(q, t)-hook formula for Tailed Insets and a Macdonald polynomial identity

Masao Ishikawa†

†Okayama University

Algebraic and Enumerative Combinatorics in Okayama
February 23, 2018
Okayama University
Okada presented a conjecture on \((q, t)\)-hook formula for general \(d\)-complete posets in the paper, Soichi Okada, \((q, t)\)-Deformations of multivariate hook product formulae, *J. Algebr. Comb.* (2010) *32*, 399 – 416. We consider the Tailed Inset case, and reduce the conjectured identity to an identity of the Macdonald polynomials rephrasing Okada’s \((q,t)\)-weights via Pieri coefficients of the Macdonald polynomials. Joint work with Frederic Jouhet (University of Lyon I).
In this talk

In this talk

In this talk

In this talk

In this talk

Further references:

Further references:

Additional References

Further references:

Further references:

Further references:

Introduction
Definition

A *partially ordered set* (also called a *poset*) is a set P with a binary relation “\leq” which is *antisymmetric*, *transitive*, and *reflexive*.

Definition (Stanley ’72)

Let P be a poset. A *P-partition* is a map $\pi : P \to \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \implies \pi(x) \geq \pi(y) \text{ in } \mathbb{N},$$

where \mathbb{N} is the set of nonnegative integers. Let $\mathcal{P}(P)$ be the set of P-partitions.

Example (P-partitions)
Definition

A partially ordered set (also called a poset) is a set P with a binary relation “\leq” which is antisymmetric, transitive, and reflexive.

Definition (Stanley '72)

Let P be a poset. A P-partition is a map $\pi : P \rightarrow \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \implies \pi(x) \geq \pi(y) \text{ in } \mathbb{N},$$

where \mathbb{N} is the set of nonnegative integers. Let $\mathcal{A}(P)$ be the set of P-partitions.

Example (P-partitions)

Let A be a partially ordered set (poset) with a binary relation \leq. A P-partition is a map $\pi : P \rightarrow \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \implies \pi(x) \geq \pi(y) \text{ in } \mathbb{N},$$

where \mathbb{N} is the set of nonnegative integers. Let $\mathcal{A}(P)$ be the set of P-partitions.
Definition

A *partially ordered set* (also called a *poset*) is a set P with a binary relation “\leq” which is *antisymmetric*, *transitive*, and *reflexive*.

Definition (Stanley ’72)

Let P be a poset. A *P-partition* is a map $\pi : P \to \mathbb{N}$ satisfying

\[x \leq y \text{ in } P \implies \pi(x) \geq \pi(y) \text{ in } \mathbb{N}, \]

where \mathbb{N} is the set of nonnegative integers. Let $\mathcal{A}(P)$ be the set of P-partitions.

Example (P-partitions)
A **partially ordered set** (also called a **poset**) is a set P with a binary relation "\leq" which is **antisymmetric**, **transitive**, and **reflexive**.

Definition (Stanley ’72)

Let P be a poset. A **P-partition** is a map $\pi : P \rightarrow \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \implies \pi(x) \geq \pi(y) \text{ in } \mathbb{N},$$

where \mathbb{N} is the set of nonnegative integers. Let $A(P)$ be the set of P-partitions.

Example (P-partitions)

![Diagram of a partially ordered set](image)
Definition

A partially ordered set (also called a poset) is a set P with a binary relation “\leq” which is **antisymmetric**, **transitive**, and **reflexive**.

Definition (Stanley ’72)

Let P be a poset. A **P-partition** is a map $\pi : P \rightarrow \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \implies \pi(x) \geq \pi(y) \text{ in } \mathbb{N},$$

where \mathbb{N} is the set of nonnegative integers. Let $\mathcal{A}(P)$ be the set of P-partitions.

Example (P-partitions)

![Diagram of a partially ordered set]

Masao Ishikawa (q, t)-hook formula for Tailed Insets
Definition

A *partially ordered set* (also called a *poset*) is a set P with a binary relation “\leq” which is *antisymmetric*, *transitive*, and *reflexive*.

Definition (Stanley ’72)

Let P be a poset. A *P-partition* is a map $\pi : P \rightarrow \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \quad \implies \quad \pi(x) \geq \pi(y) \text{ in } \mathbb{N},$$

where \mathbb{N} is the set of nonnegative integers. Let $\mathcal{A}(P)$ be the set of P-partitions.

Example (P-partitions)

1 0

1 2

Masao Ishikawa
(q, t)-hook formula for Tailed Insets
Definition

A *partially ordered set* (also called a *poset*) is a set P with a binary relation “\leq” which is *antisymmetric*, *transitive*, and *reflexive*.

Definition (Stanley ’72)

Let P be a poset. A *P-partition* is a map $\pi : P \rightarrow \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \implies \pi(x) \geq \pi(y) \text{ in } \mathbb{N},$$

where \mathbb{N} is the set of nonnegative integers. Let $\mathcal{A}(P)$ be the set of P-partitions.

Example (P-partitions)

![Graph of a poset with elements 0, 1, and 2 connected by edges]

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Definition

A *partially ordered set* (also called a *poset*) is a set P with a binary relation "\leq" which is *antisymmetric*, *transitive*, and *reflexive*.

Definition (Stanley ’72)

Let P be a poset. A *P-partition* is a map $\pi : P \rightarrow \mathbb{N}$ satisfying

$$x \leq y \text{ in } P \implies \pi(x) \geq \pi(y) \text{ in } \mathbb{N},$$

where \mathbb{N} is the set of nonnegative integers. Let $\mathcal{A}(P)$ be the set of P-partitions.

Example (P-partitions)

![Diagram of a partial order with elements 1, 0, 2, and 1, 2 connected by arrows indicating the order]

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
(Shifted) diagrams

Definition

A *partition* is a nonincreasing sequence \(\lambda = (\lambda_1, \lambda_2, \ldots) \) of nonnegative integers with finitely many \(\lambda_i \) unequal to zero. The *length* and *weight* of \(\lambda \), denoted by \(\ell(\lambda) \) and \(|\lambda| \), are the number and sum of the non-zero \(\lambda_i \) respectively. A *strict partition* is a partition in which its parts are strictly decreasing. If \(\lambda \) is a partition (resp. strict partition), then its *diagram* \(D(\lambda) \) (resp. *shifted diagram* \(S(\lambda) \)) is defined by

\[
D(\lambda) = \{ (i, j) \in \mathbb{Z}^2 : 1 \leq j \leq \lambda_i \}
\]
\[
S(\lambda) = \{ (i, j) \in \mathbb{Z}^2 : i \leq j \leq \lambda_i + i - 1 \}.
\]

Example (The diagram and shifted diagram for \(\lambda = (4, 3, 1) \)).

\[
D(\lambda) = \begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]
\[
S(\lambda) = \begin{array}{ccc}
1 & 2 & 3 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]
A partition is a nonincreasing sequence \(\lambda = (\lambda_1, \lambda_2, \ldots) \) of nonnegative integers with finitely many \(\lambda_i \) unequal to zero. The length and weight of \(\lambda \), denoted by \(\ell(\lambda) \) and \(|\lambda| \), are the number and sum of the non-zero \(\lambda_i \) respectively. A strict partition is a partition in which its parts are strictly decreasing. If \(\lambda \) is a partition (resp. strict partition), then its diagram \(D(\lambda) \) (resp. shifted diagram \(S(\lambda) \)) is defined by

\[
D(\lambda) = \{(i,j) \in \mathbb{Z}^2 : 1 \leq j \leq \lambda_i\}
\]
\[
S(\lambda) = \{(i,j) \in \mathbb{Z}^2 : i \leq j \leq \lambda_i + i - 1\}.
\]

Example (The diagram and shifted diagram for \(\lambda = (4, 3, 1) \))

\[D(\lambda) = \begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\end{array}\]
\[S(\lambda) = \begin{array}{ccc}
\cdot & \cdot & \cdot \\
\end{array}\]
A partition is a nonincreasing sequence \(\lambda = (\lambda_1, \lambda_2, \ldots) \) of nonnegative integers with finitely many \(\lambda_i \) unequal to zero. The length and weight of \(\lambda \), denoted by \(\ell(\lambda) \) and \(|\lambda| \), are the number and sum of the non-zero \(\lambda_i \) respectively. A strict partition is a partition in which its parts are strictly decreasing. If \(\lambda \) is a partition (resp. strict partition), then its diagram \(D(\lambda) \) (resp. shifted diagram \(S(\lambda) \)) is defined by

\[
D(\lambda) = \{ (i, j) \in \mathbb{Z}^2 : 1 \leq j \leq \lambda_i \}
\]

\[
S(\lambda) = \{ (i, j) \in \mathbb{Z}^2 : i \leq j \leq \lambda_i + i - 1 \}.
\]

Example (The diagram and shifted diagram for \(\lambda = (4, 3, 1) \))

\[
D(\lambda) = \begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet
\end{array} \quad \quad S(\lambda) = \begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet
\end{array}
\]
A partition is a nonincreasing sequence $\lambda = (\lambda_1, \lambda_2, \ldots)$ of nonnegative integers with finitely many λ_i unequal to zero. The length and weight of λ, denoted by $\ell(\lambda)$ and $|\lambda|$, are the number and sum of the non-zero λ_i respectively. A strict partition is a partition in which its parts are strictly decreasing. If λ is a partition (resp. strict partition), then its diagram $D(\lambda)$ (resp. shifted diagram $S(\lambda)$) is defined by

$$D(\lambda) = \{(i, j) \in \mathbb{Z}^2 : 1 \leq j \leq \lambda_i\}$$

$$S(\lambda) = \{(i, j) \in \mathbb{Z}^2 : i \leq j \leq \lambda_i + i - 1\}.$$
Definition

A partition is a nonincreasing sequence \(\lambda = (\lambda_1, \lambda_2, \ldots) \) of nonnegative integers with finitely many \(\lambda_i \) unequal to zero. The length and weight of \(\lambda \), denoted by \(\ell(\lambda) \) and \(|\lambda| \), are the number and sum of the non-zero \(\lambda_i \) respectively. A strict partition is a partition in which its parts are strictly decreasing. If \(\lambda \) is a partition (resp. strict partition), then its diagram \(D(\lambda) \) (resp. shifted diagram \(S(\lambda) \)) is defined by

\[
D(\lambda) = \{ (i, j) \in \mathbb{Z}^2 : 1 \leq j \leq \lambda_i \} \\
S(\lambda) = \{ (i, j) \in \mathbb{Z}^2 : i \leq j \leq \lambda_i + i - 1 \}.
\]

Example (The diagram and shifted diagram for \(\lambda = (4, 3, 1) \))

\[
D(\lambda) = \begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \\
\bullet & & & \\
\end{array} \quad S(\lambda) = \begin{array}{cccc}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \\
\bullet & & & \\
\end{array}
\]
A diagram $D(\lambda)$ or a shifted diagram $S(\lambda)$ is regarded as a poset by defining its order structure by

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$

By this order the poset represented by a diagram $P = D(\lambda)$ is called a *shape*, and the posets $P = S(\lambda)$ is called *shifted shapes*.

