Generalized carry process and riffle shuffle

Fumihiko NAKANO¹ Taizo SADAHIRO²

¹Gakushuin University
²Tsuda College

2018 年 2 月
Carries in addition

Adding 2 numbers with randomly chosen digits,
Carries in addition

Adding 2 numbers with randomly chosen digits,

<table>
<thead>
<tr>
<th></th>
<th>01111</th>
<th>00001</th>
<th>00000</th>
<th>01101</th>
<th>11111</th>
<th>00000</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>01111</td>
<td>71578</td>
<td>52010</td>
<td>72216</td>
<td>15692</td>
<td>99689</td>
<td>80452</td>
<td>46312</td>
</tr>
<tr>
<td>00001</td>
<td>20946</td>
<td>60874</td>
<td>82351</td>
<td>32516</td>
<td>23823</td>
<td>30046</td>
<td>06870</td>
</tr>
<tr>
<td>00000</td>
<td>92525</td>
<td>12885</td>
<td>54567</td>
<td>48209</td>
<td>20513</td>
<td>10498</td>
<td>53182</td>
</tr>
</tbody>
</table>

and 1 seem to appear at equal rate.
Carries in addition

Adding 2 numbers with randomly chosen digits,

<table>
<thead>
<tr>
<th>01111</th>
<th>00001</th>
<th>00000</th>
<th>01101</th>
<th>11111</th>
<th>00000</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>71578</td>
<td>52010</td>
<td>72216</td>
<td>15692</td>
<td>99689</td>
<td>80452</td>
<td>46312</td>
</tr>
<tr>
<td>20946</td>
<td>60874</td>
<td>82351</td>
<td>32516</td>
<td>23823</td>
<td>30046</td>
<td>06870</td>
</tr>
<tr>
<td>92525</td>
<td>12885</td>
<td>54567</td>
<td>48209</td>
<td>20513</td>
<td>10498</td>
<td>53182</td>
</tr>
</tbody>
</table>

0 and 1 seem to appear at equal rate.

Adding 3 numbers,
Carries in addition

Adding 2 numbers with randomly chosen digits,

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01111</td>
<td>00001</td>
<td>00000</td>
<td>01101</td>
<td>11111</td>
<td>00000</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>71578</td>
<td>52010</td>
<td>72216</td>
<td>15692</td>
<td>99689</td>
<td>80452</td>
<td>46312</td>
<td></td>
</tr>
<tr>
<td>20946</td>
<td>60874</td>
<td>82351</td>
<td>32516</td>
<td>23823</td>
<td>30046</td>
<td>06870</td>
<td></td>
</tr>
<tr>
<td>92525</td>
<td>12885</td>
<td>54567</td>
<td>48209</td>
<td>20513</td>
<td>10498</td>
<td>53182</td>
<td></td>
</tr>
</tbody>
</table>

0 and 1 seem to appear at equal rate.

Adding 3 numbers,

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10111</td>
<td>10210</td>
<td>11102</td>
<td>11122</td>
<td>01011</td>
<td>11210</td>
<td>2112</td>
<td></td>
</tr>
<tr>
<td>43443</td>
<td>07082</td>
<td>04401</td>
<td>15299</td>
<td>64642</td>
<td>73497</td>
<td>38426</td>
<td></td>
</tr>
<tr>
<td>00171</td>
<td>55077</td>
<td>11440</td>
<td>95932</td>
<td>91116</td>
<td>17255</td>
<td>19649</td>
<td></td>
</tr>
<tr>
<td>49339</td>
<td>70267</td>
<td>68885</td>
<td>98147</td>
<td>70311</td>
<td>43856</td>
<td>37376</td>
<td></td>
</tr>
<tr>
<td>92954</td>
<td>32426</td>
<td>84728</td>
<td>09380</td>
<td>26070</td>
<td>34608</td>
<td>95451</td>
<td></td>
</tr>
</tbody>
</table>

then 1 seems to appear frequently. \(\frac{\#0}{\#1} : \frac{\#2}{\#1} = 7 : 20 : 7 \).
Transition Probability 1

\[P_{ij} := P(C_{k+1} = j \mid C_k = i), \quad i, j \in \{0, 1, \cdots, n - 1\} \]
Transition Probability 1

\[P_{ij} := P(C_{k+1} = j \mid C_k = i), \quad i, j \in \{0, 1, \cdots, n - 1\} \]

Example 1 \((b = 2, n = 2)\)

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 \\
\end{array}
\]

\[\implies (P_{0,0}, P_{0,1}) = \frac{1}{2^2} (3, 1) \]
Transition Probability 1

\[P_{ij} := \mathbf{P} \left(C_{k+1} = j \mid C_k = i \right), \quad i, j \in \{0, 1, \ldots, n - 1\} \]

Example 1 \((b = 2, n = 2)\)

\[
\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
\end{array}
\]

\[\implies (P_{0,0}, P_{0,1}) = \frac{1}{2^2} (3, 1) \]

For \(b = 2, n = 2\)

\[
P = \frac{1}{2^2} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \implies \text{Stationary dist. } \pi = \left(\frac{1}{2}, \frac{1}{2} \right)\]
Transition Probability 2

Example 2 \((b = 2, n = 3)\)
Transition Probability 2

Example 2 \((b = 2, n = 3)\)

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
\end{array}
\]

\[\Rightarrow \quad (P_{0,0}, P_{0,1}, P_{0,2}) = \frac{1}{2^3} \cdot (4, 4, 0)\]
Transition Probability 2

Example 2 \((b = 2, n = 3)\)

\[
\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
\end{array}
\]

\[
(P_{0,0}, P_{0,1}, P_{0,2}) = \frac{1}{2^3} \cdot (4, 4, 0)
\]

For \(b = 2, n = 3\)

\[
P = \frac{1}{2^3} \begin{pmatrix}
4 & 4 & 0 \\
1 & 6 & 1 \\
0 & 4 & 4 \\
\end{pmatrix}
\implies \pi = \frac{1}{3!} \cdot (1, 4, 1)
\]
Carries Process

Add n base-b numbers $(b, n \in \mathbb{N}, b, n \geq 2)$
Carries Process

Add n base-b numbers ($b, n \in \mathbb{N}, b, n \geq 2$)

<table>
<thead>
<tr>
<th>Carry</th>
<th>C_{k+1}</th>
<th>C_k</th>
<th>C_1</th>
<th>$C_0 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>$X_{1,k}$</td>
<td>$X_{1,1}$</td>
<td>$X_{1,0}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X_{n,k}$</td>
<td>$X_{n,1}$</td>
<td>$X_{n,0}$</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>S_k</td>
<td>S_1</td>
<td>S_0</td>
<td></td>
</tr>
</tbody>
</table>
Add n base-b numbers ($b, n \in \mathbb{N}, b, n \geq 2$)

<table>
<thead>
<tr>
<th>Carry</th>
<th>C_{k+1}</th>
<th>C_k</th>
<th>\cdots</th>
<th>C_1</th>
<th>$C_0 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>$X_{1,k}$</td>
<td>\cdots</td>
<td>$X_{1,1}$</td>
<td>$X_{1,0}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X_{n,k}$</td>
<td>\cdots</td>
<td>$X_{n,1}$</td>
<td>$X_{n,0}$</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>S_k</td>
<td>\cdots</td>
<td>S_1</td>
<td>S_0</td>
<td></td>
</tr>
</tbody>
</table>

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \cdots, b-1\}$. Given C_k, C_{k+1} is determined by
Carries Process

Add n base-b numbers ($b, n \in \mathbb{N}, b, n \geq 2$)

<table>
<thead>
<tr>
<th>Carry</th>
<th>C_{k+1}</th>
<th>C_k</th>
<th>C_1</th>
<th>$C_0 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>$X_{1,k}$</td>
<td>\cdots</td>
<td>$X_{1,1}$</td>
<td>$X_{1,0}$</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td>$X_{n,k}$</td>
<td>\cdots</td>
<td>$X_{n,1}$</td>
<td>$X_{n,0}$</td>
</tr>
<tr>
<td>Sum</td>
<td>S_k</td>
<td>\cdots</td>
<td>S_1</td>
<td>S_0</td>
</tr>
</tbody>
</table>

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \cdots, b - 1\}$. Given C_k, C_{k+1} is determined by

$$C_k + X_{1,k} + \cdots + X_{n,k} = C_{k+1}b + S_k, \quad S_k \in D_b$$
Carries Process

Add \(n \) base- \(b \) numbers \((b, n \in \mathbb{N}, b, n \geq 2)\)

\[
\begin{array}{cccccc}
\text{Carry} & C_{k+1} & C_k & \cdots & C_1 & C_0 = 0 \\
\text{Addends} & X_{1,k} & \cdots & X_{1,1} & X_{1,0} \\
 & \vdots & & \vdots & & \vdots \\
 & X_{n,k} & \cdots & X_{n,1} & X_{n,0} \\
\text{Sum} & S_k & \cdots & S_1 & S_0 \\
\end{array}
\]

Choose \(X_{j,k} \) uniformly at random from \(D_b := \{0, 1, \ldots, b-1\} \).
Given \(C_k \), \(C_{k+1} \) is determined by

\[
C_k + X_{1,k} + \cdots + X_{n,k} = C_{k+1}b + S_k, \quad S_k \in D_b
\]

