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Abstract. In this paper, traveling curved fronts by a mean curvature flow with constant
driving force are studied. In the two-dimensional Euclidean space, the classification of all
traveling fronts is completely carried out. It is proved that if the interface is a traveling
front, then there are the following three possibilities: a line, a stationary circle, and a
family of some traveling curved fronts. The explicit forms of all traveling curved fronts of
this family are also obtained. It is proved that all traveling fronts can be represented by the
graph except for stationary circles. Moreover we classify of all traveling fronts in the half
plane with a prescribed contact angle on the boundary. For higher dimensional Euclidean
spaces, the existence of rotationally symmetric traveling curved fronts is obtained.

1. Introduction

The theory of interfacial phenomena is one of the most prosperous fields in applied math-
ematics. Actually, if at least two different chemical or physical states coexist, interfaces
appear as the phase separation boundary between them, and the analysis of their motions
is quite important in such fields.

We begin with the definition of interfaces. A pair (Γ, ν) is called an interface provided
that there exists a family of connected open sets D(t) such that Γ(t) is a smooth connected
boundary of D(t) and ν is a outer normal vector on Γ(t) pointing from D(t) to D(t)c.
Then Γ(t) has no self-intersection points. We consider an interface (Γ(t), ν) which satisfies

V = H + k (1.1)
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where V is a normal velocity of Γ(t) from D(t) to D(t)c, H is the mean curvature, that
is, the sum of the principal curvatures, and k �= 0 is a given constant. In this paper

k �= 0

is always assumed. This equation comes from the several fields. This equation represents
motions of interfaces in the Allen-Cahn equations as in [6] and [11] and in Belousov-
Zhabotinsky reaction [8], and it also describes the motion of the filamentary vortex of the
Ginzburg-Landau equation confined in a plane as in [5] .

We are interested in traveling curved fronts which have a characteristic shape, say, a
parabola or a ‘V-shape’. The equation (1.1) is one of the simplest equations which admit
such traveling curved fronts. We study traveling curved fronts of ‘V-shape’ in R2, and
show that (1.1) has a rotationally symmetric traveling curved front like a parabola in Rn

with (n ≥ 3) in §3.
If the interface (Γ(t), ν) in R2 satisfies (1.1) and

Γ(t) = Γ(0) + vt,

for t > 0 where some constant vector v ∈ Rn (n ≥ 2), then this interface Γ(t) is called a
traveling front of V = H + k with velocity v, and |v| is called the speed of this traveling
front.

In what follows we deal with two-dimensional cases. Consider the interface

Γ(t) = {(x(t, θ), y(t, θ)) | θ ∈ Θ}, ν =

t(
− yθ√

xθ + yθ

,
xθ√

xθ + yθ

)
,

where Θ is an interval. If (
d

dt

(
x(t, θ)
y(t, θ)

)
,ν

)
= H + k, (1.2)

then (Γ(t), ν) is a solution to (1.1). If Γ(t) is parametrized, we take the normal vector ν
as in the above. So, we can omit ν in the case.

We remark that after the suitable rotation, v can be transformed into t(0, |v|). Note
that the velocity v and the speed |v| of traveling fronts are not uniquely defined. For
example, consider the line Γ(t) = {y = x tan γ} with ν = t(−k sin γ, k cos γ) for some γ.
Then Γ(t) = Γ(0) + νt, which implies that v = ν and that its speed is k. However, the
following equality also holds:

Γ(t) = Γ(0) + t(0, k sec γ)t,

which implies that v = t(0, k sec γ) and that its speed is k sec γ(≥ k) for any γ ∈
(−π/2, π/2).

If Γ(t) is represented by the graph y = u(x, t) and

ν =

t

− ux√

1 + u2
x

,
1√

1 + u2
x


 ,



then the equation (1.1) is reduced to the following Cauchy problem

ut =
uxx

1 + u2
x

+ k
√

1 + u2
x x ∈ R, t > 0, (1.3)

with initial condition
u(x, 0) = u0(x) x ∈ R.