Example (The shape and shifted shape for $\lambda = (4, 3, 1)$)
(Shifted) shapes

Definition

A diagram $D(\lambda)$ or a shifted diagram $S(\lambda)$ is regarded as a poset by defining its order structure by

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$

By this order the poset represented by a diagram $P = D(\lambda)$ is called a shape, and the posets $P = S(\lambda)$ is called shifted shapes.

Example (The shape and shifted shape for $\lambda = (4, 3, 1)$)

$D(\lambda) =$

$S(\lambda) =$
(Shifted) shapes

Definition

A diagram $D(\lambda)$ or a shifted diagram $S(\lambda)$ is regarded as a poset by defining its order structure by

$$\quad (i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$

By this order the poset represented by a diagram $P = D(\lambda)$ is called a *shape*, and the posets $P = S(\lambda)$ is called *shifted shapes*.

Example (The shape and shifted shape for $\lambda = (4, 3, 1)$)

$$D(\lambda) = \quad S(\lambda) =$$

\[\begin{array}{c}
\end{array}\]
For a partition (resp. strict partition) \(\lambda \) and a cell \((i, j) \in D(\lambda)\) (resp. \(S(\lambda)\)), the **hook at** \((i, j)\) in \(D(\lambda)\) (resp. \(S(\lambda)\)), is defined by

\[
H_{D(\lambda)}(i, j) = \{(i, j)\} \cup \{(i, l) \in D(\lambda) : l > j\} \cup \{(k, j) \in D(\lambda) : k > i\}
\]

(resp.

\[
H_{S(\lambda)}(i, j) = \{(i, j)\} \cup \{(i, l) \in S(\lambda) : l > j\}
\]

\[
\cup \{(k, j) \in D(\lambda) : k > i\} \cup \{(j + 1, l) \in S(\lambda) : l > j\}.
\]

Example (The hook at \((1, 2)\) in \(D(\lambda)\) and \(S(\lambda)\) for \(\lambda = (4, 3, 1)\))

\[D(\lambda) = \quad S(\lambda) =\]
For a partition (resp. strict partition) λ and a cell $(i, j) \in D(\lambda)$ (resp. $S(\lambda)$), the hook at (i, j) in $D(\lambda)$ (resp. $S(\lambda)$), is defined by

$$H_{D(\lambda)}(i, j) = \{(i, j)\} \cup \{(i, l) \in D(\lambda) : l > j\} \cup \{(k, j) \in D(\lambda) : k > i\}$$

(resp.

$$H_{S(\lambda)}(i, j) = \{(i, j)\} \cup \{(i, l) \in S(\lambda) : l > j\}$$

$$\cup \{(k, j) \in D(\lambda) : k > i\} \cup \{(j + 1, l) \in S(\lambda) : l > j\}.$$

Example (The hook at $(1, 2)$ in $D(\lambda)$ and $S(\lambda)$ for $\lambda = (4, 3, 1)$)

$$D(\lambda) = \begin{array}{cccc}
4 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$

$$S(\lambda) = \begin{array}{cccc}
5 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
\end{array}$$
Content and hook length

Definition

The hook length at \((i, j)\) is defined by \(h_{D(\lambda)}(i, j) = |H_{D(\lambda)}(i, j)|\) (resp. \(h_{S(\lambda)}(i, j) = |H_{S(\lambda)}(i, j)|\)). Further \(c(i, j) = j - i\) is called the content at \((i, j)\).

Example (The hook lengths in \(D(\lambda)\) and \(S(\lambda)\) for \(\lambda = (4, 3, 1)\))

\[
D(\lambda) = \begin{array}{ccc}
6 & 4 & 3 \\
4 & 2 & 1 \\
1 & & \\
\end{array}
\quad S(\lambda) = \begin{array}{ccc}
7 & 5 & 4 \\
4 & 3 & 1 \\
1 & & \\
\end{array}
\]

Example (The contents in \(D(\lambda)\) and \(S(\lambda)\) for \(\lambda = (4, 3, 1)\))

\[
D(\lambda) = \begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & & \\
\end{array}
\quad S(\lambda) = \begin{array}{ccc}
0 & 1 & 2 \\
0 & 1 & 2 \\
0 & & \\
\end{array}
\]
Content and hook length

Definition

The hook length at \((i, j)\) is defined by \(h_D(\lambda)(i, j) = |H_D(\lambda)(i, j)|\) (resp. \(h_S(\lambda)(i, j) = |H_S(\lambda)(i, j)|\)). Further \(c(i, j) = j - i\) is called the content at \((i, j)\).

Example (The hook lengths in \(D(\lambda)\) and \(S(\lambda)\) for \(\lambda = (4, 3, 1)\))

\[
D(\lambda) = \begin{array}{ccc}
6 & 4 & 3 \\
4 & 2 & 1 \\
1 & \end{array} \quad S(\lambda) = \begin{array}{ccc}
7 & 5 & 4 \\
4 & 3 & 1 \\
1 & \end{array}
\]

Example (The contents in \(D(\lambda)\) and \(S(\lambda)\) for \(\lambda = (4, 3, 1)\))

\[
D(\lambda) = \begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & 1 \\
-2 & \end{array} \quad S(\lambda) = \begin{array}{ccc}
0 & 1 & 2 \\
0 & 1 & 2 \\
0 & \end{array}
\]
Content and hook length

Definition

The **hook length at** \((i, j)\) is defined by \(h_D(\lambda)(i, j) = |H_D(\lambda)(i, j)|\) (resp. \(h_S(\lambda)(i, j) = |H_S(\lambda)(i, j)|\)). Further \(c(i, j) = j - i\) is called the **content** at \((i, j)\).

Example (The hook lengths in \(D(\lambda)\) **and** \(S(\lambda)\) **for** \(\lambda = (4, 3, 1)\))

\[
D(\lambda) = \begin{array}{cccc}
6 & 4 & 3 & 1 \\
4 & 2 & 1 & \\
1 & & & \\
\end{array} \quad S(\lambda) = \begin{array}{cccc}
7 & 5 & 4 & 2 \\
4 & 3 & 1 & \\
1 & & & \\
\end{array}
\]

Example (The contents in \(D(\lambda)\) **and** \(S(\lambda)\) **for** \(\lambda = (4, 3, 1)\))

\[
D(\lambda) = \begin{array}{cccc}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & \\
-2 & & & \\
\end{array} \quad S(\lambda) = \begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 1 & 2 & \\
0 & & & \\
\end{array}
\]
Theorem (Frame-Robinson-Thrall ’54, Stanley ’72))

If $P = D(\lambda)$ or $S(\lambda)$, then we have

$$
\sum_{\pi \in \mathcal{A}(P)} z^{\lvert \pi \rvert} = \prod_{(i,j) \in P} \frac{1}{1 - z^{h_P(i,j)}},
$$

where the sum on the left-hand side runs over all P-partitions, and $|\pi| = \sum_{x \in P} \pi(x)$.

Example (An example of P-partition)

$$
\pi = \begin{array}{cccc}
0 & 0 & 1 & 2 \\
2 & 3 & 4 & \\
4 & & & \\
\end{array}
$$

$|\pi| = 16$

$z^{|\pi|} = z^{16}$
One Variable Hook Length Formula

Theorem (Frame-Robinson-Thrall '54, Stanley '72))

If \(P = D(\lambda) \) or \(S(\lambda) \), then we have

\[
\sum_{\pi \in \mathcal{A}(P)} z^{\left| \pi \right|} = \prod_{(i,j) \in P} \frac{1}{1 - z^{h_P(i,j)}},
\]

where the sum on the left-hand side runs over all \(P \)-partitions, and \(\left| \pi \right| = \sum_{x \in P} \pi(x) \).

Example (An example of \(P \)-partition)

\[
\pi = \begin{array}{cccc}
0 & 0 & 1 & 2 \\
2 & 3 & 4 & \\
4 & & & \\
\end{array}
\]

\(\left| \pi \right| = 16 \)

\(z^{\left| \pi \right|} = z^{16} \)
Example of One Variable Hook Length Formula

Example (The shape for $\lambda = (4, 3, 1)$)

$$D(\lambda) = \pi_{11}\pi_{12}\pi_{13}\pi_{14}$$

$$\pi_{21}\pi_{22}\pi_{23}$$

$$\pi_{31}$$

$$D(\lambda) = \begin{array}{c}
6 \\ 4 \\ 2 \\ 1 \\
\end{array}$$

$$\begin{array}{c}
31 \\ 4 \\ 2 \\ 1 \\
\end{array}$$

$$\sum_{\pi \in \mathcal{A}(D(\lambda))} z \sum_{(i, j) \in D(\lambda)} \pi_{ij} = \frac{1}{(1 - z)^3(1 - z^2)(1 - z^3)(1 - z^4)^2(1 - z^6)}.$$
Theorem (Gansner ’81, Sagan ’82)

Let \(\ldots, z_{-1}, z_0, z_1, z_2, \ldots \) be variables. If \(P = D(\lambda) \) or \(S(\lambda) \), then we have

\[
\sum_{\pi \in \mathcal{P}(P)} z^\pi = \prod_{(i,j) \in P} \frac{1}{1 - z[H_P(i,j)]},
\]

where the sum on the left-hand side runs over all \(P \)-partitions, \(z^\pi = \prod_{(i,j) \in P} z_{c(i,j)}^{\pi_{ij}} \) and \(z[H] = \prod_{(i,j) \in H} z_{c(i,j)} \) for any finite subset \(H \subset \mathbb{Z}^2 \). (Gansner used Hillman-Grassl ’76 algorithm.)

