the 2-sided ideal in the W. Ambrose’s:
sense. Conversely, given a 2-sided ideal I in the W. Ambrose’s sense,
then, p = P n A satisfies the conditions of the Lemma, and [p] = M as
is readily seen. These mean that the both definitions completely cor-
respond to each other in this sense.

Upon this base we introduce the notion of the ideal as the follow-
ing by imitating the definition of H. Nakano [6]:

Definition 2.2: A linear manifold p in U is called the ideal, if
the followings are the case:

(i) for arbitrary x, ye ¥, xpy(=T,S,p)ch,

(ii) v is closed in 2.

Then the résumé of the above obtained results reads :

Theorem 2.1: Let U be a maximal Hilbert algebra in ©. Then
there exists a family of pairwise orthogonal projection operators [P}, s
in the centre Z of U, and A (and D) is decomposed as follows :

(i) each P is an ideal of ¥,

(ii) PN is the maximal Hilbert algebra in P, 9,

(iiiy P belongs to each of the following two types:

Type (S): WU is simple, that is to say N contains no ideal other
than {0} and A. This coindides with that the algebras of left and right
multiplication M, M’ resp. form a couple of factors.

Type (0) U is purely non-simple, i.e. 9 does not involve any simple
ideal ; namely, for an arbitrary choice of the ideal b of N, when con-
sidered p itself as a maximal Hilbert algebra in [p), it is never simple.

Remark: This has the same content as [6; Theorem 6.4].

We know ultimately that the investigation of the structure of
Hilbert algebra is reduced to that of type (S) and that of type (0). We
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shall discuss the Hilbert algebra of type (S) in the following § and that
of type (0) in §4.

Before going to the next §, we state here several more lemmas
which will be useful later.

Lemma 2.7: For an Hilbert algebra W, its maximalily is neces-
sary for that T = {T,; a€N}.and S = {S,; a€ U} are the commulator
algebras of one another, and then N involves the identity element e:

ea = ae = a(ae) or equivalently T,= S,= 1.”

Conversely if U contains an identity element e, this condition is also
sufficient. And if this is true, then T and S are the algebras of left
and right multiplication resp., i.e. M = T(=S'), M'=S(=T).

Proof: We first note that if T and S are the commutator algebras
of one another, then A contains an identity element e. Such an ¢ is the
element such that 7,= 1(e T'=S)°. We show under this condition
that % is maximal. For this purpose we only need to show that if 7}
or S} is bounded for some f€ 9, then feA. The proof is similar any-
how, we shall assume that S} is bounded, that is for any x €%, there
exists v > 0 such that

ISzl = [ AN %]l

Let then extend continuously this S; so as to have the whole D as its
domain, and write it as Si. Then for an arbitrary x, y€ %,

T::SJn'y = T:uTyf: TTIJIf: SfIT:sy’

thus S} commutes with any 7,(x € ), and also, as T;= T.,», with their
adjoint operators: §}Tf= T:§}’, therefore it is contained in T'=S.
Thus it has the form S,, g€ 9. But then f = g€ 2, which is what we
wanted to prove.

Next, assume A to be maximal, and contain an identity element.
Then for an arbitrary AeM, AreUA(x e ), thus if we put x =¢, a

1) For a unit e ¢ ¥, conditions ex = xe = x forany x¢¥% and T =S, = 1 are cqui-
valent: 1If ex = x(xe¢A), then 7, =1. 1f S, were not equal to 1, then, as SeeSc M/,
(1 —S)A would contain such a unit z# (Lemma 2.1) as S,S, = S, S; = 0. But this
implies ex = 0 or # = 0, which is a contradiction. If Se= 1, then Spx = x, and xe = x
forany x ¢ N, 1If xe = x forany x ¢ ¥, then also x¥*e = x* or ex = x for any x ¢ A. Thus
all these conditions are equivalent.
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= Aee ¥, and for an arbitrary x € A, Ax = A(ex) = (Ae)x = ax = T,x.
As A and T, are both bounded, it follows from this A = 7,. Thus
every A € M has the form 7,. Thus Mc{7,; a€e A}=T. But as M
was R (T, 1), M oT, therefore M is identical with T. The same is true
for M’ and S, and because M and M’ are the commutator algebras of one
another, T and S are so.

Thus the proof is completed.

Lemma 2.8: Let W be a maximal Hilbert algebra which contains
an identity element e. Then for an operator A belonging to the centre
Z, there exists an element a€ N, and

A=T,=85,.

And the element having this property is an arbitrary one in the centre
of W (in the algebraical sense).

Proof: Puta= Ae. Then T,=T,=AT,=A4, and S,=S,=AS,
=A. Thus A=7,=S,. But T,=S, means T,x = S,x for any x € ¥,
and writing this algebraically ax = xa, we know that ¢ may be any
element of the (algebraical) centre of A. q.e.d.

Take an arbitrary unit e, then 7,, S, are projection operators in M,
M’ resp., and putting 7,9=IM, S, H=W, MnW=7,5,9 and
MAMNA=T,S,AcMnI'. If Aisan operator € M (€ M) such that
AT, =T,A = A(AS,= S,A = A), we denote the contracted operator of
this A to MnW' as Amnuy), and the total set of them as M@ nm),
M mnmy (cf. [4; Definition 11.3.1. Lemma 11.4.1)). Then

Lemma 2.9:
M@mamy = {T,maw) ; a€ NI nA},
M@mnwy = {Se@nmy ; ae M0 n AL

Proof: We prove the former one.
Take arbitrarily an A @mnmv) € M@mnm), then this is the contraction
of an A€M with AT,=T7T,A = A. Put now a = Ae, then ae A and

T.S.a =T,S,Ae = T,AS,e = Ae = q,
and a fortiori e MNP’ NnA. Therefore also

T.x=T,x=AT,x = Ax (x € A),
thus A =T, and Amnw) = T.@mam).