If the solution u(x, t) is a traveling front with u(x, t) = ϕ(x) + ct, then the equation is
transformed into

c =
ϕxx

1 + ϕ2
x

+ k
√

1 + ϕ2
x. (1.4)

There exists a unique solution ϕ(x) of (1.4) with ϕ(0) = 0 and ϕx(0) = 0, which is denoted
by ϕ(x; c) as in §2. In this paper we call ϕ(x; c) a traveling curved front of V-shape. See
also [2] and [3].

Deckelnick et al in [5] considered this problem (1.3) in the half plane {(x, y) ∈ R2 | x >
0}. They have proved the existence of a solution of (1.3) with u(x, 0) = u0(x) which
satisfies

ux(x, 0) =

√
c2 − k2

k
for all x > R; ux(x, 0) > −

√
c2 − k2

k
for all x > 0

with some R > 0 and all solutions converge to some traveling front if k > 0. It is preferable
if their condition for initial data can be relaxed and generalized.

Our aim in this paper is to prove the unique existence of the solution to (1.3) globally
in time for general initial data, and to classify all traveling fronts in R2 or in the half
plane {(x, y) ∈ R2 | x > 0}.

The following assertion concretely characterizes the graph of y = ϕ(x; c) for c > k.

Proposition 1.1. For each k > 0 and c ∈ (k,∞), ϕ(x; c) is represented by a param-
eter θ as follows:

x(θ; c) :=
θ

c
+

k

c
√
c2 − k2

log

∣∣∣∣∣∣∣∣∣∣
1 +

√
c + k

c− k
tan

θ

2

1 −
√
c + k

c− k
tan

θ

2

∣∣∣∣∣∣∣∣∣∣
, (1.5)

y(θ; c) := −1

c
log

(
c cos θ − k

c− k

)
, (1.6)

for θ ∈ (−θ0, θ0) where θ0 := arctan(
√
c2 − k2/k) ∈ (0, π/2) (see Fig. 1.1).

Note that y = ϕ(x; c) has asymptotic lines as x → ±∞.
For a curve shortening equation V = H, there exists the following traveling curved

front, for c > 0,

y = −1

c
log(cos(cx)) + ct (|x| < π

2c
). (1.7)

This traveling curved front is called the Grim Reaper by M. Grayson (cf. [1]). We remark
that if k = 0, then θ = cx and ϕ(x; c) + ct are equivalent to (1.7).
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Figure 1.1: The graph of ϕ− b and ϕ∗ − b∗ in the case c = 2, k = 1 where the constants
b and b∗ are defined in (2.11) and (2.12).

For simplicity, we define

TF±(t; c) := {(x(θ; |c|),±y(θ; |c|) ± |c|t) | − θ0 < θ < θ0}.
We have the following two theorems.

Theorem 1.2. Let (Γ(t), ν) be any smooth traveling front with velocity t(0, c) to (1.1)
in R2. If c ≥ k > 0 (resp. c ≤ k < 0), Γ(t) should be one of the following two types:

(i) a line with angle θ0 from the horizontal,

(ii) a traveling front TF+(t; c) + (x0, y0) (resp. TF−(t; c) + (x0, y0)) for some x0, y0.

For the other cases, that is,

c < k and k > 0,

c > k and k < 0,

no smooth traveling fronts exist except for the case where the interface is a stationary
circle with radius 1/|k| and c = 0.

We can extend this result to traveling fronts of the same interface equation with
prescribed contact angle α in the half plane {x > 0} (see Fig. 1.2). Namely,

ϕxx = f(ϕx), (1.8)

ϕ(0) = 0, ϕx(0) = β, (1.9)

where

β = tan

(
π

2
− α

)
. (1.10)
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Figure 1.2: The definition of α.

By studying the system (1.8)–(1.9), we have the following theorem.