Example (An example of \(P \)-partition)

\[
\begin{align*}
\pi &= \begin{array}{cccc}
0 & 0 & 1 & 2 \\
2 & 3 & 4 \\
4 & & & \\
\end{array} \\

z^\pi &= z_2^4 z_0^2 z_1 z_2^3 z_3^4 z_2 z_2^2
\end{align*}
\]
Theorem (Gansner '81, Sagan '82)

Let \(\ldots, z_{-1}, z_0, z_1, z_2, \ldots \) be variables. If \(P = D(\lambda) \) or \(S(\lambda) \), then we have

\[
\sum_{\pi \in \mathcal{P}(P)} z^\pi = \prod_{(i,j) \in P} \frac{1}{1 - z[H_P(i, j)]},
\]

where the sum on the left-hand side runs over all \(P \)-partitions,

\[
z^\pi = \prod_{(i,j) \in P} z_c(i,j)^{\pi_{i,j}} \quad \text{and} \quad z[H] = \prod_{(i,j) \in H} z_c(i,j)
\]

for any finite subset \(H \subset \mathbb{Z}^2 \). (Gansner used Hillman-Grassl '76 algorithm.)

Example (An example of \(P \)-partition)

\[
\pi = \begin{array}{cccc}
2 & 3 & 4 \\
4 & & & \\
0 & 0 & 1 & 2 \\
\end{array}
\]

\[
z^\pi = z_2^4 z_{-1}^2 z_0^3 z_1^4 z_2 z_3^2
\]
Example of Multivariate Hook Length Formula

Example (The shape for $\lambda = (4, 3, 1)$)

$$D(\lambda) = \sum_{\pi \in \mathcal{A}(P)} z_{-2}^{\pi_{31}} z_{-1}^{\pi_{21}} z_0^{\pi_{11}+\pi_{22}} z_1^{\pi_{12}+\pi_{23}} z_2^{\pi_{13}} z_3^{\pi_{14}}$$

$$= \frac{1}{(1 - z_{-2}z_{-1}z_0z_1z_2z_3)(1 - z_0z_1z_2z_3)(1 - z_1z_2z_3)(1 - z_3)} \times \frac{1}{(1 - z_{-2}z_{-1}z_0z_1)(1 - z_0z_1)(1 - z_1)(1 - z_{-2})}.$$
The Cauchy formula and the Littlewood formula

Theorem (The Cauchy formula)

Let \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) are \(n \)-tuples of variables. Then we have

\[
\sum_{\lambda} s_{\lambda}(x)s_{\lambda}(y) = \prod_{i,j=1}^{n} \frac{1}{1 - x_i y_j}.
\]

Theorem (The Littlewood formula)

Let \(x = (x_1, \ldots, x_n) \) is an \(n \)-tuples of variables. Then we have

\[
\sum_{\lambda} s_{\lambda}(x) = \prod_{i=1}^{n} \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j}.
\]
The Cauchy formula and the Littlewood formula

Theorem (The Cauchy formula)

Let $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$ are n-tuples of variables. Then we have

$$\sum_{\lambda} s_{\lambda}(\mathbf{x}) s_{\lambda}(\mathbf{y}) = \prod_{i,j=1}^{n} \frac{1}{1 - x_i y_j}.$$

Theorem (The Littlewood formula)

Let $\mathbf{x} = (x_1, \ldots, x_n)$ is an n-tuples of variables. Then we have

$$\sum_{\lambda} s_{\lambda}(\mathbf{x}) = \prod_{i=1}^{n} \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j}.$$
Conjecture (Okada ’10)

If \(P \) is a \(d \)-complete poset, then we have

\[
\sum_{\pi \in \mathcal{P}(P)} W_P(\pi; q, t) z^\pi = \prod_{(i,j) \in P} F(z[H_P(i,j)]; q, t),
\]

where the sum on the left-hand side runs over all \(P \)-partitions, and

\[
F(x; q, t) = \frac{(tx; q)_\infty}{(x; q)_\infty}.
\]

Example (The shape for \(\lambda = (4, 3, 1) \))

\[
D(\lambda) = \begin{array}{cccc}
\pi_{11} \pi_{12} \pi_{13} \pi_{14} \\
\pi_{21} \pi_{22} \pi_{23} \\
\pi_{31}
\end{array} \quad D(\lambda) = \begin{array}{cccc}
Z_0 & Z_1 & Z_2 & Z_3 \\
Z_{-1} & Z_0 & Z_1 & Z_2
\end{array}
\]
Example (The shape for $\lambda = (4, 3, 1)$)

$$D(\lambda) = D(\lambda) =$$

$$\sum_{\pi \in \mathcal{A}(P)} W_P(\pi; q, t) z_{-2}^{\pi_{31}} z_{-1}^{\pi_{21}} z_0^{\pi_{11} + \pi_{22}} z_1^{\pi_{12} + \pi_{23}} z_2^{\pi_{13}} z_3^{\pi_{14}}$$

$$= F(z_{-2}z_{-1}z_0z_1z_2z_3; q, t) F(z_0z_1z_2z_3; q, t) F(z_1z_2z_3; q, t)$$

$$\times F(z_3; q, t) F(z_{-2}z_{-1}z_0z_1; q, t) F(z_0z_1; q, t) F(z_1; q, t) F(z_{-2}; q, t).$$
Current situation

1. If P is (1) Shape or (2) Shifted Shape, the (q, t)-hook formula is proven in the paper by Okada (2010).

2. If P is (3) Bird or (6) Banner, the (q, t)-hook formula is proven by me (not yet published) 2013. We use Gasper’s identity.

3. This talk is about the Tailed Inset case (not yet completed).
If P is (1) Shape or (2) Shifted Shape, the (q, t)-hook formula is proven in the paper by Okada(2010).

If P is (3) Bird or (6) Banner, the (q, t)-hook formula is proven by me (not yet published) 2013. We use Gasper’s identity.

This talk is about the Tailed Inset case (not yet completed).
Current situation

1. If P is (1) Shape or (2) Shifted Shape, the (q, t)-hook formula is proven in the paper by Okada (2010).

2. If P is (3) Bird or (6) Banner, the (q, t)-hook formula is proven by me (not yet published) 2013. We use Gasper’s identity.

3. This talk is about the Tailed Inset case (not yet completed).
Current situation

1. If P is (1) Shape or (2) Shifted Shape, the (q, t)-hook formula is proven in the paper by Okada (2010).
2. If P is (3) Bird or (6) Banner, the (q, t)-hook formula is proven by me (not yet published) 2013. We use Gasper’s identity.
3. This talk is about the Tailed Inset case (not yet completed).
The Cauchy type identity for Macdonald polynomials

Theorem

Let $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are n-tuples of variables. Then we have

$$
\sum_{\lambda} P_{\lambda}(x; q, t) Q_{\lambda}(y; q, t) = \prod_{i,j=1}^{n} F(x_iy_j; q, t).
$$
Warnaar’s formula

Theorem (Warnaar ’06)

\[\sum_{\lambda} w^{r(\lambda)} \mathcal{H}_{\lambda}(q, t) \mathcal{P}_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(1 + wx_i)(qtx_i^2; q^2)_\infty}{(x_i^2; q^2)_\infty} \prod_{i < j} \frac{(tx_ix_j; q)_\infty}{(x_ix_j; q)_\infty}, \]

where \(r(\lambda) \) is the number of rows of odd length.
Warnaar’s formula

Theorem (Warnaar ’06)

\[
\sum_{\lambda} w^{r(\lambda)} b_{\lambda}^{oa}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(1 + wx_i)(qtx_i^2; q^2)_\infty}{(x_i^2; q^2)_\infty} \prod_{i < j} \frac{(tx_i x_j; q)_\infty}{(x_i x_j; q)_\infty},
\]

where \(r(\lambda) \) is the number of rows of odd length.

Corollary

\[
\sum_{\lambda} w^{r(\lambda')} b_{\lambda}^{el}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(twx_i; q)_\infty}{(wx_i; q)_\infty} \prod_{i < j} \frac{(tx_i x_j; q)_\infty}{(x_i x_j; q)_\infty}.
\]

Proof. Applying the \(F \)-algebra homomorphism \(w_{q,t} \) to the above identity.

Further Corollary

\[
\sum_{\lambda} w^{r(\lambda')} b_{\lambda}^{el}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(twx_i; q)_\infty}{(wx_i; q)_\infty} \prod_{i < j} \frac{(tx_i x_j; q)_\infty}{(x_i x_j; q)_\infty}.
\]

Masao Ishikawa

\((q, t)\)-hook formula for Tailed Insets
Theorem (Warnaar ’06)

\[\sum_{\lambda} w^{r(\lambda)} b^{oa}_{\lambda}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(1 + wx_i)(qt x_i^2; q^2)_\infty}{(x_i^2; q^2)_\infty} \prod_{i < j} \frac{(tx_i x_j; q)_\infty}{(x_i x_j; q)_\infty}, \]

where \(r(\lambda) \) is the number of rows of odd length.

Corollary

\[\sum_{\lambda} w^{r(\lambda')} b^{el}_{\lambda}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(tw x_i; q)_\infty}{(wx_i; q)_\infty} \prod_{i < j} \frac{(tx_i x_j; q)_\infty}{(x_i x_j; q)_\infty}. \]

Proof. Applying the \(\mathbb{F} \)-algebra homomorphism \(w_{q, t} \) to the above identity.

Further Corollary

\[\sum_{\lambda} w^{r(\lambda')} b^{el}_{\lambda}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(tw x_i; q)_\infty}{(wx_i; q)_\infty} \prod_{i < j} \frac{(tx_i x_j; q)_\infty}{(x_i x_j; q)_\infty}. \]
Warnaar’s formula

Theorem (Warnaar ’06)

\[
\sum_{\lambda} w^{r(\lambda)} b^{oa}_{\lambda}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(1 + wx_i)(qtx_i^2; q^2)_{\infty}}{(x_i^2; q^2)_{\infty}} \prod_{i < j} \frac{(x_ix_j; q)_{\infty}}{(x_ix_j; q)_{\infty}},
\]

where \(r(\lambda)\) is the number of rows of odd length.

Further Corollary

\[
\sum_{\lambda} w^{\frac{|\lambda| + r(\lambda')}{2}} b^{el}_{\lambda}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(twx_i; q)_{\infty}}{(wx_i; q)_{\infty}} \prod_{i < j} \frac{(twx_ix_j; q)_{\infty}}{(wx_ix_j; q)_{\infty}},
\]

\[
\sum_{\lambda} w^{\frac{|\lambda| - r(\lambda')}{2}} b^{el}_{\lambda}(q, t) P_{\lambda}(x; q, t) = \prod_{i \geq 1} \frac{(tx_i; q)_{\infty}}{(x_i; q)_{\infty}} \prod_{i < j} \frac{(twx_ix_j; q)_{\infty}}{(wx_ix_j; q)_{\infty}}.
\]
d-complete poset
The d-complete posets arise from the dominant minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras.

Proctor gave completely combinatorial description of d-complete poset, which is a graded poset with d-complete coloring.

Proctor showed that any d-complete poset can be obtained from the 15 irreducible classes by slant-sum.