ON THE STRUCTURE OF MAXIMAL HILBERT ALGEBRAS 11

Conversely take arbitrarily an ae MnWW nY, then 7.7,=T,.=
T.=7T,= T,T,. Therefore we can consider the contracted operator
T.omnm). Thus we have shown that M@mnwny) is precisely composed
of all the operators of the form 7,(mnm).

Lemma 2.10: For an arbitrary wunit e, T,S, A =MW nA s
again ¢ maximal Hilbert algebra in T,S,9 = M nW, whern we introduce
in it the multiplication and the adjoint operation as it is in U. Ac-
cording to the notation in Lemma 2.4, we can write this Amnwm (or
Nyos.). The algebras of left mga’ right multiplication of this Umpm is
M@mnm), Mnaw) and the centre of it is Z o).

Proof: We must first examine that UAmAsm constitutes a Hil-
bert algebra in M NIR. From the form T,S,%, it is seen that this
is a dense linear manifold in 7,S5,9 = MnI. And other conditions
as for (ii), (iii), (iv) in the definition, it suffices for us to show that
the result of multiplication of two elements of 7S, also belongs to
7.S,% and the same holds for the adjoint operation. These follows
from

(Tesaa) (Te Seb) = Tc ((Sea) (Se Teb)) = TeSc ((Sea) (ch))s
(7,S.a)* = T, (S,.0)* = T,S,a*.

The last condition of the definition is rather troublesome. Let
for an arbitrary @€ (especially for €), Tr.s..(7.S.f) =0 be valid.
We take the maximal family of units {e,},., which are orthogonal
to each other, and contains e, then one sees easily by Lemma 2.3,
Ures T, = 1. For each e, (2€4), 1.7, = 1,17, = 1,7, T, = T,,, = T,
or =0. Thus if the former holds

T,.7.S.f=T71,T.7T.5.f = Trse, T.S.f = 0,
and if the latter holds, clearly
7, 7.5.f =0
Therefore || 7.S.f || * =M2.l | T..T.S.f ||* =0, and this shows T.,S,f
=0.
Next consider Tanan' and Saeyaw, the total sets of operators of
left and right multiplication. The operation of left multiplication of

Amnam is the operator T,mnm) (@€ MNW' nA), and the whole of
them is precisely M@ o) as is in Lemma 2.9. Therefore
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Twmnm = M@mnm).
Similarly

Smaw = M'@anm).
But the theory of F. J. Murray and J. von Neumann shows (cf. their
[4; Lemma 11.3.2]) that Mwmnwr) and M'@aenae) are the commutator
algebras of one another, Tavnaw and Smngy are so. Thus by Lemma

2.7, Amnagr is maximal.
Now our proof is completed.

§3.0. Simple Hilbert algebras (with the identity element).

Let 9 be a simple Hilbert algebra which contains the identity
element e:

ex = xe =x for all x €Y, or equivalently T.=8,=1.
(see p. 9 footnote 1)

Then, as we have shown already (Lemma 2.7), every A€M has the
form A=T,(a= A.€¥), and in the same way A =S, (@ = Ae€ )
if AeM'. Moreover, for any A: AeMor Ae M,

(3.0.1) (Ae)* = A*e.
because, A € M implies A* € M, and
(Ao)x, ) = (Alex), ) = (ex, A*(ey)) = (x, (A*e)y),
for arbitrary x, y € %, while we have by definition
(Ag)x, 3) = (x, (Ae)*y),

and so (Ae)* = A*e. .

In this § and also in the followings the theory and notations in
[4] shall be used with only suggesting references. There the space is
restricted to be separable, but as we know easily, the most parts of
their results are valid independently with the dimensionality of the
space. (The existence and the uniqueness of the relative dimension
function, the contraction to subspaces, etc.)

Lemma 3.0.1: Let N be a Hilbert algebra in © (, we do not as-
sume it to be simple, nor have an identity element). If
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T={T,; aed}, S=1{S,; aeA}

constitute a couple of factors: T'=S8, S'=T, TNT= {a-1}, then A is
a maximal, simple Hilbert algebra which contains an identity element.

Proof: We have already shown that % is a maximal Hilbert
algebra and contains the identity element e (Lemma 2.7). So we must
show that it is simple. But this is clear from

Z=M0M=80T=TnT={a1} q.e.d.

In what follows we assume that 2 is simple and has an identity
element e.

In this case, M is a factor, and there is introduced the notion of
equivalence of two projection operators (cf. [4; Definition 6.1.1)).
Concerning this,

Lemma 3.0.2: Let w,, u. be units in U, and if T, and T,, are
equivalent projection operators with respect to M, then || w, |, = || #.|,
and the same for the case of S, and S,,.

Proof: T, ~ T, (---M) means that there exists a partially iso-
metric operator W in M such that W*W = T, , WW*=T,,. There-
fore

|l = I Tuell = | WTaell = || T, W*e]l = || W*Tyel|
= [[Tuell = llu|,

as was to be proved.

Lemma 3.0.3: For any projection operator P belonging to M(M')
there exists a unit w in W such that T,(S,) = P, and for such we put

D@ = fjul ©O@P) = [ul).