Theorem 1.3. For any given α ∈ [0, π), assume that Γ(t) has the constant contact
angle α as the boundary condition at the y-axis. Consider V = H + k in the half plane
{(x, y) ∈ R2 | x > 0}. Then there exists a unique traveling front with the velocity t(0, c)
with c �= 0 of V = H + k, if and only if

k > 0 and c ≥ c(α),

or
k < 0 and c ≤ −c(α),

where

c(α) :=




|k| if α ≤ π

2
,

|k| sec
(
α− π

2

)
if α >

π

2
.

Especially the solution to (1.4) corresponding to the traveling front tangential to the
boundary is denoted by ϕ∗(x; c). We take ϕ∗(0; c) = 0. TF∗(t; c) is defined as follows:

TF∗
±(t; c) :=

{
(x∗(θ; |c|),±y∗(θ; |c|) ± |c|t)

∣∣∣∣∣ θ0 < θ <
π

2

}

(see Fig. 1.1).
The existence and the uniqueness of the solution to the Cauchy problem (1.3) are

not trivial. The following restriction of the growth order of the initial data leads us to



guarantee the unique existence of the solution and the comparison principle. See also [4]
for existence without the restriction of growth orders.

Define

BC1 := {w(x) ∈ C1(R) | sup
x

|w(x)| < ∞, sup
x

|wx(x)| < ∞},
‖w‖BC1 := sup

x
|w(x)| + sup

x
|wx(x)| < ∞.

Theorem 1.4. Assume c > k > 0. If u0(x) − ϕ(x; c) belongs to BC1, then there
exists a unique classical solution u(x, t) of (1.3) satisfying u(x, t)−ϕ(x; c)− ct ∈ BC1 for
every t ∈ (0,+∞). This solution satisfies supt≥0 ‖u(x, t) − ϕ(x; c) − ct‖BC1 < +∞.

Let uj(x, t) be the solution of (1.3) with an initial value uj(x, 0) − ϕ(x; c) ∈ BC1 for
j = 1, 2. If u1(x, 0) ≤ u2(x, 0) for x ∈ R holds true, then u1(x, t) ≤ u2(x, t) holds true for
all t > 0, x ∈ R.

In the forthcoming paper [9] it is shown that the traveling curved front in Proposition
1.1 is asymptotically stable and moreover it is asymptotically stable globally in space.

The higher dimensional case is discussed in §3. The existence of traveling fronts like
parabola are shown.

2. Exact Representation of Traveling Fronts

It is easily seen that if the interface (Γ(t), ν) satisfies V = H + k, then (Γ(t),−ν) satisfies
V = H − k. Therefore we mainly consider the case

k > 0

in this section. Since we can treat the case k < 0 similarly to the case k > 0, we will
sometimes omit the case.

Before the proof of Proposition 1.1, we prepare some notations. Set

v = ϕx, f(v) = c(1 + v2) − k(1 + v2)
3
2 .

By the definition of f , (1.4) is reduced to

ϕxx = f(ϕx), (2.1)

which implies
vx = f(v). (2.2)

By the shape of the graph f in the case c > k > 0 (see Case (ii) in Fig. 2.1), there exist
two equilibria and there exist three orbits of (2.2), that is,

v ≡ ±
√
c2 − k2

k
,



which correspond to two lines

y = ±
√
c2 − k2

k
x,

and orbits in three intervals:

I1 :=
(
−

√
c2 − k2

k
,

√
c2 − k2

k

)
, I2 :=

(√c2 − k2

k
,∞

)
, I3 :=

(
−∞,−

√
c2 − k2

k

)
.

Lemma 2.1. The followings assertions (i), (ii), (iii) and (iv) hold true.