\(\{C_k\}_{k=0}^{\infty} \) \((C_k \in \{0, \cdots, n-1\})\) is called the carries process.
Amazing Matrix : Holte (1997)

\[P_{ij} := P(C_{k+1} = j \mid C_k = i), \quad i, j = 0, 1, \ldots, n - 1 \]
Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing Matrix

(b, n, p)-process

Riffle Shuffle

(−b, n, p) - process

Miscellaneous

Application

Summary

\[P_{ij} := P \left(C_{k+1} = j \mid C_k = i \right), \quad i, j = 0, 1, \ldots, n - 1 \]

E-values and left E-vectors of Amazing Matrix

E-values/ E-vectors depends only on \(b / n \).

\[P = L^{-1} DL, \quad D = \text{diag} \left(1, \frac{1}{b}, \frac{1}{b^2}, \ldots, \frac{1}{b^{n-1}} \right) \]

\[L_{ij} = v_{ij}(n) = [x^j](A_m(x)) \cdot \]

\[A_m(x) := (1 - x)^{n+1} \sum_{j \geq 0} (j + 1)^m x^j : \text{Eulerian polynomial.} \]
Amazing Matrix : Holte(1997)

\[P_{ij} := \mathbf{P} \left(C_{k+1} = j \mid C_k = i \right), \quad i, j = 0, 1, \ldots , n - 1 \]

E-values and left E-vectors of Amazing Matrix

E-values/ E-vectors depends only on \(b / n \).

\[P = L^{-1} DL, \quad D = \text{diag} \left(1, \frac{1}{b}, \frac{1}{b^2}, \ldots , \frac{1}{b^{n-1}} \right) \]

\[L_{ij} = v_{ij}(n) = [x^j] \left(A_m(x) \right). \]

\[A_m(x) := (1 - x)^{n+1} \sum_{j \geq 0} (j + 1)^{m} x^j : \text{Eulerian polynomial.} \]

Remark. \(P(b_1)P(b_2) = P(b_1 \cdot b_2). \)
Property of Left Eigenvectors

\[L = \begin{pmatrix}
\text{(n-th Eulerian num.)} \\
\vdots \\
(-1)^j((n - 1)\text{-th Pascal num.})
\end{pmatrix} \]

[1]
Property of Left Eigenvectors

\[L = \begin{pmatrix}
\begin{array}{cccc}
\text{(n-th Eulerian num.)} \\
\vdots \\
(-1)^j((n-1)\text{-th Pascal num.)}
\end{array}
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 & 1 \\
1 & 0 & -2 & 1 \\
1 & 11 & 11 & 1 \\
1 & 3 & -3 & -1 \\
1 & -1 & -1 & 1 \\
1 & -3 & 3 & -1
\end{pmatrix}
\]
Property of Left Eigenvectors

\[L = \begin{pmatrix}
(n\text{-th Eulerian num.}) \\
\vdots \\
(-1)^j((n-1)\text{-th Pascal num.})
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix},
\begin{pmatrix}
1 & 4 & 1 \\
1 & 0 & -1
\end{pmatrix},
\begin{pmatrix}
1 & 11 & 11 & 1 \\
1 & 3 & -3 & -1 \\
1 & -1 & -1 & 1 \\
1 & -3 & 3 & -1
\end{pmatrix}
\]

\[E(n, k) := \#\{ \sigma \in S_n \text{ with } k\text{-descents} \} : n\text{-th Eulerian num.} \]
Property of Left Eigenvectors

\[L = \begin{pmatrix} (n\text{-th Eulerian num.}) \\ \vdots \\ (-1)^j((n-1)\text{-th Pascal num.}) \end{pmatrix} \]

\[
\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix},
\begin{pmatrix}
1 & 4 & 1 \\
1 & 0 & -1
\end{pmatrix},
\begin{pmatrix}
1 & 11 & 11 & 1 \\
1 & 3 & -3 & -1 \\
1 & -1 & -1 & 1 \\
1 & -3 & 3 & -1
\end{pmatrix}
\]

\[E(n, k) := \#\{ \sigma \in S_n \text{ with } k\text{-descents} \} : n\text{-th Eulerian num.} \]

\[
E(3, 0) = \#\{(123)\} = 1, \\
E(3, 1) = \#\{(132), (312), (231), (213)\} = 4, \\
E(3, 2) = \#\{(321)\} = 1.
\]
Property of Left Eigenvectors

\[L = \begin{pmatrix} \begin{pmatrix} (n\text{-th Eulerian num.}) \\ \vdots \\ (-1)^j((n-1)\text{-th Pascal num.}) \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix} \end{pmatrix} \]

\[E(n, k) := \#\{ \sigma \in S_n \text{ with } k\text{-descents} \} : n\text{-th Eulerian num.} \]

\[E(3, 0) = \#\{(123)\} = 1, \]
\[E(3, 1) = \#\{(132), (312), (231), (213)\} = 4, \]
\[E(3, 2) = \#\{(321)\} = 1. \]

[2] \(L \) is equal to the Foulkes character table of \(S_n \) (Diaconis-Fulman, 2012).
Foulkes character

Example

\[\#\{ \sigma \in S_4 \mid \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) \} \]
\[= \{(1324), (1423), (2314), (2413), (3412)\} = 5 \]
Foulkes character

Example

\[\#\{ \sigma \in S_4 \mid \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) \} \]
\[= \{(1324), (1423), (2314), (2413), (3412)\} = 5 \]

\[\begin{array}{ccc}
+ & - & + \\
\Rightarrow & + & \times \\
\Rightarrow & + & -
\end{array} \]

\[\begin{array}{ccc}
+ & + & \times \\
| & + & -
\end{array} \]
Foulkes character

Example

\[\#\{\sigma \in S_4 | \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4)\} = \{(1324), (1423), (2314), (2413), (3412)\} = 5\]

\[
\begin{array}{c}
+ \quad - \\
+ \times \\
+ \quad -
\end{array}
\]

\[
\begin{array}{c}
+ \quad + \\
\times \quad -
\end{array}
\]

\[
LR \simeq \begin{array}{c}
\text{dim} = 3 \\
\text{dim} = 2
\end{array}
\]
Property of Right Eigenvectors

Right Eigenvector of \(P \)

\[
P = RDR^{-1}
\]

\[
R_{ij} = \sum_{r=0}^{n} (-1)^{n-r} \binom{n}{r} \binom{r}{n-j} (n - 1 - i)^{r-(n-j)}
\]
Property of Right Eigenvectors

Right Eigenvector of P

$$P = RDR^{-1}$$

$$R_{ij} = \sum_{r=n-j}^{n} (-1)^{n-r} \begin{bmatrix} n \\ r \end{bmatrix} \binom{r}{n-j} (n - 1 - i)^{r-(n-j)}$$

$$(1 \ 1) \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & -1 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 6 & 11 & 6 \\ 1 & 2 & -1 & -2 \\ 1 & -2 & -1 & 2 \\ 1 & -6 & 11 & -6 \end{pmatrix}$$
Property of Right Eigenvectors

Right Eigenvector of P

$$P = RDR^{-1}$$

$$R_{ij} = \sum_{r=n-j}^{n} (-1)^{n-r} \begin{bmatrix} n \\ r \end{bmatrix} \binom{r}{n-j} (n - 1 - i)^{r-(n-j)}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & -1 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 6 & 11 & 6 \\ 1 & 2 & -1 & -2 \\ 1 & -2 & -1 & 2 \\ 1 & -6 & 11 & -6 \end{pmatrix}$$

$$R(0, j) = S(n, n - j)$$

$$S(n, j) := \#\{\sigma \in S_n \text{ with } j\text{-cycles} \} \text{ Stirling num. of 1st kind}$$
Let $\{\sigma_1, \sigma_2, \cdots\}$ ($\sigma_0 = id$), be the Markov chain on S_n induced by the repeated b-riffle shuffles on n-cards.
Let $\{\sigma_1, \sigma_2, \cdots\}$ ($\sigma_0 = \text{id}$), be the Markov chain on S_n induced by the repeated b-riffle shuffles on n-cards.

Relation to Riffle Shuffles (Diaconis-Fulman, 2009)

\[
\{C_k\}_{k=1}^{\infty} \cong \{d(\sigma_k)\}_{k=1}^{\infty}, \quad d(\sigma): \text{the descent of } \sigma \in S_n.
\]
Riffle Shuffle

Let \(\{\sigma_1, \sigma_2, \cdots \} \) \((\sigma_0 = id)\), be the Markov chain on \(S_n \) induced by the repeated \(b \)-riffle shuffles on \(n \)-cards.