Then these have the following properties. We write them only in the
case of M.

(1) 0LKD@P)LC el DL = flel!==0,

(ii) A P.=0 implies D(P, + P) = D(P) + D(P),

(i) P ~P.(---M) implies D(P) = D(P).

According to this lemma, the functionals of a projection operator
D(P), D'(P) are the relative dimension functions with respect to M,
M and as D(1) = D’'(1) < oo, M, M’ is in the finite case, and

MM = [Ae; AeM]=[UA]=9 MM =[A%; A'e M]=[A] =9,
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thus by D(1) =D’(1) < «» we know that the constant C for the couple
of factors M, M’ (cf. [4; Theorem X, p. 182)) is equal to 1 in their
standard normalizations. Therefore this is just the case considered in
[5; Chap. IV] (where only the case that © is separable is treated, but.
as is easily seen the assumption concerning the dimensionality of the
space is quite unnecessary. Thus if the space is finite dimensional
we are considering the case where the factor M is in the case (I).
And that their theory is valid in such a case is also remarked in
[8; §1.6 (A)).

Accordingly the algebra 2 in the last line of [5; p.240] is the
maximal Hilbert algebra in . And the above argument shows that
the simple Hilbert algebra which contains an identity element is ex-
hausted with such things.

Now that M.is in the case (I) means that M contains minimal
projection operators and replacing the statement to the Hilbert algebra.
9, that U contains minimal units. This case having been already
treated algebraically in detail (see [6; Theorem 5.2]), we don’t think
it necessary to repeat it in this paper, but we can include it in the
general considerations which we are going to make hereafter, The
fact which is fundamental in the argument of this case is the follow-
ing lemma ([6; Theorem 4.8)):

Lemma 3.0.4: If A does not contain any unit other than e, then
N =9 ={ae}. That is,  is the one-dimensional linear space generated
by e.

Proof: As M is an algebra of operators, M is generated by all
the projection operators in it: M = R(M%) (cf. [7; Satz 2, p. 399).
By Lemma 2.7, M=T = {T,; a€ ¥} as A contains e as its identity
element, and the above assumption means M = T® = {0, T,} =
{0,1}. Thus M=RM%) = R(0,1) = {a-1}. Therefore if ¢ € A there
exists a constant « such that 7,=«-1, but a'-1=a7T,=7T,,, and a
fortiori @ = «e. As U was a linear manifold, N = {«e} and so, A is
finite dimensional, and it is closed too: % =[A]. Thus we have shown
= =UA={ae}.

§3. Simple Hilbert algebras.

In this section we shall give the investigations of general simple
Hilbert algebras and deduce the most vizual forms of them.
Let U be a simple Hilbert algebra in 9, then its algebra of left
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multiplication M and that of right multiplication M’ constitute a
couple of factors. The dimensionality functionals for them are intro-
duced by F. J. Murray and J. von Neumann ([4]) and we denote ones
of them as Dy(+), Dw,(*) resp.

Take arbitrarily a unit e in %, then 7,, S, are the projection
operators contained in M, M’ resp. Put 7,9 =M, S, =M, then
MAM = T,5,9, MnInA =T,5,A. We have shown already
that Amnwy = MNP NA is again a maximal Hilbert algebra in
M AW when we introduce in it the multiplication and the adjoint
-operation as it is in A. The algebras of left and right multiplication
is Manav), M'arnow) and the centre of it is Zmrm) (Lemma 2.1).
But as Z = {a-1} by assumption,

Lemma 3.1: Amnaw is a simple Hilbert algebra in M n W', which
contains e as its identily element.

Lemma 3.2: Corresponding to an arbitrary unit e in U, there
exist finite, positive constants «,, B, such that for any unit u<e,

Du(T,) = a, ” u l}”» Dm(S.) = B. ” u|

Proof: We shall show the existence of «,.

If u<e then 2 MNIW NA and as an element of Amnpm, it is
also a unit. Conversely if # is a unit in Ysmnor, then # is when
considered as an element of 2, a unit in A such that »<e.

Put Dgﬁnw)(ﬂ,(mmsm')) = Du(T,) (for < e), then Dl(v,mnw)(-) is
a relative dimensionality functional for Mmnar) (cf. [4; Lemma
11.4.2] and also Lemma 2.7 above). But as was considered in §3.0,
D@7 ap ) = || % ||* is also a relative dimensionality functional
for M@mnaw) (Lemma 3.0.4).

Thus owing to the uniqueness of relative dimensionality functional
for factors (4; Lemma 8.2.3]), there exists a finite constant «, >0
such that .

Dﬁmm)(.) — a, DN (),

Thus if #<e, Du(Z%) = DG P U(T, @nnmy) = a, DTN (T, @nr )
=a,| | as was to be proved.
Concerning these «,, 8, we have

Lemma 3.3: For any two units e, and e,, if either
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(i) e>e., or

(i) e e, = 0
is valid then a, = a,,, B, =B8,,.

Proof: Ad (). Dw(T,) =a, el = a,]
@,,. In the same way 8, = 3,,.

Ad (fi): Put e==¢ + €. Then ¢ is also a unit and e > ¢, e,.
Thus we have a, = «, = a,,, B8, =8, = 8,,.

We want to show that the «,s and the B,’s are the same con-
stants in their respective sets. First we prove the following two
Lemmas simultaneously.

e, ||% Therefore a, =

Lemma 3.4: For any projection operator P belonging to M (or
M) we take the maximal family of units {e\}..n such that

3.1) ee. =0 (A=up), T,<P (or S, P).
Then
3.2) P=y Te, (or P=uS,,).