(i)
∫

dv

f(v)
=

θ

c
+

k

c
√
c2 − k2

log

∣∣∣∣∣∣∣∣∣∣
1 +

√
c + k

c− k
tan

θ

2

1 −
√
c + k

c− k
tan

θ

2

∣∣∣∣∣∣∣∣∣∣
,

(ii)
∫

v

f(v)
dv = −1

c
log |c cos θ − k|,

(iii)
∫

log

(
1 + a tan

arctan v

2

)
dv

=

(
v +

2a

a2 − 1

)
log

(
1 + a tan

θ

2

)
+

a

a + 1
log

(
1 − tan

θ

2

)
− a

a − 1
log

(
1 + tan

θ

2

)
,

(iv)
∫

arctan v dv = v arctan v − 1

2
log(1 + v2),

where θ = arctan v and a ∈ R.

Proof. We only show (ii). Setting v = tan θ, we have

∫
v

f(v)
dv =

∫
sin θ

c cos θ − k
dθ = −1

c
log |c cos θ − k|.

It is tedious but not difficult to show the other equalities. So, we omit the proof.

Proof of Proposition 1.1. The equation (1.5) follows from (i) of the above lemma.
Setting

Φ(ξ) :=
∫ ξ

0

dv

f(v)
,

we have
Φ(ϕx(x)) = x.

It follows from the positivity of f(v) for v ∈ I1 that there exists the inverse function
Φ−1 from R to I1 of Φ such that ϕx(x) = Φ−1(x). Here Φ−1(0) = β and Φ−1(±∞) =
±√

c2 − k2/k. Then we can use v = ϕx, (or θ) to parametrize x and y. The above fact
and (2.1) yield

dϕ

dv
=

v

f(v)
. (2.3)



By (2.3) and Lemma 2.1 (ii),

ϕ = −1

c
log

(
c cos θ − k

c− k

)
,

which implies (1.6) (see Fig. 1.1).

To prove Theorem 1.2 and Theorem 1.3, we prepare several propositions and lemmas.

Proposition 2.2. For c > k > 0, there exists a unique traveling front y = ϕ∗(x; c)+ct
tangential to the boundary in the half plane except for translations {x > 0}. More exactly,
the graph y = ϕ∗(x; c) is parametrized in terms of θ ∈ (θ0, π/2) as

x∗(θ) :=
2θ − π

2c
+

k

c
√
c2 − k2

log

(√
c + k

c− k
tan

θ

2
+ 1

)(√
c + k

c− k
− 1

)
(√

c + k

c− k
tan

θ

2
− 1

)(√
c + k

c− k
+ 1

) , (2.4)

y∗(θ) := −1

c
log

k − c cos θ

k
(2.5)

(see Fig. 1.1).

Proof. Solve (2.2) in I2. Set

Φ∗(ξ) :=
∫ ξ

∞
dv

f(v)

(cf. Case (ii) in Fig. 2.1). We obtain (2.4) from Lemma 2.1 (i) easily. Similarly Φ∗ has
an inverse function and (2.3) holds for ϕ∗. Integrating (2.3), we get (2.5) in I2.

We will classify all the solutions of (2.1) for any c and k.

Lemma 2.3. There exists a unique solution of (2.1) with ϕ(0) = 0 and ϕx(0) = β,
which is denoted by ψ(x; c, k, β). Moreover the following properties hold true:

(i) Case: c < k and k > 0.
For any β ∈ R, there exists a positive constant x1 satisfying


|ψx(x; c, k, β)| → ∞ as x → x1 − 0,
lim sup
x→x1−0

|ψ(x; c, k, β)| < ∞. (2.6)

(ii) Case: c ≥ k > 0.
For β < −√

c2 − k2/k, there exists a positive constant x1 satisfying (2.6).
For β ≥ −√

c2 − k2/k, ψ(x; c, k, β) exists globally in R.

(iii) Case: c ≤ k < 0
For β >

√
c2 − k2/|k|, there exists a positive constant x1 satisfying (2.6).

For β ≤ √
c2 − k2/|k|, ψ(x; c, k, β) exists globally in R.



(iv) Case: c > k and k < 0
For any β ∈ R, there exists a positive constant x1 satisfying (2.6).