Relation to Riffle Shuffles (Diaconis-Fulman, 2009)

\[
\{C_k\}_{k=1}^{\infty} \overset{d}{=} \{d(\sigma_k)\}_{k=1}^{\infty}, \quad d(\sigma) : \text{the descent of } \sigma \in S_n.
\]

Since the stationary dist. of \(\{\sigma_k\} \) is uniform on \(S_n \),

\[
L_{0j} = \lim_{k \to \infty} P(C_k = j) = \lim_{k \to \infty} P(d(\sigma_k) = j) = P_{unif}(d(\sigma) = j) = E(n, j)/n!
\]

explaining why Eulerian num. appears.
Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

1. E-values depend only on b.
2. Eulerian number appears in the stationary distribution.
3. Left eigenvector matrix L equals to the Foulkes character table of S_n.
4. Stirling number of the first kind appears in the right eigenvector matrix R.
5. Carries process has the same distribution to the descent process of the riffle shuffle.
Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

(0) E-values depend only on b, and E-vectors depend only on n.
Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

(0) E-values depend only on b, and E-vectors depend only on n.
(1) Eulerian num. appears in the stationary distribution.
Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

(0) E-values depend only on b, and E-vectors depend only on n.

(1) Eulerian num. appears in the stationary distribution.

(2) Left eigenvector matrix L equals to the Foulkes character table of S_n.
Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

(0) E-values depend only on b, and E-vectors depend only on n.

(1) Eulerian num. appears in the stationary distribution.

(2) Left eigenvector matrix L equals to the Foulkes character table of S_n.

(3) Stirling num. of 1st kind appears in the right eigenvector matrix R.
Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

(0) E-values depend only on b, and E-vectors depend only on n

(1) Eulerian num. appears in the stationary distribution.

(2) Left eigenvector matrix L equals to the Foulkes character table of S_n.

(3) Stirling num. of 1st kind appears in the right eigenvector matrix R.

(4) carries process has the same distribution to the descent process of the riffle shuffle.
(b, n, p)-Carries Process
(\(b, n, p\))-Carries Process

Add \(n\) base- \(b\) numbers. Let \(\frac{b-1}{p} \in \mathbb{N}, \frac{1}{p} + \frac{1}{p^*} = 1\).
Add n base- b numbers. Let $\frac{b-1}{p} \in \mathbb{N}$, $\frac{1}{p} + \frac{1}{p^*} = 1$.

<table>
<thead>
<tr>
<th>Carry</th>
<th>C_{k+1}</th>
<th>C_k</th>
<th>\cdots</th>
<th>C_1</th>
<th>$C_0 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>$X_{1,k}$</td>
<td>\cdots</td>
<td>$X_{1,1}$</td>
<td>$X_{1,0}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X_{n,k}$</td>
<td>\cdots</td>
<td>$X_{n,1}$</td>
<td>$X_{n,0}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{b-1}{p^*}$</td>
<td>\cdots</td>
<td>$\frac{b-1}{p^*}$</td>
<td>$\frac{b-1}{p^*}$</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>S_k</td>
<td>\cdots</td>
<td>S_1</td>
<td>S_0</td>
<td></td>
</tr>
</tbody>
</table>
(b, n, p)-Carries Process

Add n base-b numbers. Let $\frac{b-1}{p} \in \mathbb{N}, \frac{1}{p} + \frac{1}{p^*} = 1$.

<table>
<thead>
<tr>
<th>Carry</th>
<th>C_{k+1}</th>
<th>C_k</th>
<th>\cdots</th>
<th>C_1</th>
<th>$C_0 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>$X_{1,k}$</td>
<td>\cdots</td>
<td>$X_{1,1}$</td>
<td>$X_{1,0}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$X_{n,k}$</td>
<td>\cdots</td>
<td>$X_{n,1}$</td>
<td>$X_{n,0}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{b-1}{p^*}$</td>
<td>\cdots</td>
<td>$\frac{b-1}{p^*}$</td>
<td>$\frac{b-1}{p^*}$</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>S_k</td>
<td>\cdots</td>
<td>S_1</td>
<td>S_0</td>
<td></td>
</tr>
</tbody>
</table>

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \cdots, b-1\}$. Given C_k, C_{k+1} is determined by
(\(b, n, p\))-Carries Process

Add \(n\) base- \(b\) numbers. Let \(\frac{b-1}{p} \in \mathbb{N}, \frac{1}{p} + \frac{1}{p^*} = 1\).

<table>
<thead>
<tr>
<th>Carry</th>
<th>(C_{k+1})</th>
<th>(C_k)</th>
<th>(\cdots)</th>
<th>(C_1)</th>
<th>(C_0 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>(X_{1,k})</td>
<td>(\cdots)</td>
<td>(X_{1,1})</td>
<td>(X_{1,0})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(X_{n,k})</td>
<td>(\cdots)</td>
<td>(X_{n,1})</td>
<td>(X_{n,0})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{b-1}{p^*})</td>
<td>(\cdots)</td>
<td>(\frac{b-1}{p^*})</td>
<td>(\frac{b-1}{p^*})</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>(S_k)</td>
<td>(\cdots)</td>
<td>(S_1)</td>
<td>(S_0)</td>
<td></td>
</tr>
</tbody>
</table>

Choose \(X_{j,k}\) uniformly at random from \(D_b := \{0, 1, \cdots, b-1\}\). Given \(C_k\), \(C_{k+1}\) is determined by

\[
C_k + X_{1,k} + \cdots + X_{n,k} + \frac{b-1}{p^*} = C_{k+1}b + S_k, \quad S_k \in D_b.
\]
Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing Matrix \((b; n; p)\)-process

Riffle Shuffle

\((-b; n; p)\)-process

Miscellaneous

Application

Summary

\((b, n, p)\)-Carries Process

Add \(n\) base-\(b\) numbers. Let \(\frac{b-1}{p} \in \mathbb{N}, \frac{1}{p} + \frac{1}{p^*} = 1\).

<table>
<thead>
<tr>
<th>Addends</th>
<th>(C_{k+1})</th>
<th>(C_k)</th>
<th>(\cdots)</th>
<th>(C_1)</th>
<th>(C_0 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_{1,k})</td>
<td>(X_{1,1})</td>
<td>(X_{1,0})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(X_{n,k})</td>
<td>(X_{n,1})</td>
<td>(X_{n,0})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{b-1}{p^*})</td>
<td>(\frac{b-1}{p^*})</td>
<td>(\frac{b-1}{p^*})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sum)</td>
<td>(S_k)</td>
<td>(\cdots)</td>
<td>(S_1)</td>
<td>(S_0)</td>
<td></td>
</tr>
</tbody>
</table>

Choose \(X_{j,k}\) uniformly at random from \(D_b := \{0, 1, \ldots, b-1\}\). Given \(C_k\), \(C_{k+1}\) is determined by

\[C_k + X_{1,k} + \cdots + X_{n,k} + \frac{b-1}{p^*} = C_{k+1}b + S_k, \quad S_k \in D_b. \]

\(\{C_k\}_{k=0}^\infty\) is called the \((b, n, p)\)-carries process.
(b, n, p)-Carries Process

Add n base-b numbers. Let $\frac{b-1}{p} \in \mathbb{N}, \frac{1}{p} + \frac{1}{p^*} = 1$.

<table>
<thead>
<tr>
<th>Carry</th>
<th>C_{k+1}</th>
<th>C_k</th>
<th>\cdots</th>
<th>C_1</th>
<th>$C_0 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>$X_{1,k}$</td>
<td>\cdots</td>
<td>$X_{1,1}$</td>
<td>$X_{1,0}$</td>
<td>\vdots</td>
</tr>
<tr>
<td>$X_{n,k}$</td>
<td>\cdots</td>
<td>$X_{n,1}$</td>
<td>$X_{n,0}$</td>
<td>$\frac{b-1}{p}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>Sum</td>
<td>S_k</td>
<td>\cdots</td>
<td>S_1</td>
<td>S_0</td>
<td></td>
</tr>
</tbody>
</table>

Choose $X_{j,k}$ uniformly at random from $D_b := \{0, 1, \cdots, b-1\}$. Given C_k, C_{k+1} is determined by

$$C_k + X_{1,k} + \cdots + X_{n,k} + \frac{b-1}{p^*} = C_{k+1}b + S_k, \quad S_k \in D_b.$$

$\{C_k\}_{k=0}^{\infty}$ is called the (b, n, p)-carries process.
($p = 1$: usual carries process)
Remarks

(1) If we generalize the usual carries process by changing the digit set such as

\[D_b = \{0, 1, \cdots, b - 1\} \quad \Rightarrow \quad D_b = \{d, d + 1, \cdots, d + b - 1\}, \]

we get \((b, n, p)\)-carries process, after some change of variables.
Remarks

(1) If we generalize the usual carries process by changing the digit set such as

\[D_b = \{0, 1, \ldots, b - 1\} \implies D_b = \{d, d + 1, \ldots, d + b - 1\} , \]

we get \((b, n, p)\)-carries process, after some change of variables.