Ae A Ae A

«,’s or B’s are equal to a constant «, or B, nol depending on 2
and the formula

(3.3) Dy (P) = «a, g‘,ﬁ” el “or Dw(P)= Bo% Il ex 11

holds. (The meaning of this is that if the infinite sum standing in
the right side is finite, then P is a finite projection operator with
respect to M and its dimensionality which is finite is equal to it,
while if that is infinite, then P is an infinite projection operator with
respect to M, and, its dimensionality being infinite, both sides are
equal in this sense.)

Lemma 3.5: A projection operator Pe M (or € M') is finite with
respect fo M or M', if and only if P has the form T, (or S,) with a
suitable unit e e .

Proof: We only consider the case that Pc M, and P==0.

As was stated in Lemma 2.3, we have (3.2) for any maximal
family {e, }..a satisfying (3.1).

1) Infinite sum of positive numbers aa(i¢ 4), which is denoted as Mieaaa,
is, by definition, equal to the least apper bound of all finite sums of aa: Mreaan
=8UD A ap, v, AceA A%_ @, . 1f this is finite, the members ax which are not ¢
are at most countable.
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The second condition of (3.1) applies to give that a,, = a,, (4, 2 € 4)
according to Lemma 3.3. Thus «,, is a fixed constant not depending
on i(€ 4) and writing it as a«, we have Du(7,,) = a,[ e, || (A€ 4).
Take arbitrarily a finite subset {4,, 4, ---, 4} of 4, then

ToTo, =0 Gku),  3Tu=0T0<yTa=P
Consequently |
Du(P)>Du(3 7o) = BDm(T,) = Bacllen, IF =03 It ey,
and from the definition of the infinite sum g‘_,All e, ||* we have
34) DuP)>a 3 [l ex |

Assume now that '\Z\h e, ||* < +co. Then as ¢, was to be 0,

the set 4 is at most countable (see p. 16 footnote 1), thus we can write
them as {e,, e, ---} instead. ‘By the assumption that e,, e, .- are
mutually orthogonal,

X x
I e l* = > lie %
Vel V=1

> e .
and moreover 3] || e, ||* was finite, {>le,; #=1,2---} constitutes a
Vm1 Vel

fundamental sequence whose elements are exclusively units of 2, and
therefore converges to a certain ¢€ . But T§ e, (2 =1,2,...).are all
projection operators, their bounds are equali_éo 1. That is: The
sequence of elements of A { 2“]3,,},.-,,2,_,_ converges to e¢ and the
bounds of 7%, are bounded. W’Consequently ¢ belongs to U (cf. [6;

y-l

§2] and [12; Corollary to Theorem 2]), and
= lim T¢%,,

M - ea J—I

is a projection operator, moreover

T,=limT¢ __l1m2T_11muT_uThuT—P

Bop oo ymg K -poa V=] K o Y=] AEA A
As e/ev v=1,2, )y @,= &, = &g =12, ), and
Dy (P) = Du(T) = a, | ef* = @ 23 (e [|* < +eoo,

therefore P is a projection operator finite with respect to M (4; De-
finition 8.2.1)).
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Thus we know that
(i) if the infinite sum 3 || ¢, |* is finite, P is a projection operator
AEAN

finite with respect to M and then (3.3) is valid. Moreover there exists
an element in 9 symbolically to be denoted as 3)e, which is a unit
Ae A

and Ty, =P.

Ae A

(iiy if the infinite sum 3 || e,||* diverges to the infinity, then

At A

Dm(P) = o by (3.4), and P is a projection operator infinite with
respect to M. In that case also the formula (3.4) is true.

Conversely Lemma 3.2 states that for any unit e, the projection
operator T, belonging to M is finite.

Thus the Lemmas 3.4 and 3.5 are thoroughly proven.

Lemma 3.6: For any two units e, and e,e N there exists a unit
ec U such that e, e, e, e

Proof: We have said that 7, and T, are both projection opera-
tors finite with respect to M, and 7, u 7,, is also finite ((4; Lemma
7.3.3], see also [3; Lemma 1.6]). Therefore there exists a unit ¢ so
that 7,=7,u 7T,, by Lemma 3.5, and such is by definition ¢>e,,
eeas T.>7, T.>T,.

Lemma 3.7: The constants «, B, are the same for any units
ec,

Proof : Take arbitrarily two units e,, e,e %, and then a unit e,
such that ¢,>e,, ¢, which ‘exists due to Lemma 3.6. Then Lemma
3.3 assures a, = a, (=a,,), B,= B,,. Therefore s and Bs are the
constants in their sets.

We write these constants as « and 3, then putting
= Diu(*),

D(-) and D'(+) are another relative dimensionality functionals with
respect to M and M’ resp. and they satisfy

D(T) = llels D'(S) = el

Consider now the constant C defined in [4; Theorem X, p. 182].
As this constant equals to 1 owing to [4; Lemma 11,4.2] and Lemma
3.0.4 above when we contract M, M’ to such a subspace IMNIWM =
T.S,9 as D(T,) =D’'(S,), we must have C =1 by Lemma 11.4.3 in

[4].

D(-) = 2 Du(-) DI() =
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Thus we have shown the following

Theorem 3.1: Let N be a simple Hilber!t algebra in a Hilbert
space ©. Then its algebras of left and right multiplication M, M’ resp.
form a couple of factors. Concerning these,

1) A projection operator P in M (or M') is finite with respect to
M (or M') if and only if there exists a unit e in U such that P=T,
(or =8S,).