Proof. The existence and uniqueness of ψ(x; c, k, β) are easily shown. In the case (i),
f(v) > 0 for any v ∈ R (see Case (i) in Fig. 2.1). If c > 0, then

ψxx ≤ −(k − c)(1 + ψ2
x)3/2

and if c < 0, then
ψxx ≤ −k(1 + ψ2

x)3/2.

In both cases, we can show


lim
x→x1−0

√
x1 − x|ψx(x; c, k, β)| > 0,

lim sup
x→x1−0

|ψ(x; c, k, β)| < ∞,

where

x1 := −
∫ β

−∞
dv

f(v)
> 0. (2.7)

In the case c > k > 0, there exist two equilibria and three orbits of (2.2), that is, two
equilibria corresponding to two lines

ψ(x; c, k, β) = ±
√
c2 − k2

k
x + β

and orbits in three intervals Ii (i=1,2,3). By the positivity of f in I1, ψx converges to√
c2 − k2/k as x → ∞ if β ∈ I1. So, ψ(x; c, k, β) exists globally in x ≥ 0. By the

uniqueness of solutions of (2.1),

ψ(x; c, k, β) = ϕ(x + γ; c) − ϕ(γ)

where
γ = Φ−1(β).

For the case β ∈ I2, ψx also converges to
√
c2 − k2/k as x → ∞ by the negativity of

f . So, ψ(x; c, k, β) also exists globally in x ≥ 0. We also obtain

ψ(x; c, k, β) = ϕ∗(x + γ; c) − ϕ∗(γ)

where
γ = Φ∗−1(β).

For the case β ∈ I3,

ψ(x; c, k, β) = ϕ∗(−x + γ; c) − ϕ∗(γ)

where
γ = Φ∗−1(−β).
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Figure 2.1: The graph of y = f(x). Case (i): c < k, k > 0, Case (ii): c > k > 0, Case
(iii): c ≤ k < 0, and Case (iv): c > k and k < 0.

This implies that ψ exists only on [0, γ) and (2.6) holds.
If c = k, then there exist one equilibria 0 and two orbits in I2 and I3. If β = 0, then

ψ ≡ 0. We can prove that (2.6) holds for β < 0 and the solution for β > 0 exists globally.
The cases (iii) and (iv) can be similarly shown.

Lemma 2.4. Any smooth traveling front in R2 can be represented by the graph from
the line which is vertical to the velocity of the traveling front, if the speed of the traveling
front is not equal to zero. If the speed of traveling front is zero in R2, then this front is a
stationary circle of radius 1/|k|.

Proof. We give a proof only for k > 0, since a similar argument holds true for k < 0.
Let v be a velocity of the traveling front. We can assume that v is parallel to y-axis.
We will show that Γ(t) is represented by the graph y = u(x, t). Otherwise, there exist a
points (x1, y1) ∈ Γ(0) such that ν at (x1, y1) is vertical to y-axis. So, V at (x1, y1) should
vanish, that is H + k = 0. It means D(t)∩ {(x, y) | x < x1, |y− y1| ≤ ε} = ∅ for small ε.
We only consider the case

ν|(x,y)=(x1 ,y1) = t(−1, 0). (2.8)

The opposite case can be treated similarly. The interface (Γ(0), ν) consists of the two
parts (Γ1(0),ν1) and (Γ2(0),ν2) represented by the graph of ϕi such that ϕ1(x) > ϕ2(x)
for x(> x1) close to x1 and limx→x1+0 ϕ1x = ∞, limx→x1+0 ϕ2x = −∞. By (2.8), ϕ1

satisfies (2.1), and ϕ2 satisfies

ϕxx = c(1 + ϕ2
x) + k(1 + ϕ2

x)3/2.

Here we can assume c ≥ 0. By the uniqueness of solutions of ordinary differential equa-
tions,

ϕ1(x) := ψ(x− x1; c, k,∞) + y1,



ϕ2(x) := ψ(x− x1; c,−k,−∞) + y1.