(2) \(C_k \in C_p(n)\) where \(C_p(n)\) is the carries set given by

\[C_p(n) := \begin{cases}
\{0, 1, \ldots, n - 1\} & (p = 1) \\
\{0, 1, \ldots, n\} & (p \neq 1)
\end{cases} \]
Left Eigenvectors

\[\tilde{P} = \{ \tilde{P}_{ij} \} : \text{Transition probability of } (b, n, p)-\text{process} : \]

\[\tilde{P}_{ij} = P \left(C_{k+1} = j \mid C_k = i \right). \]
Left Eigenvectors

\[\tilde{P} = \{ \tilde{P}_{ij} \} : \text{Transition probability of } (b, n, p)-\text{process:} \]

\[\tilde{P}_{ij} = P(C_{k+1} = j | C_k = i). \]

Theorem 1

E-values/ E-vectors depend only on \(b / n \).

\[\tilde{P} = L_p^{-1} D L_p, \quad D = \text{diag} \left(1, \frac{1}{b}, \cdots, \frac{1}{b^\#C_p(n)-1} \right) \]
Left Eigenvectors

\[\tilde{P} = \{ \tilde{P}_{ij} \} : \text{Transition probability of } (b, n, p)\text{- process :} \]

\[\tilde{P}_{ij} = P \left(C_{k+1} = j \mid C_k = i \right). \]

Theorem 1

E-values/ E-vectors depend only on \(b / n \).

\[\tilde{P} = L_p^{-1} DL_p, \quad D = \text{diag} \left(1, \frac{1}{b}, \cdots, \frac{1}{b \# C_p(n) - 1} \right) \]

\[L^{(p)}_{ij}(n) = [x^j] \left(A_{m,p}(x) \right). \]
Left Eigenvectors

\[\tilde{P} = \{ \tilde{P}_{ij} \} : \text{Transition probability of } (b, n, p)\text{- process :} \]

\[\tilde{P}_{ij} = P (C_{k+1} = j \mid C_k = i). \]

Theorem 1

E-values/ E-vectors depend only on \(b / n \).

\[\tilde{P} = L_p^{-1} DL_p, \quad D = \text{diag} \left(1, \frac{1}{b}, \ldots, \frac{1}{b \# C_p(n) - 1} \right) \]

\[L_{ij}^{(p)}(n) = [x^j] (A_{m,p}(x)). \]

\[A_{m,p}(x) := (1 - x)^{n+1} \sum_{j \geq 0} (pj + 1)^m x^j \]
Combinatorial meaning of L

[1] The stationary distribution $L_{0j}^{(p)}(n)$ gives

(1) $p = 1$: Eulerian number
(descent statistics of the permutation group)
Combinatorial meaning of L

[1] The stationary distribution $L_{0j}^{(p)}(n)$ gives

(1) $p = 1$: Eulerian number
(descent statistics of the permutation group)

(2) $p = 2$: Macmahon number
(descent statistics of the signed permutation group:
$1^- < 2^- < \cdots < n^- < 1^+ < 2^+ < \cdots < n^+$)
Combinatorial meaning of L

[1] The stationary distribution $L_{0j}^{(p)}(n)$ gives

(1) $p = 1$: Eulerian number
(descent statistics of the permutation group)

(2) $p = 2$: Macmahon number
(descent statistics of the signed permutation group : $1− < 2− < \cdots < n− < 1+ < 2+ < \cdots < n+$)

$M(2, 0) = \#\{(1−, 2−)\} = 1,$
$M(2, 1) = \#\{(1+, 2+), (1+, 2−), (1−, 2+), (2+, 1−), (2−, 1+), (2−, 1−)\} = 6,$
$M(2, 2) = \#\{(2+, 1+)\} = 1.$
Combinatorial meaning of L

[1] The stationary distribution $L_{0j}^{(p)}(n)$ gives

(1) $p = 1$: Eulerian number
(descent statistics of the permutation group)

(2) $p = 2$: Macmahon number
(descent statistics of the signed permutation group:
$1^- < 2^- < \cdots < n^- < 1^+ < 2^+ < \cdots < n^+$)

$$M(2, 0) = \#\{(1-, 2-)\} = 1,$$
$$M(2, 1) = \#\{(1+, 2+), (1+, 2-), (1-, 2+), (2+, 1-),$$
$$(2-, 1+), (2-, 1-)\} = 6, \quad M(2, 2) = \#\{(2+, 1+)\} = 1.$$

(3) general $p \in \mathbb{N}$: descent statistics of the colored permutation group $G_{p,n}(\sim \mathbb{Z}_p \wr S_n)$
Combinatorial meaning of L

[1] The stationary distribution $L_{0j}^{(p)}(n)$ gives

(1) $p = 1$: Eulerian number
(descent statistics of the permutation group)

(2) $p = 2$: Macmahon number
(descent statistics of the signed permutation group : $1− < 2− < \cdots < n− < 1+ < 2+ < \cdots < n+$)

$$M(2, 0) = \#\{ (1−, 2−) \} = 1, \quad M(2, 1) = \#\{ (1+, 2+), (1+, 2−), (1−, 2+), (2+, 1−), (2−, 1+), (2−, 1−) \} = 6, \quad M(2, 2) = \#\{ (2+, 1+) \} = 1.$$

(3) general $p \in \mathbb{N}$: descent statistics of the colored permutation group $G_{p,n}(\simeq \mathbb{Z}_p \wr S_n)$

Combinatorial meaning of \(L \)

[1] The stationary distribution \(L_{0j}^{(p)}(n) \) gives

(1) \(p = 1 \): Eulerian number
(descent statistics of the permutation group)

(2) \(p = 2 \): Macmahon number
(descent statistics of the signed permutation group:
\(1^- < 2^- < \cdots < n^- < 1^+ < 2^+ < \cdots < n^+ \))

\[
M(2, 0) = \#\{(1-, 2-)\} = 1, \\
M(2, 1) = \#\{(1+, 2+), (1+, 2-), (1-, 2+), (2+, 1-), \}
\]
\[
(2-, 1+), (2-, 1-)\} = 6, \\
M(2, 2) = \#\{(2+, 1+)\} = 1. \\
\]

(3) general \(p \in \mathbb{N} \): descent statistics of the colored permutation group \(G_{p,n}(\simeq \mathbb{Z}_p \wr S_n) \)

[2] The left eigenvector matrix \(L \) equals to the Foulkes character table of \(G_{p,n} \).

[3] For \(p \notin \mathbb{N} \), we do not know...
Examples of $L(n = 3)$

$$p = 1 : \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \quad p = 2 : \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$
Examples of $L(n = 3)$

$p = 1$: \[
\begin{pmatrix}
1 & 4 & 1 \\
1 & 0 & -1 \\
1 & -2 & 1
\end{pmatrix}
\]

$p = 2$: \[
\begin{pmatrix}
1 & 23 & 23 & 1 \\
1 & 5 & -5 & -1 \\
1 & -1 & -1 & 1 \\
1 & -3 & 3 & -1
\end{pmatrix}
\]

$p = 3$: \[
\begin{pmatrix}
1 & 60 & 93 & 8 \\
1 & 23 & -9 & -4 \\
1 & 0 & -3 & 2 \\
1 & -3 & 3 & -1
\end{pmatrix}
\]

$p = 3/2$: \[
\begin{pmatrix}
1 & \frac{93}{8} & \frac{15}{2} & \frac{1}{8} \\
1 & \frac{9}{4} & -3 & -\frac{1}{4} \\
1 & -\frac{3}{2} & 0 & \frac{1}{2} \\
1 & -3 & 3 & -1
\end{pmatrix}
\]
Examples of $L(n = 3)$

$p = 1 : \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}$

$p = 2 : \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$

$p = 3 : \begin{pmatrix} 1 & 60 & 93 & 8 \\ 1 & 23 & -9 & -4 \\ 1 & 0 & -3 & 2 \\ 1 & -3 & 3 & -1 \end{pmatrix}$

$p = 3/2 : \begin{pmatrix} 1 & \frac{93}{8} & \frac{15}{2} & \frac{1}{8} \\ 1 & \frac{9}{4} & -3 & -\frac{1}{4} \\ 1 & -\frac{3}{2} & 0 & \frac{1}{2} \\ 1 & -3 & 3 & -1 \end{pmatrix}$

$p = 5/2 : \begin{pmatrix} 1 & \frac{311}{8} & \frac{101}{2} & \frac{27}{8} \\ 1 & \frac{33}{4} & -7 & -\frac{9}{4} \\ 1 & -\frac{1}{2} & -2 & \frac{3}{2} \\ 1 & -3 & 3 & -1 \end{pmatrix}$

No hits on OEIS...
Theorem 2

\[R_p := L_p^{-1} = \{ R_{ij}^{(p)}(n) \}_{i,j=0,\ldots;\#C_p(n)-1} \]
Theorem 2

\[
R_p := L_p^{-1} = \{ R_{ij}^{(p)}(n) \}_{i,j=0,\ldots,\#C_p(n)-1} \\
R_{ij}^{(p)} = [x^{n-j}] \left(n + \frac{x-1}{p} - i \right)
\]
Theorem 2

\[R_p := L_p^{-1} = \{ R_i^{(p)}(n) \}_{i,j=0,\ldots,\#C_p(n)-1} \]

\[R_i^{(p)} = [x^{n-j}] \left(n + \frac{x-1}{p} - i \right) \]

If \(p \in \mathbb{N} \),

(1) \(n!p^n R_{0,n-j}^{(p)} \) is equal to the Stirling-Frobenius cycle number.
Right Eigenvector

Theorem 2

\[R_p := L_p^{-1} = \left\{ R_{ij}^{(p)}(n) \right\}_{i,j=0,\ldots,\#C_p(n)-1} \]

\[R_{ij}^{(p)} = \left[x^{n-j} \right] \left(n + \frac{x-1}{p} - i \right) \]