The d-complete coloring is important for the multivariate generating function. The content should be replaced by color for d-complete posets.

Okada’s (q, t)-weight $W_P(\pi; q, t)$

Hook monomials for d-complete posets
The d-complete posets arise from the dominant minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras.

Proctor gave completely combinatorial description of d-complete poset, which is a graded poset with d-complete coloring.

Proctor showed that any d-complete poset can be obtained from the 15 irreducible classes by slant-sum.

The d-complete coloring is important for the multivariate generating function. The content should be replaced by color for d-complete posets.

Okada’s (q, t)-weight $W_P(\pi; q, t)$

Hook monomials for d-complete posets
The d-complete posets arise from the dominant minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras.

Proctor gave completely combinatorial description of d-complete poset, which is a graded poset with d-complete coloring.

Proctor showed that any d-complete poset can be obtained from the 15 irreducible classes by slant-sum.

The d-complete coloring is important for the multivariate generating function. The content should be replaced by color for d-complete posets.

Okada’s (q, t)-weight $W_P(\pi; q, t)$

Hook monomials for d-complete posets
The d-complete posets arise from the dominant minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras.

Proctor gave completely combinatorial description of d-complete poset, which is a graded poset with d-complete coloring.

Proctor showed that any d-complete poset can be obtained from the 15 irreducible classes by slant-sum.

The d-complete coloring is important for the multivariate generating function. The content should be replaced by color for d-complete posets.

Okada’s (q, t)-weight $W_P(\pi; q, t)$

Hook monomials for d-complete posets
The d-complete posets arise from the dominant minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras.

Proctor gave completely combinatorial description of d-complete poset, which is a graded poset with d-complete coloring.

Proctor showed that any d-complete poset can be obtained from the 15 irreducible classes by slant-sum.

The d-complete coloring is important for the multivariate generating function. The content should be replaced by color for d-complete posets.

Okada’s (q, t)-weight $W_P(\pi; q, t)$

Hook monomials for d-complete posets
Contents of this section

1. The \(d \)-complete posets arise from the dominant minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras.

2. Proctor gave completely combinatorial description of \(d \)-complete poset, which is a graded poset with \(d \)-complete coloring.

3. Proctor showed that any \(d \)-complete poset can be obtained from the 15 *irreducible* classes by *slant-sum*.

4. The \emph{\(d \)-complete coloring} is important for the multivariate generating function. The content should be replaced by color for \(d \)-complete posets.

5. Okada’s \((q, t)\)-weight \(W_P(\pi; q, t) \)

6. Hook monomials for \(d \)-complete posets
The d-complete posets arise from the dominant minuscule heaps of the Weyl groups of simply-laced Kac-Moody Lie algebras.

Proctor gave completely combinatorial description of d-complete poset, which is a graded poset with d-complete coloring.

Proctor showed that any d-complete poset can be obtained from the 15 *irreducible* classes by *slant-sum*.

The *d-complete coloring* is important for the multivariate generating function. The content should be replaced by color for d-complete posets.

Okada’s (q, t)-weight $W_P(\pi; q, t)$

Hook monomials for d-complete posets
Definition

The double-tailed diamond poset $d_k(1)$ is the poset depicted below:

A d_k-interval is an interval isomorphic to $d_k(1)$.

A d_k^--interval ($k \geq 4$) is an interval isomorphic to $d_k(1) - \{\text{top}\}$.

A d_3^--interval consists of three elements x, y and w such that w is covered by x and y.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Definition

The double-tailed diamond poset $d_k(1)$ is the poset depicted below:

A d_k-interval is an interval isomorphic to $d_k(1)$.
A d_k^--interval $(k \geq 4)$ is an interval isomorphic to $d_k(1) - \{\text{top}\}$.
A d_3^--interval consists of three elements x, y and w such that w is covered by x and y.

Masao Ishikawa (q, t)-hook formula for Tailed Insets
The **double-tailed diamond poset** $d_k(1)$ is the poset depicted below:

A d_k-interval is an interval isomorphic to $d_k(1)$.
A d_k^--interval ($k \geq 4$) is an interval isomorphic to $d_k(1) - \{\text{top}\}$.
A d_3^--interval consists of three elements x, y and w such that w is covered by x and y.

Masao Ishikawa
(q, t)-hook formula for Tailed Insets
The **double-tailed diamond poset** $d_k(1)$ is the poset depicted below:

A d_k-interval is an interval isomorphic to $d_k(1)$.

A d_k^--interval ($k \geq 4$) is an interval isomorphic to $d_k(1) - \{\text{top}\}$.

A d_3^--interval consists of three elements x, y and w such that w is covered by x and y.

\[\text{top} \quad k - 2 \quad \text{side} \quad \text{side} \quad k - 2 \quad \text{bottom}\]
The double-tailed diamond poset $d_k(1)$ is the poset depicted below:

A d_k-interval is an interval isomorphic to $d_k(1)$.

A d_k^--interval ($k \geq 4$) is an interval isomorphic to $d_k(1) - \{\text{top}\}$.

A d_3^--interval consists of three elements x, y and w such that w is covered by x and y.

Masao Ishikawa (q, t)-hook formula for Tailed Insets
Definition of d-complete poset

A poset P is d-complete if it satisfies the following three conditions for every $k \geq 3$:

1. If I is a d_k^--interval, then there exists an element v such that v covers the maximal elements of I and $I \cup \{v\}$ is a d_k-interval.

2. If $I = [w, v]$ is a d_k-interval and the top v covers u in P, then $u \in I$.

3. There are no d_k^--intervals which differ only in the minimal elements.
A poset P is \textit{d-complete} if it satisfies the following three conditions for every $k \geq 3$:

1. If I is a d_k^--interval, then there exists an element v such that v covers the maximal elements of I and $I \cup \{v\}$ is a d_k-interval.

2. If $I = [w, v]$ is a d_k-interval and the top v covers u in P, then $u \in I$.

3. There are no d_k^--intervals which differ only in the minimal elements.
A poset P is d-complete if it satisfies the following three conditions for every $k \geq 3$:

1. If I is a d_k^--interval, then there exists an element v such that v covers the maximal elements of I and $I \cup \{v\}$ is a d_k-interval.

2. If $I = [w, v]$ is a d_k-interval and the top v covers u in P, then $u \in I$.

3. There are no d_k^--intervals which differ only in the minimal elements.
A poset P is **d-complete** if it satisfies the following three conditions for every $k \geq 3$:

1. If I is a d_k^--interval, then there exists an element v such that v covers the maximal elements of I and $I \cup \{v\}$ is a d_k-interval.
2. If $I = [w, v]$ is a d_k-interval and the top v covers u in P, then $u \in I$.
3. There are no d_k^--intervals which differ only in the minimal elements.
Properties of \(d \)-complete posets

Fact

If \(P \) is a connected \(d \)-complete poset, then

(a) \(P \) has a unique maximal element.

(b) \(P \) is graded, i.e., there exists a rank function \(r : P \to \mathbb{N} \) such that \(r(x) = r(y) + 1 \) if \(x \) covers \(y \).

Fact

(a) Any connected \(d \)-complete poset is uniquely decomposed into a slant sum of one-element posets and slant-irreducible \(d \)-complete posets.

Properties of d-complete posets

Fact

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is *graded*, i.e., there exists a rank function $r : P \to \mathbb{N}$ such that $r(x) = r(y) + 1$ if x covers y.

Fact

(a) Any connected d-complete poset is uniquely decomposed into a slant sum of one-element posets and slant-irreducible d-complete posets.

Properties of d-complete posets

Fact

If P is a connected d-complete poset, then
(a) P has a unique maximal element.
(b) P is graded, i.e., there exists a rank function $r : P \rightarrow \mathbb{N}$ such that $r(x) = r(y) + 1$ if x covers y.

Fact

(a) Any connected d-complete poset is uniquely decomposed into a slant sum of one-element posets and slant-irreducible d-complete posets.
Properties of d-complete posets

Fact

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is graded, i.e., there exists a rank function $r : P \rightarrow \mathbb{N}$ such that $r(x) = r(y) + 1$ if x covers y.

Fact

(a) Any connected d-complete poset is uniquely decomposed into a slant sum of one-element posets and slant-irreducible d-complete posets.

Properties of d-complete posets

Fact

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is *graded*, i.e., there exists a rank function $r : P \rightarrow \mathbb{N}$ such that $r(x) = r(y) + 1$ if x covers y.

Fact

(a) Any connected d-complete poset is uniquely decomposed into a slant sum of one-element posets and slant-irreducible d-complete posets.

Properties of d-complete posets

Fact

If P is a connected d-complete poset, then

(a) P has a unique maximal element.

(b) P is graded, i.e., there exists a rank function $r : P \rightarrow \mathbb{N}$ such that $r(x) = r(y) + 1$ if x covers y.

Fact

(a) Any connected d-complete poset is uniquely decomposed into a slant sum of one-element posets and slant-irreducible d-complete posets.

Examples

- rooted tree
- shape
- shifted shape
- swivel

Masao Ishikawa

\((q, t)\)-hook formula for Tailed Insets
15 irreducible d-complete posets

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
15 irreducible d-complete posets

Masao Ishikawa

\((q, t)\)-hook formula for Tailed Insets
15 irreducible d-complete posets

(9)

(10)

(11)
15 irreducible d-complete posets

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Top Tree and \(d\)-Complete Coloring

Definition

For a connected \(d\)-complete poset \(P\), we define its top tree by putting

\[
T = \{ x \in P : \text{ every } y \geq x \text{ is covered by at most one other element } \}
\]

Fact

Let \(I\) be a set of colors such that \(#I = \#T\). Then a bijection \(c : T \rightarrow I\) can be uniquely extended to a map \(c : P \rightarrow I\) satisfying the following three conditions:

1. If \(x\) and \(y\) are incomparable, then \(c(x) \neq c(y)\).
2. If an interval \([w, v]\) is a chain, then the colors \(c(x) (x \in [w, v])\) are distinct.
3. If \([w, v]\) is a \(d_k\)-interval then \(c(w) = c(v)\).

Such a map \(c : P \rightarrow I\) is called a \(d\)-complete coloring.
For a connected \(d \)-complete poset \(P \), we define its top tree by putting
\[
T = \{ x \in P : \text{every } y \geq x \text{ is covered by at most one other element} \}
\]

Let \(I \) be a set of colors such that \(\#I = \#T \). Then a bijection \(c : T \to I \) can be uniquely extended to a map \(c : P \to I \) satisfying the following three conditions:

- If \(x \) and \(y \) are incomparable, then \(c(x) \neq c(y) \).
- If an interval \([w, v]\) is a chain, then the colors \(c(x) (x \in [w, v])\) are distinct.
- If \([w, v]\) is a \(d_k \)-interval then \(c(w) = c(v) \).