2) Put

D(Te) = “e

I DSy =llel

for any arbitrary unit e in U, and for any projection operators P, P’
nfinite with respect to M, M’ resp.

D(P) = oo, D'(P) = oo.

Then D(+) and D'(*) is one of the relative dimensionalily functionals
with respect to M and M’ respectively.

3) The constant C is equal to 1 when we lake the relative dimen-
sionality functionals with respect to M, M’ as above. And clearly

D(Te) = DI (Se)°

Now factors are classified into three types (I), (II), (II) according
to the nature of their respective relative dimensionality functionals.
But in our case M contains necessarily a finite projection operator,
i.e. T, for an arbitrary unit e€ % and so the purely infinite case (III)
cannot occur. Therefore only types (I), (II) are the case.

The algebra to which the factor of type (I) corresponds has a
rather simple structure, but the case where the factor of type (I)
appears is not so simple. We shall give here a method of reducing
the problem to the simpler case where there exists the identity ele-
ment. Namely we show that they are constructed as a matrix
algebra with elements in some simple Hilbert algebra containing an
identity element, after the prototype of the case where arises the
factors of type (I). The detailed proof is rather longsome, and so we
shall be contented to follow the thread of the argument.

Let $, be a Hilbert space, in which a maximal Hilbert algebra.
A, be given. 4 be a set of indices, and D be the set whose elements
are consisted of all the elements of $ doubly indexed by the elements
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of 4 namely the matrices < fi,.> a,uea WithAEAII fanllF < +oo.
= 3 e
- Introduce now in this O, the

linear operation as  a < fa,, > a,pen + B < 80,0 > a,uea

=< afy, .+ B&,u>ruens
and the

inner product as (S au> auens < 8w anea)
= 23 (Sausr & ,u)
A,peA

Now % be the set of all elements @ = <a,,, > x,.ca Of © where
a,,,€UQR, ned) and which satisfies for any choice of finite 4’s:
Ay Aay -, A, € 4, the inequality

(3.5) E_]l I é‘:ak,x,x, ”* < rﬂg [EMh

for any x,, x., ---, %, €%, and a fixed r > 0 (: a constant depending
only on @). Introduce now in this A the

multiplication as <@, > uen <Bhu>auca

=< Zlam [ ST
pt

and the :

adjoint operation as L, > pea= <@, ¥ Sia,ueae

These definitions are always possible and we are able to show
‘the

Theorem 3.2: By the above definitions D is a Hilbert space, in
which A constitutes a maximal Hilbert algebra. If the original %, is
simple then N is too. -

The converse of this statement holds. Namely,

Theorem 3.3: Any simple Hilbert algebra can be brought in the
Jorm defined above, where U, can be made into a simple Hilbert algebra
with an identity element. Thus we can say that any simple Hilbert
algebra is the total matrix algebra of some dimensions over a suitably
chosen simple Hilblert algebra with an identily element.

Theorem 3.4: If A is a simple Hilbert algebra whose algebras
-of operators of left and right multiplication are factors of type (I), it is
the total matrix algebra over the field of complex numbers of some
dimension.
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This follows at once from Theorem 3.3 and Lemma 3.04, and is
the case treated by W. Ambrose [1] and H. Nakano [6].

§4. Purely non-simple Hilbert algebras.

In this section, we consider the purely non-simple Hilbert algebra
9 in the Hilbert space  and its decomposition into direct sum (in
some sense—integral sum) of simple ones. The method used here,
rather near to that of F. Riesz [10] than to that of J. von Neumann
[9], essentially depends on the theory of integration and differentiation,
and the countability conditions are necessary. Thus, we shall assume
in this section that the space $ is separable, and, the finite dimen-
sional case being excluded”, is of infinite dimension.

Lemma 4.1: There exislts a countable set consisting of wunits in
N which satisfies

(4‘1) el < é: < R §
“.2) uT,, = uS, =1

Proof: Take a maximal family of mutually orthogonal units
{#,}rc» then by Lemma 2.3 we have

ALeJAT"'\ = }H Asu'\ = 1
But as such an orthogonal set must be countable, we can enumerate
them as #,, #., ---. Put now
e, =u, =280 + Us, -, ,=20,_; + U,, .

Then this meets the desired condition.

Lemma 4.2: There exists a dense countable set W, in © which
satisfies the following conditions:

(1) U, contains the set {e,}...,.,... mentioned in Lemma 4.1.

(i) %, yeW,, imply rnix + .y, xy, x* €N, where r,, r. denote
arbitrary complex numbers whose real and imaginary parts are rational.

1) Let e be an arbitrary unit ¢%. Then, for any natural number n=1, 2, -,
we can take in % a maximal orthogonal set of units ex such that ex<e, || er || €

—;l'—l} el]. As, for such a set, | e]? =A_;§'A|| ex ||? holds, the cardinal numbers of A4

cannot be smaller than n%. Since 7 was arbitrary, we must have that the dimen-
sionality of the space must be infinite,
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Form now, for this %, its enveloping linear manifold. Let it be
A“, Then

Ny © Y c Y,
and A® is again dense in 9.