If \(p \in \mathbb{N} \),
(1) \(n!p^n R_{0,n-j}^{(p)} \) is equal to the Stirling-Frobenius cycle number.
(2) \(R_{ij}^{(p)}(n) = \left[x^{n-j} \right] \# \left\{ \sigma \in G_{p,n} \mid \sigma : (x, n, p)\text{-shuffle with } d(\sigma^{-1}) = i \right\} \)
Colored Permutation Group

\[\Sigma := [n] \times \mathbb{Z}_p \ (\ [n] := \{1, 2, \ldots, n\}), \ p \in \mathbb{N} \]
Colored Permutation Group

\[\Sigma := [n] \times \mathbb{Z}_p \ (\ [n] := \{1, 2, \cdots, n\}, \ p \in \mathbb{N} \]

\[T_q : (i, r) \mapsto (i, r + q), \ (i, r) \in \Sigma \ : \ q\text{-shift on colors} \]
Colored Permutation Group

\[\Sigma := [n] \times \mathbb{Z}_p \ (\ [n] := \{1, 2, \cdots, n\}), \ p \in \mathbb{N} \]

\[T_q : (i, r) \mapsto (i, r + q), \ (i, r) \in \Sigma : q\text{-shift on colors} \]

\[G_{p,n} := \{ \sigma : \text{bijection on } \Sigma \mid \sigma \circ T_q = T_q \circ \sigma \}. \]
Colored Permutation Group

\[\Sigma := [n] \times \mathbb{Z}_p \ (\ [n] := \{1, 2, \cdots, n\}), \ p \in \mathbb{N} \]

\[T_q : (i, r) \mapsto (i, r + q), \ (i, r) \in \Sigma : q\text{-shift on colors} \]

\[G_{p,n} := \{ \sigma : \text{bijection on } \Sigma \mid \sigma \circ T_q = T_q \circ \sigma \}. \]

Example \((n = 4, p = 3) \):

\[(1, 0) \ (2, 0) \ (3, 0) \ (4, 0) \]

\[\downarrow \ \ \downarrow \ \ \downarrow \ \ \downarrow \]

\[(4, 1) \ (1, 0) \ (2, 2) \ (3, 2) \]
Colored Permutation Group

\[\Sigma := [n] \times \mathbb{Z}_p \quad ([n] := \{1, 2, \cdots, n\}), \quad p \in \mathbb{N} \]

\[T_q : (i, r) \mapsto (i, r + q), \quad (i, r) \in \Sigma : \text{q-shift on colors} \]

\[G_{p,n} := \{ \sigma : \text{bijection on } \Sigma \mid \sigma \circ T_q = T_q \circ \sigma \}. \]

Example \((n = 4, p = 3)\):

\[
(1, 0) \ (2, 0) \ (3, 0) \ (4, 0) \quad \quad (1, 1) \ (3, 1) \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \Longrightarrow \quad \downarrow \quad \downarrow \\
(4, 1) \ (1, 0) \ (2, 2) \ (3, 2) \quad \quad (4, 2) \ (2, 0)
\]
Colored Permutation Group

\[\Sigma := [n] \times \mathbb{Z}_p \quad ([n] := \{1, 2, \ldots, n\}), \quad p \in \mathbb{N} \]

\[T_q : (i, r) \mapsto (i, r + q), \quad (i, r) \in \Sigma : \text{ } q\text{-shift on colors} \]

\[G_{p,n} := \{ \sigma : \text{bijection on } \Sigma \mid \sigma \circ T_q = T_q \circ \sigma \}. \]

Example \((n = 4, p = 3)\) :

\[
\begin{array}{cccc}
(1, 0) & (2, 0) & (3, 0) & (4, 0) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
(4, 1) & (1, 0) & (2, 2) & (3, 2) \\
\end{array}
\quad \Rightarrow \quad
\begin{array}{cccc}
(1, 1) & (3, 1) & (4, 2) & (2, 0) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
\end{array}
\]

This \(\sigma\) is determined by \((4, 1) (1, 0) (2, 2) (3, 2)\). so we abuse to write \(\sigma = ((4, 1), (1, 0), (2, 2), (3, 2))\).
Colored Permutation Group

\[\Sigma := [n] \times \mathbb{Z}_p ([n] := \{1, 2, \cdots, n\}), \quad p \in \mathbb{N} \]

\[T_q : (i, r) \mapsto (i, r + q), \quad (i, r) \in \Sigma : \quad q\text{-shift on colors} \]

\[G_{p,n} := \{\sigma : \text{bijection on } \Sigma \mid \sigma \circ T_q = T_q \circ \sigma\}. \]

Example \((n = 4, p = 3)\) :

\[
\begin{align*}
(1, 0) & \quad (2, 0) & \quad (3, 0) & \quad (4, 0) & \quad (1, 1) & \quad (3, 1) \\
\downarrow & \quad \downarrow \\
(4, 1) & \quad (1, 0) & \quad (2, 2) & \quad (3, 2) & \quad (4, 2) & \quad (2, 0)
\end{align*}
\]

This \(\sigma\) is determined by \((4, 1) \quad (1, 0) \quad (2, 2) \quad (3, 2)\).
so we abuse to write \(\sigma = ((4, 1), (1, 0), (2, 2), (3, 2))\).

In general, setting \((\sigma(i), \sigma^c(i)) := \sigma(i, 0) \in \Sigma, \quad i = 1, 2, \cdots, n, \)
Colored Permutation Group

\[\Sigma := [n] \times \mathbb{Z}_p \left([n] := \{1, 2, \cdots, n\}\right), \quad p \in \mathbb{N} \]

\[T_q : (i, r) \mapsto (i, r + q), \quad (i, r) \in \Sigma : q\text{-shift on colors} \]

\[G_{p,n} := \{ \sigma : \text{bijection on } \Sigma \mid \sigma \circ T_q = T_q \circ \sigma \}. \]

Example \((n = 4, p = 3)\):

\[
\begin{array}{cccc}
(1, 0) & (2, 0) & (3, 0) & (4, 0) \\
↓ & ↓ & ↓ & ↓ \\
(4, 1) & (1, 0) & (2, 2) & (3, 2) \\
\end{array}
\quad \Rightarrow \quad
\begin{array}{cccc}
(1, 1) & (3, 1) & & \\
↓ & ↓ & ↓ & \\
(4, 2) & (2, 0) & & \\
\end{array}
\]

This \(\sigma\) is determined by \((4, 1) (1, 0) (2, 2) (3, 2)\).

so we abuse to write \(\sigma = ((4, 1), (1, 0), (2, 2), (3, 2))\).

In general, setting \((\sigma(i), \sigma^c(i)) := \sigma(i, 0) \in \Sigma, \quad i = 1, 2, \cdots, n,\)

we write \(\sigma = ((\sigma(1), \sigma^c(1)), (\sigma(2), \sigma^c(2)), \cdots, (\sigma(n), \sigma^c(n)))\).
Descent on $G_{p,n}$

(1) Define a ordering on Σ

\[(1, 0) < (2, 0) < \cdots < (n, 0) \]
\[< (1, p - 1) < (2, p - 1) < \cdots < (n, p - 1) \]
\[< (1, p - 2) < (2, p - 2) < \cdots < (n, p - 2) \]
\[\cdots \]
\[< (1, 1) < \cdots < (n, 1). \]
Descent on \(G_{p,n} \)

(1) Define a ordering on \(\Sigma \)

\[
(1, 0) < (2, 0) < \cdots < (n, 0) \\
< (1, p - 1) < (2, p - 1) < \cdots < (n, p - 1) \\
< (1, p - 2) < (2, p - 2) < \cdots < (n, p - 2) \\
\cdots \\
< (1, 1) < \cdots < (n, 1).
\]

(2) “\(\sigma \in G_{p,n} \) has a descent at \(i \)”

\[
def \quad (i) \ (\sigma(i), \sigma^c(i)) > (\sigma(i + 1), \sigma^c(i + 1)) \ (\text{for } 1 \leq i \leq n - 1) \\
(ii) \ \sigma^c(n) \neq 0 \ (\text{for } i = n).
\]
Descent on $G_{p,n}$

(1) Define a ordering on Σ

\[
(1, 0) < (2, 0) < \cdots < (n, 0) \\
< (1, p - 1) < (2, p - 1) < \cdots < (n, p - 1) \\
< (1, p - 2) < (2, p - 2) < \cdots < (n, p - 2) \\
\cdots \\
< (1, 1) < \cdots < (n, 1).
\]

(2) " $\sigma \in G_{p,n}$ has a descent at i "

\[\text{def} \quad (i) \quad (\sigma(i), \sigma^c(i)) > (\sigma(i + 1), \sigma^c(i + 1)) \quad (\text{for } 1 \leq i \leq n - 1)
\]

\[\quad \text{(ii) } \sigma^c(n) \neq 0 \quad (\text{for } i = n).
\]

(3) $d(\sigma)$: the number of descents of σ.