Such a map \(c : P \to I \) is called a \(d \)-complete coloring.
Top Tree and d-Complete Coloring

Definition
For a connected d-complete poset P, we define its **top tree** by putting

$$T = \{ x \in P : \text{every } y \geq x \text{ is covered by at most one other element} \}$$

Fact
Let I be a set of colors such that $\# I = \# T$. Then a bijection $c : T \to I$ can be uniquely extended to a map $c : P \to I$ satisfying the following three conditions:

- If x and y are incomparable, then $c(x) \neq c(y)$.
- If an interval $[w, v]$ is a chain, then the colors $c(x)$ ($x \in [w, v]$) are distinct.
- If $[w, v]$ is a d_k-interval then $c(w) = c(v)$.

Such a map $c : P \to I$ is called a d-complete coloring.
Top Tree and d-Complete Coloring

Definition

For a connected d-complete poset P, we define its **top tree** by putting

$$T = \{ x \in P : \text{every } y \geq x \text{ is covered by at most one other element } \}$$

Fact

Let I be a set of colors such that $\#I = \#T$. Then a bijection $c : T \to I$ can be uniquely extended to a map $c : P \to I$ satisfying the following three conditions:

- If x and y are incomparable, then $c(x) \neq c(y)$.
- If an interval $[w, v]$ is a chain, then the colors $c(x)$ ($x \in [w, v]$) are distinct.
- If $[w, v]$ is a d_k-interval then $c(w) = c(v)$.

Such a map $c : P \to I$ is called a d-complete coloring.
Top Tree and d-Complete Coloring

Definition

For a connected d-complete poset P, we define its top tree by putting

$$T = \{ x \in P : \text{every } y \geq x \text{ is covered by at most one other element} \}$$

Fact

Let I be a set of colors such that $\# I = \# T$. Then a bijection $c : T \to I$ can be uniquely extended to a map $c : P \to I$ satisfying the following three conditions:

- If x and y are incomparable, then $c(x) \neq c(y)$.
- If an interval $[w, v]$ is a chain, then the colors $c(x)$ ($x \in [w, v]$) are distinct.
- If $[w, v]$ is a d_k-interval then $c(w) = c(v)$.

Such a map $c : P \to I$ is called a d-complete coloring.
Example

Top Tree and d-Complete Coloring of d_5-interval

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Example

Top Tree and d-Complete Coloring of d_5-interval

Masao Ishikawa

(q,t)-hook formula for Tailed Insets
Example

Top Tree and d-Complete Coloring of d_5-interval
Example

Top Tree and d-Complete Coloring of d_5-interval

\[
\begin{array}{c}
\text{Top Tree and } d\text{-Complete Coloring of } d_5\text{-interval} \\
\end{array}
\]
Let r be a positive integer, and $\alpha = (\alpha_1, \ldots, \alpha_r)$ and $\beta = (\beta_1, \ldots, \beta_r)$ be strict partitions such that

$$\alpha_1 > \cdots > \alpha_r \geq 0, \quad \beta_1 > \cdots > \beta_r \geq 0,$$

Let P be the set $P = P_L \cup P_R$ of lattice points in \mathbb{Z}^2, where

$$P_R = \{(i, j) : 1 \leq i \leq j \leq \alpha_i + i - 1 \ (1 \leq i \leq r)\},$$

$$P_L = \{(i, j) : 1 \leq j \leq i \leq \beta_j + j - 1 \ (1 \leq j \leq r)\},$$

We regard P as a poset by defining the order relation

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$

We call this poset a \textit{shape} and denote it by $P = P_1(\alpha, \beta)$.
Let r be a positive integer, and $\alpha = (\alpha_1, \ldots, \alpha_r)$ and $\beta = (\beta_1, \ldots, \beta_r)$ be strict partitions such that

$$\alpha_1 > \cdots > \alpha_r \geq 0, \quad \beta_1 > \cdots > \beta_r \geq 0,$$

Let P be the set $P = P_L \cup P_R$ of lattice points in \mathbb{Z}^2, where

$$P_R = \{(i, j) : 1 \leq i \leq j \leq \alpha_i + i - 1 \ (1 \leq i \leq r)\},$$
$$P_L = \{(i, j) : 1 \leq j \leq i \leq \beta_j + j - 1 \ (1 \leq j \leq r)\},$$

We regard P as a poset by defining the order relation

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$
Let r be a positive integer, and $\alpha = (\alpha_1, \ldots, \alpha_r)$ and $\beta = (\beta_1, \ldots, \beta_r)$ be strict partitions such that

$$\alpha_1 > \cdots > \alpha_r \geq 0, \quad \beta_1 > \cdots > \beta_r \geq 0,$$

Let P be the set $P = P_L \cup P_R$ of lattice points in \mathbb{Z}^2, where

$$P_R = \{(i, j) : 1 \leq i \leq j \leq \alpha_i + i - 1 \quad (1 \leq i \leq r)\},$$

$$P_L = \{(i, j) : 1 \leq j \leq i \leq \beta_j + j - 1 \quad (1 \leq j \leq r)\},$$

We regard P as a poset by defining the order relation

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$

We call this poset a shape and denote it by $P = P_1(\alpha, \beta)$.
Shapes

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Shifted Shapes

Definition

Let r be a positive integer, and $\alpha = (\alpha_1, \ldots, \alpha_r)$ be a strict partition such that

$$\alpha_1 > \cdots > \alpha_r \geq 0.$$

Define the \textit{shifted shape} $P = P_2(\alpha)$ by

$$P = \{(i, j) : i \leq j \leq \alpha_i + i - 1 \ (1 \leq i \leq r)\}.$$

We regard it as a poset by defining its order structure

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$
Definition

Let r be a positive integer, and $\alpha = (\alpha_1, \ldots, \alpha_r)$ be a strict partition such that

$$\alpha_1 > \cdots > \alpha_r \geq 0.$$

Define the *shifted shape* $P = P_2(\alpha)$ by

$$P = \{ (i, j) : i \leq j \leq \alpha_i + i - 1 \ (1 \leq i \leq r) \}. $$

We regard it as a poset by defining its order structure

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$
Shifted Shapes

Definition

Let r be a positive integer, and $\alpha = (\alpha_1, \ldots, \alpha_r)$ be a strict partition such that

$$\alpha_1 > \cdots > \alpha_r \geq 0.$$

Define the \textit{shifted shape} $P = P_2(\alpha)$ by

$$P = \{(i, j) : i \leq j \leq \alpha_i + i - 1 \ (1 \leq i \leq r)\}.$$

We regard it as a poset by defining its order structure

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$
Shifted Shape

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Let $\alpha = (\alpha_1, \alpha_2)$ and $\beta = (\beta_1, \beta_2)$ be strict partitions such that $\alpha_1 > \alpha_2 > 0$ and $\beta_1 > \beta_2 > 0$. Define the \textit{bird} $P = P_3(\alpha, \beta; f)$ by

$$P = P_H \cup P_R \cup P_L \cup P_T$$

where

$$P_H = \{(1, j) : -f + 1 \leq j \leq 1\},$$

$$P_R = \{(i, j) : i \leq j \leq \alpha_i + i - 1 \ (i = 1, 2)\},$$

$$P_L = \{(i, j) : j \leq \beta_j + j - 1 \ (j = 1, 2)\},$$

$$P_T = \{(i, i) : 2 \leq i \leq f + 2\}$$

as a set and we regard it as a poset by defining its order structure

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$
Definition

Let \(\alpha = (\alpha_1, \alpha_2) \) and \(\beta = (\beta_1, \beta_2) \) be strict partitions such that \(\alpha_1 > \alpha_2 > 0 \) and \(\beta_1 > \beta_2 > 0 \). Define the *bird* \(P = P_3(\alpha, \beta; f) \) by

\[
P = P_H \cup P_R \cup P_L \cup P_T
\]

where

\[
P_H = \{(1, j) : -f + 1 \leq j \leq 1\},
\]
\[
P_R = \{(i, j) : i \leq j \leq \alpha_i + i - 1 \ (i = 1, 2)\},
\]
\[
P_L = \{(i, j) : j \leq i \leq \beta_j + j - 1 \ (j = 1, 2)\},
\]
\[
P_T = \{(i, i) : 2 \leq i \leq f + 2\}
\]

as a set and we regard it as a poset by defining its order structure

\[
(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.
\]

if and only if the both of \((i_1, j_1)\) and \((i_2, j_2)\) are in \(P_H \cup P_R \cup P_L\) or in \(P_T\).
Definition

Let $\alpha = (\alpha_1, \alpha_2)$ and $\beta = (\beta_1, \beta_2)$ be strict partitions such that $\alpha_1 > \alpha_2 > 0$ and $\beta_1 > \beta_2 > 0$. Define the bird $P = P_3(\alpha, \beta; f)$ by

$$P = P_H \cup P_R \cup P_L \cup P_T$$

where

$$P_H = \{(1, j) : -f + 1 \leq j \leq 1\},$$
$$P_R = \{(i, j) : i \leq j \leq \alpha_i + i - 1 \ (i = 1, 2)\},$$
$$P_L = \{(i, j) : j \leq i \leq \beta_j + j - 1 \ (j = 1, 2)\},$$
$$P_T = \{(i, i) : 2 \leq i \leq f + 2\}$$

as a set and we regard it as a poset by defining its order structure

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$
Birds

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Tailed Insets

Definition

Let \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) and \(\beta = (\beta_1, \beta_2) \) be strict partitions such that

\[
\alpha_1 > \alpha_2 > \alpha_3 \geq 0, \quad \beta_1 > \beta_2 \geq 0.
\]

Let \(P \) be the set \(P = P_H \cup P_M \cup P_L \cup P_R \cup P_T \) of lattice points in \(\mathbb{Z}^2 \), where \(P_M = \{ (2, 1) \} \), \(P_T = \{ (4, 4) \} \) and

\[
\begin{align*}
P_H &= \{ (1, j) : -\beta_1 + 1 \leq j \leq 0 \}, \\
P_R &= \{ (i, j) : 1 \leq i \leq j \leq \alpha_i + i \ (i = 1, 2, 3) \}, \\
P_L &= \{ (i + 1, j + 1) : 1 \leq j \leq i \leq \beta_j + j \ (j = 1, 2) \}.
\end{align*}
\]

We regard \(P \) as a poset by defining the order relation

\[
(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.
\]

if neither of \((i_1, j_1)\) and \((i_2, j_2)\) is not in \(P_T \), whereas \((3, 3) < (4, 4)\). We call this poset a \textit{Tailed Inset}, denoted by \(P_5(\alpha, \beta) \).
Tailed Insets

Definition

Let $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $\beta = (\beta_1, \beta_2)$ be strict partitions such that

$$\alpha_1 > \alpha_2 > \alpha_3 \geq 0, \quad \beta_1 > \beta_2 \geq 0.$$

Let P be the set $P = P_H \cup P_M \cup P_L \cup P_R \cup P_T$ of lattice points in \mathbb{Z}^2, where $P_M = \{(2, 1)\}$, $P_T = \{(4, 4)\}$ and

- $P_H = \{(1, j) : -\beta_1 + 1 \leq j \leq 0\}$,
- $P_R = \{(i, j) : 1 \leq i \leq j \leq \alpha_i + i \ (i = 1, 2, 3)\}$,
- $P_L = \{(i + 1, j + 1) : 1 \leq j \leq i \leq \beta_j + j \ (j = 1, 2)\}$.