Lemma 4.3: The centre Z of N comprises a family of projection
operators {E(t); 0 t< 1} which has the following properties
(i) {E@®; 0Lt 1} spans Z, i.e. the least algebra of operators
containing this family is precisely Z,

(i) 0Kt <1 implies EQ) F E(t),

(i) lim E@) = E(t),

tatg, 05221

ivy EOQ) =0, EQ1) =1,

(v) for an arbitrary fe€ 9 the continuous function || E@)f||° of ¢
is absolutely continuous with respect to the ordinary Lebesgue measure
on [0, 1]. '

Proof: There is a particular element f, in © which has the
property that

4.3) For a projection operator E€Z, Ef =0 can occour if and
only if £ =0. ‘

This is easily seen by taking notice to that, for any fe $, there
exists an E€Z, such that FE, FeZ, and Ff=0 imply F =0,
while EF =0, FeZ imply Ff =0, and by noting that the maximal
orthogonal family of such paires (E, f) can contain at most countable
many elements.

An abelian algebra of operators in a separable Hilbert space is
always generated by a resolution of unity E(f) 0<{<1 for which
we may assume that

“.4) t=[EGOLIT  OL2LD).

Then, thus parametrized E({) has the desired property.

Now, under these preparations, we shall consider the decomposi-
tion of 9, A with respect to the centre Z of .

I. The family of projection operators E(!) (0 <#<1) being
taken as in Lemma 4.3, the function || E(¢)f [|*(f€ ) of 2: 01
has the derivatives at almost everywhere in [0,1]. We shall denote
the set of ¢/ which must be excluded for f (: namely, the set of Z
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such that dit | E¢)f||* does not exist for ¢=1,, or exists and
= +o0) as N,(f). Then meas. N,(f) =0 and £,€ N, (f)") implies the
existence and finiteness of —:iiT IE®f ||2)t=t0 which we shall denote

as
d 2
v | Ed)f I
symbolically.
The set
4.5) N, = u N

a Ao
(A, denotes the countable set described in Lemma 4.2), is also of
Lebesgue measure 0, and, for any #€N,, a€Uy, % | E)al?®
exists and is finite.
I1. —5; (E(t)a, E()b) exists for any a, b€ A™ and f€ N;.
We shall prove this step by step.
(i) dit (E(t)a, E(t)b) exists for any a, b€, because of the
formula
(Et)a, Et)d)
= 2SI BO @b I - | el ~ | EObIF + | EG @+ |

— [ Eal® - | E®b 112},

where the elements appearing on the right hand side, ie. ¢ + b,
a + ib belong to A,, and so have derivatives at ¢ = {,€ N..
(ii) For an arbitrary f€ 9, the elements g of © for which

% (E(t)f, E(t)g) exists for every f#,€ N, consist a linear manifold
in o.

(iii) Thus, fixing an element a of A, , the elements f of  for
which % (Et)a, E)f) exists for any 7€ N, form a linear mani-

fold containing U, by (i), and so % too.
(ivy For any aeeUA®, the elements f of © for which

1) Inwhat follows, for any set contained in the interval [0, 1], its accented
notation means the complementation in [0, 1].



24 Osamu TAKENOUCHI

_gf (E(tya, Ei)f) exists for every #,€N, form a linear manifold

which contains 2, by (iii) and so %A too.
Thus the desired proposition is proved.

Corollary: For any a¢c %™,
d s .
g | Et)al €N

exists.
We shall now proceed to define the elements of decomposition.
Ill. Fixing a #,€ N/ we consider an ideal element a'(f) corre-
sponding to each € A, and set

@), Y& = -5 Et)a, EED),

la@ ) = 2 | E¢al
Clearly we have

(4.6) (@@ + BBY'(t), C'(t) = a(@(t), ¢'(t)) + BE' (), ()Y
4.7) @), b)) = @', d@)),

4.8 (@), Aty = [[a)[|">0,

(4.9) | @ay @) = lal [|&@@ ],

and, moreover, the Schwarz’ inequality and the triangular relation
hold :

(4.10) [ @), '@ | < [a@)[I” 16@E) I
(4.11) @+o'@) " < lla@ I+ 6@ I

These latter formulas can be deduced easily from formulas (4.6)
-+ (4.9) by the method usually adopted.

IV. We shall classify these a'() (@€ A™), by considering two
elements a| (), a:(¢) (@, a,€ A") to be equivalent if and only if

(@ —a)' @) || = 0

holds. The class which contains a'(%) under the classification by this
equivalence relation defined above shall be denoted as a(f), and the
totality of these elements as A“'(Z,).

The above-defined equivalence relation has the following properties:
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If a(t) ~a:@), b () ~ b.(t), then
(@ + b) (&) = (@& +b)' (h)
(2a) (&) = (aa)’(t) (a: any complex number)
(@ ), b)) = (@), b))

And so we can make the following difinitions.
For any a(t), b(t) € () and complex number a, define

(+) a(t) + b(,) = the class which contains (@ + b)’' ()
for a(t)ealt), b'()ebt),
(+) aa(t) = the class which contains (aa)’ (%)
' for d' () ealt),
() (a(t), b(t)) = (@ &), b)) for a'(t)€a(t), b &) €b(&).

" Then we can establish.

Lemma 4.4: A"() is a linear space with inner product under
the operations defined in (+), (+), (3).

The completion of A™(¢) is a (separable) Hilbert space, which
shall be denoted as 9 (¢).

Now we shall define A (%) as a Hilbert algebra in $ (£,).

V. A® being a subalgebra of A, a, be AY implies abe A" and
so (ab) () is defined. The fact which we show below that

4.12) ay (&) ~a (%), b () ~bi()  implies (@ b) (&) ~ (@ bz)’(tn}_
allows us to make the following definition.