Ex. ($p = 3$) : $d((5, 0) \downarrow (3, 0) \uparrow (2, 1) \downarrow (4, 2) \uparrow (1, 1) \downarrow) = 3$
Generalized Riffle Shuffle

n cards
with p colors

Introduction

Amazing Matrix

$(b; n; p)$-process

Riffle Shuffle

$(-b, n, p)$-process

Miscellaneous

Application

Summary
Generalized Riffle Shuffle

n cards with p colors

b-piles by multinomial

$\begin{align*}
n_0 & \quad n_1 & \quad \ldots \ldots & \quad n_{jp+r} & \quad \ldots \ldots & \quad n_{b-1}
\end{align*}$
Generalized Riffle Shuffle

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing Matrix \((b; n; p) \)-process

Riffle Shuffle \((b; n; p) \)-process

Miscellaneous

Application

Summary

This process defines a Markov chain \(f_{g1} = 0 \) on \(G_{p; n} \). (called the \((b; n; p)\)-shuffle)
Generalized Riffle Shuffle

n cards with p colors

b-piles by multinomial

$(b; n; p)$-process

$(n_0 \downarrow +0)$
$(n_1 \downarrow +1)$
$(n_{jp+r} \downarrow +r)$
$(n_{b-1} \downarrow +0)$

shift colors
mix randomly

This process defines a Markov chain $f_{r_1^{r_p}}$ on $G_{p;n}$. (called the $(b; n; p)$-shuffle)
Generalized Riffle Shuffle

This process defines a Markov chain \(\{\sigma_r\}_{r=0}^{\infty} \) on \(G_{p,n} \).
(called the \((b, n, p)\)-shuffle)
Carries Process and Riffle Shuffle

\(p \in \mathbb{N}, \; b \equiv 1 \pmod{p} \)
\(\{C_r\}_{r=1}^{\infty} : (b, n, p) - \text{process} \)
Carries Process and Riffle Shuffle

\[p \in \mathbb{N}, \ b \equiv 1 \pmod{p} \]
\[\{C_r\}_{r=1}^{\infty} : (b, n, p) - \text{process} \]
\[\{\sigma_r\}_{r=1}^{\infty} : (b, n, p) - \text{shuffle} \]
Carries Process and Riffle Shuffle

\[p \in \mathbb{N}, \ b \equiv 1 \ (\text{mod} \ p) \]
\[\{C_r\}_{r=1}^{\infty} : (b, n, p) - \text{process} \]
\[\{\sigma_r\}_{r=1}^{\infty} : (b, n, p) - \text{shuffle} \]

Theorem 3

\[\{C_r\} \overset{d}{=} \{d(\sigma_r)\} \]
Carries Process and Riffle Shuffle

\[p \in \mathbb{N}, \ b \equiv 1 \pmod{p} \]
\[\{C_r\}_{r=1}^{\infty} : (b, n, p) - \text{process} \]
\[\{\sigma_r\}_{r=1}^{\infty} : (b, n, p) - \text{shuffle} \]

Theorem 3

\[\{C_r\} \overset{d}{=} \{d(\sigma_r)\} \]

Remarks

(1) Theorem 3 explains why the descent statistics of \(G_{p,n} \) appears in the stationary distribution of \((b, n, p) - \text{process}\).
Carries Process and Riffle Shuffle

\[p \in \mathbb{N}, \ b \equiv 1 \ (\text{mod} \ p) \]
\[\{C_r\}_{r=1}^{\infty} : (b, n, p) \ - \text{process} \]
\[\{\sigma_r\}_{r=1}^{\infty} : (b, n, p) \ - \text{shuffle} \]

Theorem 3

\[\{C_r\} \overset{d}{=} \{d(\sigma_r)\} \]

Remarks
(1) Theorem 3 explains why the descent statistics of \(G_{p,n} \) appears in the stationary distribution of \((b, n, p)\) - process.

(2) By Theorem 3, \(\{d(\sigma_r)\}_r \) turns out to be a Markov chain.
What about \((-b)\)-case?

Any \(x \in \mathbb{Z}\) can be expanded uniquely as

\[
x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \cdots + a_0,
\]

\(a_k \in \{d, d + 1, \ldots, d + b - 1\}\).
What about \((-b)\)-case?

Any \(x \in \mathbb{Z}\) can be expanded uniquely as

\[
x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \cdots + a_0,
\]

\(a_k \in \{d, d + 1, \cdots, d + b - 1\}\).

\(\implies\) a notion of carries process using \((-b)\)-expansion
What about \((-b)\)-case?

Any \(x \in \mathbb{Z}\) can be expanded uniquely as

\[
x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \cdots + a_0,
\]

\[
a_k \in \{d, d + 1, \cdots, d + b - 1\}.
\]

\[\implies\] a notion of carries process using \((-b)\)-expansion

\[\implies\] \((-b, n, p)\) - process (by a change of variable)
What about \((-b)\)-case?

Any \(x \in \mathbb{Z}\) can be expanded uniquely as

\[
x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \cdots + a_0,
\]
\[
a_k \in \{d, d+1, \cdots, d+b-1\}.
\]

\(\implies\) a notion of carries process using \((-b)\)-expansion

\(\implies\) \((-b, n, p)\) - process (by a change of variable)

\(\implies\) E-values of \(\tilde{P}_{-b} = \left\{1, \left(-\frac{1}{b}\right), \left(-\frac{1}{b}\right)^2, \cdots, \right\}\)
What about \((-b)\)-case?

Any \(x \in \mathbb{Z}\) can be expanded uniquely as

\[
x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \cdots + a_0,
\]

\(a_k \in \{d, d + 1, \cdots, d + b - 1\}\).

\(\implies\) a notion of carries process using \((-b)\)-expansion

\(\implies\) \((-b, n, p)\)-process (by a change of variable)

\(\implies\) E-values of \(\tilde{P}_{-b} = \left\{1, \left(-\frac{1}{b}\right), \left(-\frac{1}{b}\right)^2, \cdots, \right\}\)

\(\implies\) E-vectors of \(\tilde{P}_{-b} : L_- = L_+, R_- = R_+\).
Dash - Descent on $\mathcal{G}_{p, n}$

(1) “Dash - order” $'$ on \sum:

$$(1, 0) <' (2, 0) <' \cdots <' (n, 0)$$

$$(1, 1) <' (2, 1) <' \cdots <' (n, 1)$$

$$<' \cdots$$

$$(1, p - 1) <' (2, p - 1) <' \cdots <' (n, p - 1)$$
Dash - Descent on $G_{p,n}$

(1) “Dash - order” $<'$ on Σ:

$$(1, 0) <' (2, 0) <' \cdots <' (n, 0)$$

$$(1, 1) <' (2, 1) <' \cdots <' (n, 1)$$

$$<' \cdots$$

$$(1, p - 1) <' (2, p - 1) <' \cdots <' (n, p - 1)$$

(2) “$\sigma \in G_{p,n}$ has a dash-descent at i”

\[\defeq \]

(i) $(\sigma(i), \sigma^c(i)) >' (\sigma(i + 1), \sigma^c(i + 1))$ (1 \(\leq i \leq n - 1\))

(ii) $\sigma^c(n) = p - 1$ (\(i = n \)).
Dash - Descent on $G_{p,n}$

(1) “Dash - order” $<'$ on Σ:

\[(1, 0) <' (2, 0) <' \cdots <' (n, 0) <' (1, 1) <' (2, 1) <' \cdots <' (n, 1) <' \cdots <' (1, p - 1) <' (2, p - 1) <' \cdots <' (n, p - 1)\]

(2) “$\sigma \in G_{p,n}$ has a dash-descent at i”

$\overset{def}{\iff} (i) \ (\sigma(i), \sigma^c(i)) >' (\sigma(i + 1), \sigma^c(i + 1)) (1 \leq i \leq n - 1)$

(ii) $\sigma^c(n) = p - 1$ ($i = n$).

(3) $d'(\sigma)$: the number of dash-descents of $\sigma \in G_{p,n}$.
Dash - Descent on $G_{p,n}$

(1) "Dash - order" \prec' on Σ:

$(1, 0) \prec' (2, 0) \prec' \cdots \prec' (n, 0)$
$\prec' (1, 1) \prec' (2, 1) \prec' \cdots \prec' (n, 1)$
$\prec' \cdots$
$\prec' (1, p - 1) \prec' (2, p - 1) \prec' \cdots \prec' (n, p - 1)$

(2) "$\sigma \in G_{p,n}$ has a dash-descent at i"

$\overset{def}{\iff}$ (i) $(\sigma(i), \sigma^c(i)) >' (\sigma(i + 1), \sigma^c(i + 1))$ ($1 \leq i \leq n - 1$)
(ii) $\sigma^c(n) = p - 1$ ($i = n$).

(3) $d'(\sigma)$: the number of dash-descents of $\sigma \in G_{p,n}$.

$d(\sigma) = d'(\sigma)$ for $p = 1$, $E'_p(n, k) = E_p(n, n - k)$.
Dash - Descent on $G_{p,n}$

(1) "Dash-order" $<'$ on Σ:

$$(1, 0) <' (2, 0) <' \cdots <' (n, 0)$$

$$(1', 1) <' (2', 1) <' \cdots <' (n', 1)$$

$$<' \cdots$$

$$(1', p - 1) <' (2', p - 1) <' \cdots <' (n', p - 1)$$

(2) "$\sigma \in G_{p,n}$ has a dash-descent at i"

def

(i) $(\sigma(i), \sigma^c(i)) >' (\sigma(i + 1), \sigma^c(i + 1)) (1 \leq i \leq n - 1)$

(ii) $\sigma^c(n) = p - 1 (i = n)$.