We regard P as a poset by defining the order relation

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$

if neither of (i_1, j_1) and (i_2, j_2) is not in P_T, whereas $(3, 3) < (4, 4)$. We call this poset a *Tailed Inset*, denoted by $P_5(\alpha, \beta)$.

(q, t)-hook formula for Tailed Insets
Let $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $\beta = (\beta_1, \beta_2)$ be strict partitions such that

$$\alpha_1 > \alpha_2 > \alpha_3 \geq 0, \quad \beta_1 > \beta_2 \geq 0.$$

Let P be the set $P = P_H \cup P_M \cup P_L \cup P_R \cup P_T$ of lattice points in \mathbb{Z}^2, where $P_M = \{(2, 1)\}$, $P_T = \{(4, 4)\}$ and

$$P_H = \{(1, j) : -\beta_1 + 1 \leq j \leq 0\},$$
$$P_R = \{(i, j) : 1 \leq i \leq j \leq \alpha_i + i (i = 1, 2, 3)\},$$
$$P_L = \{(i + 1, j + 1) : 1 \leq j \leq i \leq \beta_j + j (j = 1, 2)\}.$$

We regard P as a poset by defining the order relation

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$

if neither of (i_1, j_1) and (i_2, j_2) is not in P_T, whereas $(3, 3) < (4, 4)$. We call this poset a **Tailed Inset**, denoted by $P_5(\alpha, \beta)$.
Tailed Insets

(1, 1)
Let \(\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \) be a strict partition such that \(\alpha_1 > \alpha_2 > \alpha_3 > \alpha_4 > 0 \), and let \(f \geq 2 \) be a positive integer. Let \(P \) be the set \(P = P_H \cup P_W \cup P_T \) of lattice points in \(\mathbb{Z}^2 \), where

\[
\begin{align*}
P_H &= \{ (1, j) : -f + 2 \leq j \leq 1 \}, \\
P_W &= \{ (i, j) : i \leq j \leq \alpha_i + i - 1 \ (i = 1, 2, 3, 4) \}, \\
P_T &= \{ (i, 3) : 3 \leq i \leq f + 2 \}.
\end{align*}
\]

We regard \(P \) as a poset by defining the order relation \((i_1, j_1) \preceq (i_2, j_2) \iff i_1 \leq i_2 \) and \(j_1 \leq j_2 \). If both of \((i_1, j_1)\) and \((i_2, j_2)\) are in \(P_H \cup P_W \) or in \(P_T \), and call it a banner.
Let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ be a strict partition such that $\alpha_1 > \alpha_2 > \alpha_3 > \alpha_4 > 0$, and let $f \geq 2$ be a positive integer. Let P be the set $P = P_H \cup P_W \cup P_T$ of lattice points in \mathbb{Z}^2, where

$$
P_H = \{ (1, j) : -f + 2 \leq j \leq 1 \},$$

$$
P_W = \{ (i, j) : i \leq j \leq \alpha_i + i - 1 \ (i = 1, 2, 3, 4) \},$$

$$
P_T = \{ (i, 3) : 3 \leq i \leq f + 2 \}.$$

We regard P as a poset by defining the order relation

$$(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.$$

if both of (i_1, j_1) and (i_2, j_2) are in $P_H \cup P_W$ or in P_T, and call it a banner.
Let $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ be a strict partition such that $\alpha_1 > \alpha_2 > \alpha_3 > \alpha_4 > 0$, and let $f \geq 2$ be a positive integer. Let P be the set $P = P_H \cup P_W \cup P_T$ of lattice points in \mathbb{Z}^2, where

\[
\begin{align*}
P_H &= \{ (1,j) : -f + 2 \leq j \leq 1 \}, \\
P_W &= \{ (i,j) : i \leq j \leq \alpha_i + i - 1 \ (i = 1, 2, 3, 4) \}, \\
P_T &= \{ (i,3) : 3 \leq i \leq f + 2 \}.
\end{align*}
\]

We regard P as a poset by defining the order relation

\[(i_1,j_1) \geq (i_2,j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.\]

if both of (i_1,j_1) and (i_2,j_2) are in $P_H \cup P_W$ or in P_T, and call it a banner.
Masao Ishikawa \((q,t)\)-hook formula for Tailed Insets
Hook Monomials

Definition

Let P be a connected d-complete poset and T its top tree. Let z_v ($v \in T$) be indeterminate. Let $c : P \rightarrow T$ be the d-complete coloring. For each $v \in P$, we define monomials $z[H_P(v)]$ by induction as follows:

(a) If v is not the top of any d_k-interval, then we define

$$z[H_P(v)] = \prod_{w \leq v} z_{c(w)}.$$

(b) If v is the top of a d_k-interval $[w, v]$, then we define

$$z[H_P(v)] = \frac{z[H_P(x)] z[H_P(y)]}{z[H_P(w)]}$$

where x and y are the sides of $[w, v]$.
Definition

Let P be a connected d-complete poset and T its top tree. Let z_v ($v \in T$) be indeterminate. Let $c : P \rightarrow T$ be the d-complete coloring. For each $v \in P$, we define monomials $z[H_P(v)]$ by induction as follows:

(a) If v is not the top of any d_k-interval, then we define

$$z[H_P(v)] = \prod_{w \leq v} z_{c(w)}.$$

(b) If v is the top of a d_k-interval $[w, v]$, then we define

$$z[H_P(v)] = \frac{z[H_P(x)] z[H_P(Y)]}{z[H_P(w)]}$$

where x and y are the sides of $[w, v]$.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Hook Monomials

Definition

Let P be a connected d-complete poset and T its top tree. Let z_v ($v \in T$) be indeterminate. Let $c : P \to T$ be the d-complete coloring. For each $v \in P$, we define monomials $z[H_P(v)]$ by induction as follows:

(a) If v is not the top of any d_k-interval, then we define

$$z[H_P(v)] = \prod_{w \leq v} z_{c(w)}.$$

(b) If v is the top of a d_k-interval $[w, v]$, then we define

$$z[H_P(v)] = \frac{z[H_P(x)] z[H_P(Y)]}{z[H_P(w)]}$$

where x and y are the sides of $[w, v]$.
An example of hook monomials

Example

We consider the following poset $P = d_1(5)$. We give the following assignment of variables for $z_c(x)$, $x \in P$.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Example

We consider the following poset $P = d_1(5)$. We give the following assignment of variables for $z_{c(x)}$, $x \in P$.

Masao Ishikawa
(q, t)-hook formula for Tailed Insets
Hook Monomials for $P = d_1(5)$

Example

We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:

$z_1 z_2^2 z_3^2 z_4 z_5$ $z_1 z_2 z_3 z_4 z_5$ $z_1 z_2 z_3 z_4$

$z_1 z_2 z_3^2 z_4 z_5$

$z_1 z_2 z_3 z_5$ $z_1 z_2 z_3$

$z_1 z_2$

z_1
Hook Monomials for $P = d_1(5)$

Example

We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:
We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:

$$
z_1 z_2^2 z_3^2 z_4 z_5 \quad z_1 z_2 z_3 z_4 z_5 \quad z_1 z_2 z_3 z_4 \quad z_1 z_2 z_3 z_5 \quad z_1 z_2 z_3 \quad z_1 z_2 \quad z_1 \$$
Hook Monomials for $P = d_1(5)$

Example

We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:
Example

We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:
Example

We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:

$z_1 z_2^2 z_3^2 z_4 z_5$ $z_1 z_2 z_3 z_4 z_5$

$z_1 z_2 z_3^2 z_4 z_5$

$z_1 z_2 z_3 z_5$

$z_1 z_2 z_3$

$z_1 z_2$

z_1
Hook Monomials for $P = d_1(5)$

Example

We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:

$$z_1 z_2^2 z_3^2 z_4 z_5$$

$$Z_1 Z_2 Z_3 Z_4 Z_5$$

$$Z_1 Z_2 Z_3 Z_4$$

$$Z_1 Z_2 Z_3 Z_5$$

$$Z_1 Z_2 Z_3$$

$$Z_1 Z_2$$

$$Z_1$$
Hook Monomials for $P = d_1(5)$

Example

We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:

$$z_1z_2^2z_3^2z_4z_5$$

$$Z_1Z_2Z_3Z_4Z_5$$

$$Z_1Z_2Z_3^2Z_4Z_5$$

$$Z_1Z_2Z_3Z_4Z_5$$

$$Z_1Z_2Z_3$$

$$Z_1Z_2$$

$$Z_1$$
Hook Monomials for $P = d_1(5)$

Example

We consider the following poset $P = d_1(5)$. The monomials associated to hooks of $P = d_1(5)$ are as follows:

$$z_1 z_2^2 z_3^2 z_4 z_5 \quad z_1 z_2 z_3 z_4 z_5 \quad z_1 z_2 z_3 z_4 z_5$$

$$z_1 z_2 z_3^2 z_4 z_5$$

$$z_1 z_2 z_3 z_5$$

$$z_1 z_2 z_3$$

$$z_1 z_2$$

$$z_1$$
(q, t)-Weight associated with P-partition π

Definition

Let P be a connected d-complete poset with top tree T. Given a P-partition $\pi \in \mathcal{A}(P)$, we define $W_P(\pi; q, t)$ by

$$
\prod_{x, y \in \bar{P}, x < y \atop c(x) \text{ and } c(y) \text{ are adjacent in } \bar{T}} f\left(\widehat{\pi}(x) - \widehat{\pi}(y), \left\lfloor \frac{\widehat{r}(y) - \widehat{r}(x)}{2} \right\rfloor \right)
$$

$$
\prod_{x, y \in P, x < y \atop c(x) = c(y)} f\left(\frac{r(y) - r(x)}{2} \right) f\left(\pi(x) - \pi(y), \left\lfloor \frac{r(y) - r(x)}{2} \right\rfloor - 1 \right).
$$