(x) a(l) b(t,) = the class which contains (ad)’ (Z,)
for a'(t)€a(t), b (t) €b@).
Proof of (4.12).

” (a, b, — Qs bg),(tn) ”, = Ii ({al - az} b + a. {bl - bz})’(tu) ”, ‘
< e —a}db)y @I + | @{b - )l

and so, for the proof of the formula, the proof of
a () ~0(@¢) or Oy ~0(@) implies [ (@)’ () ||’ =0

suffices. But this is clear from
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NE@ @) || < I Tull NE@®S] or- [|S(l TE®a]-

VI. As is shown below,

4.13) a; () ~ a(t) implies (a)’ (%) ~ (@F)' ()
is true, we can make the following definition:
(*) a(t)* = the class which contains (a&*)’ (%)

for a' (k) ea(ly).
‘Then
(4.14) (at)b(t), c(t)) = b)), alty*c@),

(b (tu) a (tu): c (tn)) = (b (to): c (tu) a (tn)*)-

Proof of (4.13) and (4.14). We note first that for any a€ 2 and
A€Z, (Ae)* = A*a* which follows from

Towr = Th= (AT)* = (T.A)* = A*T} = A*Ta= Typr
“Therefore, from
|E®) @ —a)if= | (E®)la, — a))* |*= [| E)(@ — a) |?

it is clear that, if a((f) ~di(t), then a¥(t) ~a¥(t). Also (4.14) fol-
lows from
(E(@) (ab),c) = @(E@)b),c) = (E@) b, a* (E() c)) = (E() b, E(?) (a*c)),
(E(?) (ba), ¢) = (E(#) b, E(?) (ca*)).
VIl. Define now the operator 7%, corresponding to an a(i,)
€ AD() as
T3, ¢ T, x (k) = at)x (@) ) ¥ (t) € AV (%),
“Then '
I T8 v@) | < I Tulii | #¢ |
for any element a (€ A®) to which a' (%) € a(Z,) is corresponded.
Proof: let a () €a(t), x'(t)€x(t), then
| Ty, x @) | = Ilda(tn) x () 1*= || (ag)’(t.,) [
= dr | E) (ax) || = ar | @ (E(t)x) |*

< U TG NE@ = | Tl N2 I
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We can now state the following

Lemma 4.6: AY(t) defined in the Hilbert space $(t) for te N
is a Hilbert algebra with respect to the operations defined in (+), (-),
(1), (x), (%), if we disregard a set of measure 0 N: furiher.

Proof: By the definition of ©(#), A®(¢) is a dense linear mani-
fold in $(#), Moreover, the multiplication and the adjoint operation
defined in (x), ( ») satisfies the axioms for the Hilbert algebra except
the last one:

(4.15) Ty ft) =0 (for any x(¢) € A*(¢)) implies f(¢) = 0.

We shall, in what follows, prove this statement.
A contains the sequence of units {e,}..,,.,... which satisfies
the conditions (4.1) and (4.2). Therefore, for any f€ 9,

Nl < T f 1P < s Hm | T "= [l f II*

Define now a function of an interval o« (¢, £; f) for 0 <4 < i <1
as

o(ty, t; f) = ” (E@) — E(t1))fli2= Il E(tz)fﬂ2 - ”E(tx)fllg

This is clearly an additive function of bounded variation of an inter-
val. By 4.1) (4, t.; T, f) (»=1,2, .-) form a monotone increasing:
sequence, thus a theorem concerning the derivates of such a sequence
(e.g. [11; p. 116, Theorem 5.7]) teaches us that there exists a set
N, (f) of measure 0, so that

. d . _ d ,
lim - NEG T f I = 5 1E@S (€ N: (f)).

Put now N, = U9 V-(@), then N, also is a set of measure 0,' and
1, € N, implies

4.16) llm v H E¢)T, al’ = _ddt_ VE@)e|* (for each ae U)..

But here is included the case that both sides are equal to + < and
if we consider (4.16) only for %€ (N, + N.)’ this. case is excluded.,
‘When we limit ourselves to this case, the same method used in
article II applies, and the validity of

_d
£l£ll Tit— (E (tu) a; E(t!) ) = _dt’ (E (tu) a, E(tu) b)
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for any a, b€ A® follows. This is rewritten as

lim 2 (B (e,0), Et)(@.0) = J(Et)a, Bt

or
_lim (e, () a(t), e, () b(t)) = (a(?), b(2) (te (N, + Ny')

Put here @ = b, then

“.17) 11:13 e, @) at)|* = |la@)|?® (te (N, + N,)").

As the definitions (x), () shows, e, (¢)’s are again units in ()
(teN) and moreover

et) <e@®) < - te N,.

Thus, for the sequence of projection operators in $(f): 7.3, (v=1,
2, ...) the existence of lim T, is assured. Put this projection
V woo

operator as P, then, if te (N, + N,)', (4.17) implies [| PZa() ||* =
| a(t) ||* for any af(t) € A"(¢), and so, A(¢) being dense in H(#), for
any a(t) € (). This means that P*¥ must be the identity operator
in () for te IV, + N,).

Now make the assumption in (4.15). Then as e, () e A™{E) (v =1,
2, ), T, f(t) =0. Therefore lim T, f(#) = f(t) is also equal

to 0, which was to be proved in (4.15).
The maximal extension of 2" (¢) in ©(¢) will be denoted as %A (£).
Finally we consider the relations between © and ().