If c ≥ k > 0, then ϕ1 exists in (x1,∞) and converges to the line y =
√
c2 − k2(x−x1)/k+

y1 + γ1 as x → ∞ for some γ1 by the proof of Lemma 2.3 (ii). On the other hand, there
exists x2(> x1) such that limx→x2−0 ϕ2x = ∞ by Lemma 2.3 (iv). Then by the argument
that the interface is vending at x2, the interface must be extended to the left-hand side
again. Namely, there exists Γ3(0) represented by the graph of ϕ3 such that ϕ3(x) > ϕ2(x)
for x(< x2) close to x2 and limx→x2−0 ϕ3x = −∞. Since ϕ3 satisfies (2.1), ϕ3(x) converges
to the line y = −√

c2 − k2(x − x2)/k + ϕ(x2) + γ2 as x → ∞ for some γ2 by the proof of
Lemma 2.3 (ii). This implies that the interface Γ(0) has a self-intersection point, which
contradicts the definition of the interface.

Consider the case where 0 ≤ c < k holds true. By Lemma 2.3 (i), (iv), there exist
x2, x3 such that limx→x2−0 ϕ1x = −∞ and limx→x3−0 ϕ2x = ∞ where

x2 := x1 +
∫ ∞

−∞
dv

k(1 + v2)3/2 − c(1 + v2)
, (2.9)

x3 := x1 +
∫ ∞

−∞
dv

k(1 + v2)3/2 + c(1 + v2)
. (2.10)

It is easily seen that x2 �= x3 if c > 0. So, by an argument similar to the above, the
interface has a self-intersection point.

In the case c = 0, then the above x2 = x3 given in (2.9) and (2.10). This is the case
where Γ(t) is a stationary circle of radius 1/|k|.

Proof of Theorem 1.2. First we consider the case c > k > 0. Using Lemma 2.4, we
can assume that the traveling front Γ(t) is represented by the graph y = u(x) + ct. Then
u satisfies (2.1). Lemma 2.3 immediately implies Theorem 1.2.

Proof of Theorem 1.3. In this proof we cannot assume k > 0 since the region D(t) is
fixed. By Lemma 2.3 and the proof of Lemma 2.4, we can conclude as follows.

(i) Case: c < k and k > 0.
A similar argument as in the proof of Lemma 2.4 implies that the derivative of Γ(0)
becomes −∞ at x = x4, where

x4 :=
∫ β

−∞
dv

k(1 + v2)3/2 − c(1 + v2)
.

After turning back, Γ(0) has the derivative −β at x = x4 − x5, where

x5 :=
∫ ∞

−β

dv

k(1 + v2)3/2 + c(1 + v2)
.

By c �= 0, x4 − x5 �= 0 follows. This implies that Γ(0) does not satisfy the boundary
condition at the y-axis, or has a self-intersection point.

(ii) Case: c ≥ k > 0.
There exists a traveling front if and only if β ≥ −√

c2 − k2/k.



(iii) Case: c ≤ k < 0.
There exists a traveling front if and only if β ≤ √

c2 − k2/|k|.
(iv) Case: k < c and k < 0.

A similar argument as in (i) leads to non-existence.

The condition β ≥ −√
c2 − k2/k is equivalent to c ≥ c(α) and β ≤ √

c2 − k2/|k| is
equivalent to c ≤ −c(α). This completes the proof.

We have the following result for the shape of the traveling curved fronts.

Proposition 2.5. The following relations hold true:

ϕ(x; c) = ±
√
c2 − k2

k
x + b + O(|x|e−c

√
c2−k2|x|/k), as x → ±∞,

ϕ∗(x; c) = ±
√
c2 − k2

k
x + b∗ + O(|x|e−c

√
c2−k2|x|/k), as x → ±∞,

respectively, where b and b∗ are constants given by

b := −
√
c2 − k2

ck
arctan

√
c2 − k2

k
− 1

c
log

2(c + k)

c
< 0, (2.11)

b∗ :=

√
c2 − k2

ck

(π
2
− arctan

√
c2 − k2

k

)
+

1

c
log

c(c +
√
c2 − k2)