Example

Compute this weight $W_P(\pi; q, t)$ for $P = d_1(5)$.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Let P be a connected d-complete poset with top tree T. Given a P-partition $\pi \in \mathcal{A}(P)$, we define $W_P(\pi; q, t)$ by

$$
\prod_{x, y \in P, x < y} f\left(\pi(x) - \pi(y), \left\lfloor \frac{r(y) - r(x)}{2} \right\rfloor \right)
\prod_{x, y \in P, x < y, c(x) = c(y)} f\left(\pi(x) - \pi(y), \left\lfloor \frac{r(y) - r(x)}{2} \right\rfloor \right) f\left(\pi(x) - \pi(y), \left\lfloor \frac{r(y) - r(x)}{2} \right\rfloor - 1 \right).
$$

Example

Compute this weight $W_P(\pi; q, t)$ for $P = d_1(5)$.

$$(q, t)$$-Weight associated with P-partition π
We consider the following poset $P = d_5(1)$. A P-partition π must satisfy the following inequalities:

\[
\begin{align*}
\pi_{11} & \leq \pi_{12} \leq \pi_{13} \leq \pi_{14} \\
\land \\
\pi_{23} & \leq \pi_{24} \\
\land \\
\pi_{34} \\
\land \\
\pi_{44}
\end{align*}
\]
We consider the following poset $P = d_5(1)$. A P-partition π must satisfy the following inequalities:

\[
\pi_{11} \leq \pi_{12} \leq \pi_{13} \leq \pi_{14} \\
\pi_{23} \leq \pi_{24} \\
\pi_{34} \\
\pi_{44}
\]
We consider the following poset $P = d_5(1)$. A P-partition π must satisfy the following inequalities:

\[
\begin{align*}
\pi_{11} & \leq \pi_{12} \leq \pi_{13} \leq \pi_{14} \\
\pi_{23} & \leq \pi_{24} \\
\pi_{34} & \\
\pi_{44} & \end{align*}
\]
Numerator of $W_P(\pi; q, t)$ ($P = d_1(5)$)

Example

A P-partition π extends to \widehat{P}-partition $\widehat{\pi}$.

\[
\text{num} \ W_P(\pi; q, t) = f(\pi_{11}; 0)f(\pi_{44}; 3) \times f(\pi_{12} - \pi_{11}; 0)f(\pi_{34} - \pi_{11}; 2)f(\pi_{44} - \pi_{12}; 2)f(\pi_{44} - \pi_{34}; 0) \\
\times f(\pi_{13} - \pi_{12}; 0)f(\pi_{24} - \pi_{12}; 1)f(\pi_{34} - \pi_{13}; 1)f(\pi_{34} - \pi_{13}; 0) \\
\times f(\pi_{14} - \pi_{13}; 0)f(\pi_{24} - \pi_{13}; 0)f(\pi_{23} - \pi_{13}; 0)f(\pi_{24} - \pi_{23}; 0)
\]
A P-partition π extends to \widehat{P}-partition $\widehat{\pi}$.

\[
\text{numer } W_P(\pi; q, t) = f(\pi_{11}; 0)f(\pi_{44}; 3) \\
\times f(\pi_{12} - \pi_{11}; 0)f(\pi_{34} - \pi_{11}; 2)f(\pi_{44} - \pi_{12}; 2)f(\pi_{44} - \pi_{34}; 0) \\
\times f(\pi_{13} - \pi_{12}; 0)f(\pi_{24} - \pi_{12}; 1)f(\pi_{34} - \pi_{13}; 1)f(\pi_{34} - \pi_{13}; 0) \\
\times f(\pi_{14} - \pi_{13}; 0)f(\pi_{24} - \pi_{13}; 0)f(\pi_{23} - \pi_{13}; 0)f(\pi_{24} - \pi_{23}; 0)
\]
Numerator of $\mathcal{W}_P(\pi; q, t) (P = d_1(5))$

Example

A P-partition π extends to \widehat{P}-partition $\widehat{\pi}$.

\[
\text{numer } \mathcal{W}_P(\pi; q, t) = f(\pi_{11}; 0)f(\pi_{44}; 3) \\
\times f(\pi_{12} - \pi_{11}; 0)f(\pi_{34} - \pi_{11}; 2)f(\pi_{44} - \pi_{12}; 2)f(\pi_{44} - \pi_{34}; 0) \\
\times f(\pi_{13} - \pi_{12}; 0)f(\pi_{24} - \pi_{12}; 1)f(\pi_{34} - \pi_{13}; 1)f(\pi_{34} - \pi_{13}; 0) \\
\times f(\pi_{14} - \pi_{13}; 0)f(\pi_{24} - \pi_{13}; 0)f(\pi_{23} - \pi_{13}; 0)f(\pi_{24} - \pi_{23}; 0)
\]
Denominator of $W_P(\pi; q, t) \ (P = d_1(5))$

Example

A P-partition π

\[
\begin{align*}
\text{denom } W_P(\pi; q, t) &= f(\pi_{44} - \pi_{11}; 2)f(\pi_{44} - \pi_{11}; 3) \\
&\quad \times f(\pi_{34} - \pi_{12}; 1)f(\pi_{34} - \pi_{12}; 2)f(\pi_{24} - \pi_{13}; 0)f(\pi_{24} - \pi_{13}; 1)
\end{align*}
\]
Denominator of $W_P(\pi; q, t) \ (P = d_1(5))$

Example

A P-partition π

\[
\text{denom } W_P(\pi; q, t) = f(\pi_{44} - \pi_{11}; 2)f(\pi_{44} - \pi_{11}; 3) \times f(\pi_{34} - \pi_{12}; 1)f(\pi_{34} - \pi_{12}; 2)f(\pi_{24} - \pi_{13}; 0)f(\pi_{24} - \pi_{13}; 1)
\]
Denominator of $W_P(\pi; q, t) \quad (P = d_1(5))$

Example

A P-partition π

\[
\text{denom } W_P(\pi; q, t) = f(\pi_{44} - \pi_{11}; 2)f(\pi_{44} - \pi_{11}; 3) \times f(\pi_{34} - \pi_{12}; 1)f(\pi_{34} - \pi_{12}; 2)f(\pi_{24} - \pi_{13}; 0)f(\pi_{24} - \pi_{13}; 1)
\]
Okada’s (q, t)-hook formula conjecture

Then the following identity would hold for any d-complete posets P:

$$\sum_{\pi \in \mathcal{A}(P)} W_P(\pi; q, t) z^\pi = \prod_{v \in P} F(z[H_P(v)])$$

where $z^\pi = \prod_{x \in P} z^{\pi(x)}_{c(x)}$. Here the sum on the left-hand side runs over all P-partitions $\pi \in \mathcal{A}(P)$, and the right-hand side is the product of all hook monomials for $v \in P$.
Macdonald polynomials
Arm-length and leg-length

Definition

Let λ be a partition. Let $s = (i, j)$ be a square in the diagram of λ, and let $a(s)$ and $l(s)$ be the arm-length and leg-length of s, i.e.,

$$a(s) = \lambda_i - j, \quad l(s) = \lambda'_j - i.$$

Definition

Define

$$b_{\lambda}(q, t) := \prod_{s \in \lambda} \frac{1 - q^{a(s)} t^{l(s)+1}}{1 - q^{a(s)+1} t^{l(s)}},$$

$$b_{\lambda}^{el}(q, t) := \prod_{s \in \lambda \atop l(s) \text{ even}} \frac{1 - q^{a(s)} t^{l(s)+1}}{1 - q^{a(s)+1} t^{l(s)}},$$

$$b_{\lambda}^{oa}(q, t) := \prod_{s \in \lambda \atop a(s) \text{ odd}} b_{\lambda}(s; q, t),$$

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Arm-length and leg-length

Definition

Let λ be a partition. Let $s = (i, j)$ be a square in the diagram of λ, and let $a(s)$ and $l(s)$ be the arm-length and leg-length of s, i.e.,

$$a(s) = \lambda_i - j, \quad l(s) = \lambda'_j - i.$$

Definition

Define

$$b_\lambda(q, t) := \prod_{s \in \lambda} \frac{1 - q^{a(s)} t^{l(s)+1}}{1 - q^{a(s)+1} t^{l(s)}},$$

$$b_{\lambda}^{el}(q, t) := \prod_{\begin{smallmatrix} s \in \lambda \\ l(s) \text{ even} \end{smallmatrix}} \frac{1 - q^{a(s)} t^{l(s)+1}}{1 - q^{a(s)+1} t^{l(s)}},$$

$$b_{\lambda}^{oa}(q, t) := \prod_{\begin{smallmatrix} s \in \lambda \\ a(s) \text{ odd} \end{smallmatrix}} b_\lambda(s; q, t).$$
Monomial symmetric function

Definition

If \(x = (x_1, x_2, \ldots) \) and \(y = (y_1, y_2, \ldots) \) are two sequences of independent indeterminates, then we write

\[
\Pi(x; y; q, t) = \prod_{i,j} \frac{(tx_iy_j; q)\infty}{(x_iy_j; q)\infty} = \prod_{i,j} F(x_iy_j; q, t).
\]

Definition

Let \(\Lambda_n = \mathbb{Z}[x_1, \ldots, x_n]^{S_n} \) and \(\Lambda \) denote the ring of symmetric polynomials in \(n \) independent variables and the ring of symmetric polynomials in countably many variables, respectively. For \(\lambda = (\lambda_1, \ldots, \lambda_n) \) a partition of at most \(n \) parts the monomial symmetric function \(m_\lambda \) is defined as

\[
m_\lambda(x) := \sum_{\alpha} x^\alpha
\]

where the sum is over all distinct permutations \(\alpha \) of \(\lambda \).
Monomial symmetric function

Definition

If \(x = (x_1, x_2, \ldots) \) and \(y = (y_1, y_2, \ldots) \) are two sequences of independent indeterminates, then we write

\[
\Pi(x; y; q, t) = \prod_{i,j} \left(\frac{(tx_iy_j; q)_{\infty}}{(x_iy_j; q)_{\infty}} \right) = \prod_{i,j} F(x_iy_j; q, t).
\]