(3) $d'(\sigma)$: the number of dash-descents of $\sigma \in G_{p,n}$.

$d(\sigma) = d'(\sigma)$ for $p = 1$, $E'_p(n, k) = E_p(n, n - k)$.

Ex. ($p = 3$)

$\begin{align*}
&d' ((5, 0) \downarrow (3, 0) \uparrow (2, 1) \downarrow (4, 2) \uparrow (1, 1) \downarrow) = 3, \\
&d' ((5, 0) \downarrow (3, 0) \uparrow (2, 1) \uparrow (4, 2) \downarrow (1, 1)) = 2.
\end{align*}$
Shuffles for \((-b, n, p)\) - process

\[p \in \mathbb{N}, \ (-b) \equiv 1 \pmod{p} \]

\[\{ C_r^{-} \}_{r=1}^{\infty} : (-b, n, p) - \text{process} \]
Shuffles for \((-b, n, p) - \text{process}\)

\[p \in \mathbb{N}, \; (-b) \equiv 1 \pmod{p} \]
\[\{ C_r^- \}_{r=1}^\infty : \; (-b, n, p) - \text{process} \]
\[\{ \sigma_r \}_{r=1}^\infty : \; (+b, n, p) - \text{shuffle} \]
\[d_r^- := \begin{cases}
 n - d'(\sigma_r) & (r: \text{odd}) \\
 d(\sigma_r) & (r: \text{even})
\end{cases} \]
Shuffles for \((-b, n, p)\) - process

\[p \in \mathbb{N}, \quad (-b) \equiv 1 \pmod{p} \]

\[\{ C_r^- \}_{r=1}^\infty : (-b, n, p) - \text{process} \]

\[\{ \sigma_r \}_{r=1}^\infty : (+b, n, p) - \text{shuffle} \]

\[d_{r}^- := \begin{cases}
 n - d'(\sigma_r) & \text{(r : odd)} \\
 d(\sigma_r) & \text{(r : even)}
\end{cases} \]

Theorem 4

\[\{ C_r^- \}_r \overset{d}{=} \{ d_r^- \}_r \]
Shuffles for \((-b, n, p)\) - process

\[p \in \mathbb{N}, \ (-b) \equiv 1 \pmod{p} \]
\[\{C_r^-\}_{r=1}^\infty : (-b, n, p) - \text{process} \]
\[\{\sigma_r\}_{r=1}^\infty : (+b, n, p) - \text{shuffle} \]
\[d_r^-=\begin{cases} n - d'(\sigma_r) & (r: \text{odd}) \\ d(\sigma_r) & (r: \text{even}) \end{cases} \]

Theorem 4

\[\{C_r^-\}_r \overset{d}{=} \{d_r^-\}_r \]

Remark.
\[\{d_r^-\}_r \text{ turns out to be a Markov chain.} \]
Description by the group algebra

\[\Theta_i := \sum_{d(\sigma^{-1})=i} \sigma \in \mathbb{C}[G_{p,n}] \]
Description by the group algebra

\[\Theta_i := \sum_{d(\sigma^{-1})=i} \sigma \in C[G_{p,n}] \]

\[P_{shuffle} : \text{the trans. prob. matrix of the } (b, n, p) - \text{shuffle.} \]
Description by the group algebra

\[\Theta_i := \sum_{d(\sigma^{-1}) = i} \sigma \in \mathbb{C}[G_{p,n}] \]

\(P_{\text{shuffle}} \): the trans. prob. matrix of the \((b, n, p)\) - shuffle.

Theorem 4

(1) E-values of \(P_{\text{shuffle}} \) = \{1, \(\frac{1}{b} \), \ldots, \(\frac{1}{bn} \)\}.
Description by the group algebra

\[\Theta_i := \sum_{d(\sigma^{-1})=i} \sigma \in \mathbb{C}[G_{p,n}] \]

\(P_{shuffle} \) : the trans. prob. matrix of the \((b, n, p)\) - shuffle.

Theorem 4

1. E-values of \(P_{shuffle} \) = \(\{1, \frac{1}{b}, \ldots, \frac{1}{bn}\} \).

2. E-space corr. to \(b^{-j} = RanL(E_j), E_j = \sum_i R_{ij} \Theta_i \)
Description by the group algebra

\[\Theta_i \define \sum_{d(\sigma^{-1})=i} \sigma \in \mathbb{C}[G_{p,n}] \]

\(P_{\text{shuffle}} \) : the trans. prob. matrix of the \((b, n, p)\) - shuffle.

Theorem 4

(1) E-values of \(P_{\text{shuffle}} = \{1, \frac{1}{b}, \ldots, \frac{1}{bn}\} \).

(2) E-space corr. to \(b^{-j} = \text{Ran}L(E_j), E_j = \sum_i R_{ij} \Theta_i \) with multiplicity \(= \text{tr}L(E_j) = R_{0,j} p^n n! \) (=Stirling Frobenius cycle number)

\(L \) : the left regular representation of \(G_{p,n} \) on \(\mathbb{C}[G_{p,n}] \).
Define e_0, \cdots, e_n such that

$$\sum_i \left(n + \frac{x-1}{p} - i \right) \Theta_i = \sum_{k=0}^n x^{n-k} e_{n-k}$$
Define e_0, \cdots, e_n such that

$$
\sum_{i} \left(n + \frac{x-1}{n} - i \right) \Theta_i = \sum_{k=0}^{n} x^{n-k} e_{n-k}
$$

Theorem 5

$$
\Theta_i = \sum_{k} L_{ki} e_{n-k}, \quad e_{n-k} = \sum_{i} R_{ik} \Theta_i
$$
Let Q : distribution of (b, n, p)-shuffle on $G_{p,n}$, and

$$m := \frac{3}{2} \log_b n + \log_b c,$$

$$\Phi(a) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{x^2}{2}} dx.$$
Let \(Q \) : distribution of \((b, n, p)\)-shuffle on \(G_{p,n} \), and

\[
m := \frac{3}{2} \log_b n + \log_b c,
\]

\[
\Phi(a) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-\frac{x^2}{2}} \, dx.
\]

Theorem 6

\[
\|Q^m - \text{Unif.}\|_{TV} = 1 - 2\Phi \left(-\frac{p}{4\sqrt{3}c}\right) + O(n^{-\frac{1}{2}})
\]

Remark

\[
1 - 2\Phi \left(-\frac{p}{4\sqrt{3}c}\right) \sim \begin{cases} 1 - \frac{p}{2c\sqrt{6\pi}} & (c \to \infty) \\ 1 - \frac{4c\sqrt{3}}{p\sqrt{2\pi}} \exp \left\{-\frac{1}{2} \left(\frac{-p}{4c\sqrt{3}}\right)^2\right\} & (c \to 0) \end{cases}
\]
Limit Theorem

For any $p \geq 1$, and for $n \geq 2$, $k = 0, 1, \cdots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := [x^k](A_{p,n}(x))$$
Limit Theorem

For any $p \geq 1$, and for $n \geq 2$, $k = 0, 1, \cdots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := [x^k] (A_{p,n}(x))$$

Let Y_1, \cdots, Y_n be the independent, uniformly distributed r.v.'s on $[0, 1],$
Limit Theorem

For any $p \geq 1$, and for $n \geq 2$, $k = 0, 1, \cdots, n$, let

$$\begin{bmatrix} n \\ k \end{bmatrix} \equiv \left[x^k \right] (A_{p,n}(x))$$

Let Y_1, \cdots, Y_n be the independent, uniformly distributed r.v.’s on $[0, 1]$, and let $S_n := Y_1 + \cdots + Y_n$.
Limit Theorem

For any $p \geq 1$, and for $n \geq 2$, $k = 0, 1, \ldots, n$, let

$$\langle \frac{n}{k} \rangle := \left[x^k \right] \left(A_{p,n}(x) \right)$$

Let Y_1, \ldots, Y_n be the independent, uniformly distributed r.v.'s on $[0, 1]$, and let $S_n := Y_1 + \cdots + Y_n$.

Theorem 5

$$P \left(S_n \in \frac{1}{p} + [k - 1, k] \right) = \langle \frac{n}{k} \rangle \left(p^n n! \right)^{-1}$$

for $k = 0, 1, \ldots, n$.
Example

(1) $n = 3, \ p = 1$: (Eulerian number)
Example

(1) \(n = 3, \ p = 1 \) : (Eulerian number)
Example

(1) \(n = 3, p = 1 \): (Eulerian number)

\[
\begin{array}{c}
1 & 1 & 4 & 2 \\
\end{array}
\times \frac{1}{3!}
\]
Example

(1) $n = 3, p = 1$: (Eulerian number)

$\frac{1}{3!} \times 3! = 1$

(2) $n = 3, p = 2$: (Macmahon number)

$\frac{1}{2!} \times 3! = 3$
(1) \(n = 3, p = 1 \) : (Eulerian number) \[
\frac{1}{3!}
\]

(2) \(n = 3, p = 2 \) : (Macmahon number)
Example

(1) $n = 3$, $p = 1$: (Eulerian number)

\[
\begin{align*}
&\times \frac{1}{3!} \\
&\times \frac{1}{2^3 \cdot 3!}
\end{align*}
\]

(2) $n = 3$, $p = 2$: (Macmahon number)
Example

(1) $n = 3, p = 1$: (Eulerian number)

\[\times \frac{1}{3!} \]

(2) $n = 3, p = 2$: (Macmahon number)

\[\times \frac{1}{2^3 \cdot 3!} \]
Example

(1) $n = 3, p = 1$: (Eulerian number)

(2) $n = 3, p = 2$: (Macmahon number)
Example

(1) $n = 3, p = 1$: (Eulerian number)

$1 \times \frac{1}{3!}$

(2) $n = 3, p = 2$: (Macmahon number)

$1 \times \frac{1}{2^3 \cdot 3!}$
Idea of Proof

Let X'_1, \cdots, X'_m be independent, uniformly distributed r.v.'s on $[l, l + 1]$, and let $S'_m := X'_1 + \cdots + X'_m$.