Lemma 4.7: The functions f(t), which are defined on (N, + N,)',
have values in (t) .and satisfy

( (ft), alt)) are measurable functions of t for a(t) € A (¢)

“.18) | corresponding to any a€ A",

have norms || f(t) || measurable as functions of t€[0, 1]

©* be the space consisted of the whole of these functions which
have norms whose squares are integrable on [0, 1]. Of course two
Sunctions which are different only on a set of measure 0 are considered
as identical. Then we can make this a Hilbert space isomorphic to D,
and under this isomorphism a(t) and aeN™ correspond isomorphically
in the sense of Hilbert algebra.
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Proof: We can define the linear operation in a usual obvious
manner. As

” f(t) ” = qs(lilrle)ﬁw g <1 i (f(t)’ g(t)) I
= qstltllll::)\,]['o)(l), g < i (f(t), (Z(t)) i
= sup | (f(2), a@®) |,

gt e Y, @ g <

| f¢) || is measurable.
The assumption “that || f(¢)|* is integrable for any f(-)€ $*
allows us to introduce the inner product in $* by the formula

F(+) g(+))= f(f(t), g(t)dt

f (IFe +g® 1+ 1) +igd) |I°
—2(I F@ I+ 1 g 1) de

and by this definition of the inner product and the definition of the
norm attendant on it, the space $* turns to be a Hilbert space. The
a(+)’s for a€A® are obviously contained in it, and form a linear
manifold A**, If it were not dense in $*, there would exist an
element f(+) ==0(+) in $* which is orthogonal to any of A'"*. But
this implies f(-) = 0(+), which is impossible. Therefore A“* is a
dense linear manifold in $*. The correspondences

aa +8b - (Xa(') + lgb(°), ((l, b) = ((Z('), b('))

establish the isomorphism of A® and A®* as linear spaces with inner
product, and we can extend it to the isomorphism of § and * as
Hilbert spaces. We can define the multiplication operation and the
adjoint operation in A®* by this isomorphism, but this coincides with
the method of defining them by element-wise way. Anyhow, ®*
can be made into a Hilbert algebra which is isomorphic to A® under
this isomorphism.

Lemma 4.8: The elements of A ‘corresponds to such a(.)’s€ D%,

for which a(t) € A(t) (for each t), and || T%, || are uniformly bounded
with respect to 1.

Proof : First, we note that, by setting for f(-) € $*
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() L) =70 ¢<s), =0 (>s),
f. (+) corresponds to E(s)f(, f(+) — f€ ), because

8 1
(E®)f, a) =j (f(), al(t))at” =f(fs‘(t), a®))dt = (f;(+), a(+))
o 1]
for any ae A, Especially, as E(f)a€ U for ae AP, we have a, (+)
as the image of E(f)a.

Now we shall proceed to the proof of the lemma. As a(°*)’s for
a€ A" satisfy the statements of the lemma (e.g. by VII), all the
a, (-)’s (@€ A®) do too, and these elements correspond to those in 2.
Thus Theorem 1 in our previous paper (12)) shows that, by denoting
the operator of right multiplication in * as S}.,, those and only
those elements f(-) of ©*, for which there exists a r > 0 such that

4.19) NSk f <7 lia)] (@€ A®),

correspond to the elements of 9. But (4.19) is rewritten as

s

[usiormza < v [aw e

[

and so with possible exception of a set of measure 0,
(4.20) | Sisf @O0 <7 la@® i for all a(t) e Ay,(t).

Therefore f(¢) belongs to A(t) as (4.20) is obviously extended to
a(t) € A®(¢), and

Tl <r
except for a set of measure 0, which is of no importance.
Conversely, if, for f(+) € D*, f(¢) € A(¢) and ||| T, || <7 for every
te (N, + Ny, then, for an arbitrary a(-) € 2A¥,
1 1
ISt f VI = [ISEof@IFdt = [ THaat j2dt
u 1)

<7 [llewita = 1 la)|®

1) We can-easily show, as % being dense in 9, that ii f «—> f (), g > g(-).

then
3

(E()f, & = f (f @), g@)at.

u
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and so f(-) corresponds to an element of 2.

Thus all the statements of the lemma is proved.

Before stating these results as a theorem, it will be convenient
‘to make a definition.

Definition 4.1: J. von Neumann [9] has given the definition of
the integral sum (generalised direct sum according to his terminology)
of Hilbert spaces. We shall adopt this terminology as it is. Let © be
isomorphic to the integral sum of ©(¢), and, in $ and in each (@),
maximal Hilbert algebras N and A(t) resp. are given. Then we shall
term N to be isomorphic to the integral sum of (), wunder the iso-
morphism of © and the integral sum of D(t), if the elements of A
correspond to those and only those elements a(-) of the integral sum
of () such that

at)eN@), NiT& <7 for each t.

Then the results obtained in this section can be stated as
follows. ) '

Theorem 4.1: Let be given a separable Hilbert space $ and a
maximal purely non-simple Hilbert algebra N in it. Then we can
construct for each t€([0,1] a Hilbert space () and a maximal Hil-
bert algebra U (t) in it such that © is isomorphic to the integral sum
.of the Hilbert spaces of 9(t) and, under this isomorphism, the Hilbert
algebra N is.isomorphic to the integral sum of the Hilbert algebras
A (2).

The von Neumann’s reduction theorem now shows that

Theorem 4.2: In the preceding theorem, each U (t) is a simple
Hilbert algebra in 9 (t).

Thus in the separable case all the problems are reduced to the
case of simple algebras. In the non-separable case, the like-wise
integral sum representation on a suitable measure space can be ob-
tained, but we do not yet succeed to prove the simplicity character.
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