2(c2 − k2)
> 0. (2.12)

Proof. It is easily seen that

1 −
√√√√c + k

c− k
tan θ = O(e−c

√
c2−k2|x|/k).

by (1.5). This implies

ϕx ∓
√
c2 − k2

k
= O(e−c

√
c2−k2|x|/k) (2.13)

as x → ±∞. Recall ϕx = Φ−1(x). We have

ϕ(x) − ϕ(0) =
∫ x

0
ϕx(x)dx =

∫ x

0
Φ−1(x)dx = xΦ−1(x) −

∫ x

0

d

dx
Φ−1(x)dx

= xϕx(x) −
∫ ϕx(x)

0
Φ(ξ)dξ

integrating by parts and changing of variables. Then

ϕ(x) = x tan θ − 1

c

{
θ tan θ − 1

2
log(1 + tan2 θ) + log(1 − c + k

c− k
tan2 θ

2
)

+
k√

c2 − k2
tan θ log

1 +

√
c + k

c− k
tan

θ

2

1 −
√
c + k

c− k
tan

θ

2

− log
(
1 − tan2 θ

2

)}
(2.14)



follows from (iii) and (iv) in Lemma 2.1. We remark that the exact form of y(θ; c) in (1.6)
can also be derived from the above equality.

By (2.13) and (2.14), we obtain the first statement of this proposition.
The remainder part can be shown almost similarly. Indeed, we have

ϕ∗(x) − ϕ∗(0) =
∫ x

0
ϕ∗

x(x)dx

=
∫ x

0
Φ∗−1(x)dx

= [xϕ∗
x(x)]x0 −

∫ ϕ∗
x(x)

0
Φ∗(ξ)dξ.

Since

lim
θ→π/2

tan θ log

(√
c + k

c− k
tan

θ

2
+ 1

)(√
c + k

c− k
− 1

)
(√

c + k

c− k
tan

θ

2
− 1

)(√
c + k

c− k
+ 1

) =

√
c2 − k2

k
,

we obtain

y∗(θ) =

[
x tan θ − 1

c

{
(θ − π

2
) tan θ − 1

2
log(1 + tan2 θ) + log(

c + k

c− k
tan2 θ

2
− 1)

− log(tan2 θ

2
− 1) +

k√
c2 − k2

tan θ log

(√
c + k

c− k
tan

θ

2
+ 1

)(√
c + k

c− k
− 1

)
(√

c + k

c− k
tan

θ

2
− 1

)(√
c + k

c− k
+ 1

)
}]θ

π/2

using Lemma 2.1 (iii) and (iv). By the above equalities, we obtain the asymptotic behavior
of ϕ∗.

Proof of Theorem 1.4. Set w(x, t) = u(x, t) −ϕ(x; c) − ct and v(x, t) = ux(x, t). Then
w and v satisfy

wt − ∂

∂x
(arctan(wx + ϕx)) − k

√
1 + (wx + ϕx)2 +

ϕxx

1 + ϕ2
x

+ k
√

1 + ϕ2
x = 0, (2.15)

vt − ∂

∂x

(
vx

1 + v2

)
− k

vvx√
1 + v2

= 0. (2.16)

It follows from [7, Theorem 8.1, Remark 8.1, p. 495] that there exists a unique classical
solution of (2.16) for any positive time, if supx |v(x, 0)| < M (M > 0). Take M >√
c2 − k2/|k|. By the Phragmèm-Lindelöf principle [10, Theorem 10, p. 183],

sup
x,t

|v(x, t)| ≤ sup
x

|v(x, 0)| < M (2.17)

follows. To apply the general theory for quasi-linear parabolic equations with principal
parts in divergence form, we rewrite the equation as

wt − ∂

∂x
a(x, wx) − k

√
1 + (wx + ϕx)2 +

ϕxx

1 + ϕ2
x

+ k
√

1 + ϕ2
x = 0, (2.18)



where a(x, p) = arctan (η(p) + ϕx(x)). Here η(p) is a smooth and monotone increasing
function of p with

η(p) =




−2M if p ≤ −2M ,
p if |p| < M ,
2M if p ≥ 2M .