Idea of Proof

Let X'_1, \ldots, X'_m be independent, uniformly distributed r.v.'s on $[l, l + 1]$, and let $S'_m := X'_1 + \cdots + X'_m$.

\[
\begin{array}{cccccc}
\text{Carry} & C_k & C_{k-1} & \cdots & C_1 & C_0 \\
\hline
\text{Addends} & X_{1,k} & \cdots & X_{1,2} & X_{1,1} & = X_1^{(k)} \\
& \vdots & \vdots & \vdots & \vdots & \\
& X_{m,k} & \cdots & X_{m,2} & X_{m,1} & = X_m^{(k)} \\
\hline
\text{Sum} & S_k & \cdots & S_2 & S_1
\end{array}
\]
Idea of Proof

Let X'_1, \ldots, X'_m be independent, uniformly distributed r.v.'s on $[l, l + 1]$, and let $S'_m := X'_1 + \cdots + X'_m$.

<table>
<thead>
<tr>
<th>Carry</th>
<th>C_k</th>
<th>C_{k-1}</th>
<th>\cdots</th>
<th>C_1</th>
<th>C_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>$X_{1,k}$</td>
<td>\cdots</td>
<td>$X_{1,2}$</td>
<td>$X_{1,1}$</td>
<td>$= X^{(k)}_1$</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td>$X_{m,k}$</td>
<td>\cdots</td>
<td>$X_{m,2}$</td>
<td>$X_{m,1}$</td>
<td>$= X^{(k)}_m$</td>
</tr>
<tr>
<td>Sum</td>
<td>S_k</td>
<td>\cdots</td>
<td>S_2</td>
<td>S_1</td>
<td></td>
</tr>
</tbody>
</table>

Since $X^{(k)}_i \xrightarrow{k \to \infty} X'_i$, $X^{(k)}_1 + \cdots + X^{(k)}_m \xrightarrow{k \to \infty} S'_m$.
Idea of Proof

Let X'_1, \cdots, X'_m be independent, uniformly distributed r.v.'s on $[l, l + 1]$, and let $S'_m := X'_1 + \cdots + X'_m$.

<table>
<thead>
<tr>
<th>Carry</th>
<th>C_k</th>
<th>C_{k-1}</th>
<th>\cdots</th>
<th>C_1</th>
<th>C_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addends</td>
<td>$X_{1,k}$</td>
<td>\cdots</td>
<td>$X_{1,2}$</td>
<td>$X_{1,1}$</td>
<td>$= X_1^{(k)}$</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td>$X_{m,k}$</td>
<td>\cdots</td>
<td>$X_{m,2}$</td>
<td>$X_{m,1}$</td>
<td>$= X_m^{(k)}$</td>
</tr>
<tr>
<td>Sum</td>
<td>S_k</td>
<td>\cdots</td>
<td>S_2</td>
<td>S_1</td>
<td></td>
</tr>
</tbody>
</table>

Since $X_i^{(k)} \xrightarrow{k \to \infty} X'_i$, $X_1^{(k)} + \cdots + X_m^{(k)} \xrightarrow{k \to \infty} S'_m$.

$\mathbb{P}(C_k = j) = \mathbb{P}(X_1^{(k)} + \cdots + X_m^{(k)} \in [l, l + 1] + j)$
Idea of Proof

Let X'_1, \ldots, X'_m be independent, uniformly distributed r.v.'s on $[l, l + 1]$, and let $S'_m := X'_1 + \cdots + X'_m$.

\[
\begin{array}{cccccc}
\text{Carry} & C_k & C_{k-1} & \cdots & C_1 & C_0 \\
\hline
\text{Addends} & X_{1,k} & \cdots & X_{1,2} & X_{1,1} & = X_1^{(k)} \\
& \vdots & \vdots & \vdots & \vdots & \\
& X_{m,k} & \cdots & X_{m,2} & X_{m,1} & = X_m^{(k)} \\
\hline
\text{Sum} & S_k & \cdots & S_2 & S_1 \\
\end{array}
\]

Since $X_i^{(k)} \xrightarrow{k \to \infty} X'_i$, $X_1^{(k)} + \cdots + X_m^{(k)} \xrightarrow{k \to \infty} S'_m$.

\[
P(C_k = j) = P(X_1^{(k)} + \cdots + X_m^{(k)} \in [l, l + 1] + j) \\
\downarrow \\
\pi(j) \quad P(S'_m \in [l, l + 1] + j)
\]
[1] We study the generalization of the carries process \(\{ \kappa_r \} \), called \((\pm b, n, p)\) - process, and derived the left/right eigenvectors of its transition probability matrix.
Summary

[1] We study the generalization of the carries process \(\{ \kappa_r \}_r \), called \((\pm b, n, p)\) - process, and derived the left/right eigenvectors of its transition probability matrix.

For \(p \in \mathbb{N} \),

(1) Stationary distribution gives the descent statistics of \(G_{p,n} \)
Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing Matrix ($b; n; p$) - process

Riffle Shuffle

($-b; n; p$) - process

Miscellaneous

Application

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

For $p \in \mathbb{N}$,

(1) Stationary distribution gives the descent statistics of $G_{p,n}$

(2) Left eigenvector matrix is equal to the Foulkes character table of $G_{p,n}$
Summary

[1] We study the generalization of the carries process \(\{ \kappa_r \}_r \), called \((\pm b, n, p)\) - process, and derived the left/right eigenvectors of its transition probability matrix.

For \(p \in \mathbb{N} \),

(1) Stationary distribution gives the descent statistics of \(G_{p,n} \)

(2) Left eigenvector matrix is equal to the Foulkes character table of \(G_{p,n} \)

(3) Stirling - Frobenius cycle number and the number of \((b, n, p)\)-shuffles appear in the right eigenvector matrix
Summary

[1] We study the generalization of the carries process \(\{ \kappa_r \}_r \), called \((\pm b, n, p)\)-process, and derived the left/right eigenvectors of its transition probability matrix.

For \(p \in \mathbb{N} \),

1. Stationary distribution gives the descent statistics of \(G_{p,n} \).

2. Left eigenvector matrix is equal to the Foulkes character table of \(G_{p,n} \).

3. Stirling - Frobenius cycle number and the number of \((b, n, p)\)-shuffles appear in the right eigenvector matrix.

[2] We consider a generalization of riffle shuffle \(\{ \sigma_r \} \) on \(G_{p,n} \), called \((b, n, p)\)-shuffle, for \(p \in \mathbb{N} \).
Summary

[1] We study the generalization of the carries process \(\{ \kappa_r \} \), called \((\pm b, n, p)\) - process, and derived the left/right eigenvectors of its transition probability matrix.

For \(p \in \mathbb{N} \),

1. Stationary distribution gives the descent statistics of \(G_{p,n} \)

2. Left eigenvector matrix is equal to the Foulkes character table of \(G_{p,n} \)

3. Stirling - Frobenius cycle number and the number of \((b, n, p)\)-shuffles appear in the right eigenvector matrix

[2] We consider a generalization of riffle shuffle \(\{ \sigma_r \} \) on \(G_{p,n} \), called \((b, n, p)\) - shuffle, for \(p \in \mathbb{N} \).

4. \(\{ \kappa_r \} \overset{d}{=} \{ d(\sigma_r) \} \) or \(\overset{d}{=} \{ d_r \} \), which explains (1).
Summary

[1] We study the generalization of the carries process \(\{ \kappa_r \}_r \), called \((\pm b, n, p) \) - process, and derived the left/right eigenvectors of its transition probability matrix.

For \(p \in \mathbb{N} \),

1. Stationary distribution gives the descent statistics of \(G_{p,n} \)
2. Left eigenvector matrix is equal to the Foulkes character table of \(G_{p,n} \)
3. Stirling - Frobenius cycle number and the number of \((b, n, p) \)-shuffles appear in the right eigenvector matrix

[2] We consider a generalization of riffle shuffle \(\{ \sigma_r \} \) on \(G_{p,n} \), called \((b, n, p) \) - shuffle, for \(p \in \mathbb{N} \).

4. \(\{ \kappa_r \}_r \overset{d}{=} \{ d(\sigma_r) \}_r \) or \(\overset{d}{=} \{ d_r^- \}_r \), which explains (1).

[3] for \(p \notin \mathbb{N} \), no combinatorial meaning is known so far...
References