Then [7, Theorem 8.1, Remark 8.1, p. 495] is applicable to (2.15), which implies the
existence and uniqueness of classical solutions of (2.15) up to any positive time.

The comparison principle also follows from the Phragmèm-Lindelöf principle [10, The-
orem 10, p. 183].

Let w(x, t) ≡ infx w(x, 0) and w(x, t) ≡ supx w(x, 0). Then they are solutions of (2.15).
By the comparison principle stated above, |w(x, t)| ≤ supx |w(x, 0)| holds true for all x ∈
R and t ≥ 0. Combining this inequality and (2.17), one has supt≥0 ‖w(x, t)‖BC1 < +∞.
This completes the proof.

3. Higher dimensional cases

In this section we consider a traveling curved front that is rotationally symmetric in Rn+1

for n ≥ 2. Put x = t(x1, . . . , xn+1). We seek for a moving surface Γ(t) with a graph

xn+1 = u(r, t), where r = (x2
1 + . . . + x2

n)
1
2 . Then V = H + k becomes

ut√
1 + u2

r

=
(n− 1)ur

r
√

1 + u2
r

+
urr

(1 + u2
r)

3
2

+ k.

Put u(r, t) = φ(r) + ct. Without loss of generality, we put φ(0) = 0. Then φ(r) should
satisfy

c =
φrr

1 + φ2
r

+
(n− 1)φr

r
+ k

√
1 + φ2

r for r > 0,

φ(0) = 0, φr(0) = 0.
(3.1)

Defining v(r) = φr(r), we have

dv

dr
= (1 + v2)f(r, v) r > 0,

v(0) = 0,
(3.2)

where

f(r, v) = c− k
√

1 + v2 − n− 1

r
v.

Then the following assertion holds true. This assertion implies that φ(r) possesses no
asymptotic lines as r → +∞.

Theorem 3.1. For n ≥ 2, there exists a unique monotone increasing solution φ(r) to
(3.1). The following relations

lim
r→+0

φ(r)

r2
=

c− k

2n
, (3.3)

lim
r→+∞

φ(r)

r
=

√
c2 − k2

k
(3.4)



hold true. Moreover,

φr(r) =

√
c2 − k2

k
− (n− 1)c

k2

1

r
+

1

k
√
c2 − k2

(
(n− 1)2c2

k2
− n2 − 1

2

)
1

r2
+ O

(
1

r3

)
(3.5)

is valid as r → +∞.

Proof. In the r-v plane, (3.2) can be rewritten as

dr

dξ
= r

dv

dξ
= (1 + v2)f(r, v)

for ξ ∈ (−∞,∞). (3.6)

Note that D := {(r, v) | f(r, v) > 0, v > 0, r > 0} is a positively invariant set by the flow
(3.6). A positive-valued solution v(r) (r > 0) is an orbit which connects the unstable
manifold of (r, v) = (0, 0) and a point (r, v) = (+∞,

√
c2 − k2/k) in the r-v plane. This

fact yields (3.3) and (3.4).
Define s = 1/r and V (s) = v(r). Then, in the s-V plane, we have

ds

dξ
= −s2

dV

dξ
= (1 + V 2)

(
c− k

√
1 + V 2 − (n− 1)sV

) for ξ ∈ (−∞,∞). (3.7)

As ξ → +∞, the orbit (s, V ) approaches (0,
√
c2 − k2/k) along the center manifold of this

point. Then the Taylor expansion of V (s) up to s2 gives (3.5).
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[7] O.A., Ladyženskaja, V.A. Solonnikov, and N.N. Ural’ceva, Linear and Quasilinear
Equations of Parabolic Type, Translations of Mathematical Monographs 24, Provi-
dence RI, (1968), American Mathematical Society.
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