Definition

Let \(\Lambda_n = \mathbb{Z}[x_1, \ldots, x_n]^{\subseteq_n} \) and \(\Lambda \) denote the ring of symmetric polynomials in \(n \) independent variables and the ring of symmetric polynomials in countably many variables, respectively. For \(\lambda = (\lambda_1, \ldots, \lambda_n) \) a partition of at most \(n \) parts the monomial symmetric function \(m_\lambda \) is defined as

\[
m_\lambda(x) := \sum_{\alpha} x^\alpha
\]

where the sum is over all distinct permutations \(\alpha \) of \(\lambda \).
Macdonald scalar product

Definition

For r a nonnegative integer the power sums p_r are given by $p_0 = 1$ and $p_r = m(r)$ for $r > 1$. More generally the power-sum products are defined as $p_\lambda(x) := p_{\lambda_1}(x)p_{\lambda_2}(x)\cdots$ for an arbitrary partition $\lambda = (\lambda_1, \lambda_2, \ldots)$. Define the Macdonald scalar product $\langle \cdot, \cdot \rangle_{q,t}$ on the ring of symmetric functions by

$$\langle p_\lambda, p_\mu \rangle_{q,t} := \delta_{\lambda\mu}z_\lambda \prod_i \prod_{i=1}^n \frac{1 - q^{\lambda_i}}{1 - t^{\lambda_i}}$$

with $z_\lambda = \prod_{i \geq 1} i^{m_i} m_i!$ and $m_i = m_i(\lambda)$.
Macdonald’s P-function

Definition

If we denote the ring of symmetric functions in Λ_n variables over the field $\mathbb{F} = \mathbb{Q}(q, t)$ of rational functions in q and t by $\Lambda_{n, \mathbb{F}}$, then the Macdonald polynomial $P_\lambda(x) = P_\lambda(x; q, t)$ is the unique symmetric polynomial in $\Lambda_{n, \mathbb{F}}$ such that:

$$P_\lambda = \sum_{\mu \leq \lambda} u_{\lambda\mu}(q, t)m_\mu(x)$$

with $u_{\lambda\lambda} = 1$ and

$$\langle P_\lambda, P_\mu \rangle_{q,t} = 0 \quad \text{if } \lambda \neq \mu.$$

The Macdonald polynomials $P_\lambda(x; q, t)$ with $\ell(\lambda) \leq n$ form an \mathbb{F}-basis of $\Lambda_{n, \mathbb{F}}$. If $\ell(\lambda) > n$ then $P_\lambda(x; q, t) = 0$. $P_\lambda(x; q, t)$ is called Macdonald’s P-function. Since $P_\lambda(x_1, \ldots, x_n, 0; q, t) = P_\lambda(x_1, \ldots, x_n; q, t)$ one can extend the Macdonald polynomials to symmetric functions containing an infinite number of independent variables $x = (x_1, x_2, \ldots)$, to obtain a basis of $\mathbb{F} = \Lambda \otimes \mathbb{F}$.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Macdonald’s Q-function

Definition

A second Macdonald symmetric function, called *Macdonald’s Q-function*, is defined as

$$Q_\lambda(x; q, t) = b_\lambda(q, t) P_\lambda(x; q, t).$$

The normalization of the Macdonald inner product is then

$$\langle P_\lambda, Q_\mu \rangle_{q,t} = \delta_{\lambda\mu}$$

for all λ, μ, which is equivalent to

$$\sum_\lambda P_\lambda(x; q, t) Q_\lambda(y; q, t) = \Pi(x; y; q, t).$$
Pieri coefficients $\varphi_{\lambda/\mu}$ and $\psi_{\lambda/\mu}$

Definition

Let r be a positive integer, and let λ, μ be partitions such that $\lambda \supset \mu$ and $\lambda - \mu$ is a horizontal r-strip. The *Pieri coefficients* $\varphi_{\lambda/\mu}$ and $\psi_{\lambda/\mu}$ are defined by

\[
P_{\mu} g_r = \sum_{\lambda} \varphi_{\lambda/\mu} P_{\lambda},
\]

\[
Q_{\mu} g_r = \sum_{\lambda} \psi_{\lambda/\mu} Q_{\lambda},
\]

where $g_r = Q_{(r)}$.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Another direct expression for $\phi_{\lambda/\mu}$ and $\psi_{\lambda/\mu}$

Proposition

From Macdonald’s book Chap.VI, §6, Ex.2(c), we have

$$
\varphi_{\lambda/\mu}(q, t) = \prod_{1 \leq i < j \leq \ell(\lambda)} \frac{f(\lambda_i - \mu_j; j - i)f(\mu_i - \lambda_{j+1}; j - i)}{f(\lambda_i - \lambda_j; j - i)f(\mu_i - \mu_{j+1}; j - i)},
$$

$$
\psi_{\lambda/\mu}(q, t) = \prod_{1 \leq i < j \leq \ell(\mu)} \frac{f(\lambda_i - \mu_j; j - i)f(\mu_i - \lambda_{j+1}; j - i)}{f(\mu_i - \mu_j; j - i)f(\lambda_i - \lambda_{j+1}; j - i)}.
$$
Macdonald’s skew Q-function and skew P-function

Definition

For any three partitions λ, μ, ν let $f_{\mu\nu}^{\lambda}$ be the coefficient P_{λ} in the product $P_{\mu}P_{\nu}$:

$$P_{\mu}(x; q, t)P_{\nu}(x; q, t) = \sum_{\lambda} f_{\mu\nu}^{\lambda} P_{\lambda}(x; q, t)$$

Now let λ, μ be partitions and define $Q_{\lambda/\mu} \in \Lambda_F$ by

$$Q_{\lambda/\mu}(x; q, t) = \sum_{\nu} f_{\mu\nu}^{\lambda} Q_{\nu}(x; q, t).$$

Then $Q_{\lambda/\mu}(x; q, t) = 0$ unless $\lambda \supset \mu$, and $Q_{\lambda/\mu}$ is homogeneous of degree $|\lambda| - |\mu|$, which is called Macdonald’s skew Q-function.

Definition

We define Macdonald’s skew P-function $P_{\lambda/\mu}$ by

$$Q_{\lambda/\mu}(x; q, t) = \frac{b_{\lambda}(q, t)}{b_{\mu}(q, t)} P_{\lambda/\mu}(x; q, t).$$

Masao Ishikawa
(q, t)-hook formula for Tailed Insets
Macdonald’s skew Q-function and skew P-function

Definition

For any three partitions λ, μ, ν let $f_{\mu\nu}^{\lambda}$ be the coefficient P_λ in the product $P_\mu P_\nu$:

$$P_\mu(x; q, t) P_\nu(x; q, t) = \sum_\lambda f_{\mu\nu}^{\lambda} P_\lambda(x; q, t)$$

Now let λ, μ be partitions and define $Q_{\lambda/\mu} \in \Lambda_F$ by

$$Q_{\lambda/\mu}(x; q, t) = \sum_\nu f_{\mu\nu}^{\lambda} Q_\nu(x; q, t).$$

Then $Q_{\lambda/\mu}(x; q, t) = 0$ unless $\lambda \supset \mu$, and $Q_{\lambda/\mu}$ is homogeneous of degree $|\lambda| - |\mu|$, which is called Macdonald’s skew Q-function.

Definition

We define Macdonald’s skew P-function $P_{\lambda/\mu}$ by

$$Q_{\lambda/\mu}(x; q, t) = \frac{b_{\lambda}(q, t)}{b_{\mu}(q, t)} P_{\lambda/\mu}(x; q, t).$$
Lemma

Let μ and ν be partitions, and $x = (x_1, x_2, \ldots)$ and $y = (y_1, y_2, \ldots)$ are independent indeterminates.

$$\sum_{\lambda} Q_{\lambda/\mu}(x; q, t) P_{\lambda/\nu}(y; q, t) = \prod(x; y; q, t) \sum_{\tau} Q_{\nu/\tau}(x; q, t) P_{\mu/\tau}(y; q, t)$$

Proof.

$$\sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda/\mu}(x) P_{\lambda/\nu}(y) Q_{\mu}(z) P_{\nu}(w)$$

$$= \sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda}(x, z) P_{\lambda}(y, w)$$

$$= \prod(x, z; y, w)$$

$$= \prod(x; y) \prod(x; w) \prod(z; y) \prod(z; w)$$
Lemma

Let \(\mu \) and \(\nu \) be partitions, and \(x = (x_1, x_2, \ldots) \) and \(y = (y_1, y_2, \ldots) \) are independent indeterminates.

\[
\sum_{\lambda} Q_{\lambda/\mu}(x; q, t) P_{\lambda/\nu}(y; q, t)
= \prod(x; y; q, t) \sum_{\tau} Q_{\nu/\tau}(x; q, t) P_{\mu/\tau}(y; q, t)
\]

Proof.

\[
\sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda/\mu}(x) P_{\lambda/\nu}(y) Q_{\nu}(z) P_{\nu}(w)
= \sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda}(x, z) P_{\lambda}(y, w)
= \prod(x, z; y, w)
= \prod(x; y) \prod(x; w) \prod(z; y) \prod(z; w)
\]
Lemma

Let \(\mu \) and \(\nu \) be partitions, and \(x = (x_1, x_2, \ldots) \) and \(y = (y_1, y_2, \ldots) \) are independent indeterminates.

\[
\sum_{\lambda} Q_{\lambda/\mu}(x; q, t) P_{\lambda/\nu}(y; q, t) = \prod(x; y; q, t) \sum_{\tau} Q_{\nu/\tau}(x; q, t) P_{\mu/\tau}(y; q, t)
\]

Proof.

\[
\sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda/\mu}(x) P_{\lambda/\nu}(y) Q_{\mu}(z) P_{\nu}(w) = \prod(x, z; y, w) = \prod(x; y) \prod(x; w) \prod(z; y) \prod(z; w)
\]
Lemma

Let μ and ν be partitions, and $x = (x_1, x_2, \ldots)$ and $y = (y_1, y_2, \ldots)$ are independent indeterminates.

\[
\sum_{\lambda} Q_{\lambda/\mu}(x; q, t) P_{\lambda/\nu}(y; q, t)
= \prod(x; y; q, t) \sum_{\tau} Q_{\nu/\tau}(x; q, t) P_{\mu/\tau}(y; q, t)
\]

Proof.

\[
\sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda/\mu}(x) P_{\lambda/\nu}(y) Q_{\mu}(z) P_{\nu}(w)
= \sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda}(x, z) P_{\lambda}(y, w)
= \prod(x, z; y, w)
= \prod(x; y) \prod(x; w) \prod(z; y) \prod(z; w)
\]
Lemma

Let μ and ν be partitions, and $x = (x_1, x_2, \ldots)$ and $y = (y_1, y_2, \ldots)$ are independent indeterminates.

$$\sum_{\lambda} Q_{\lambda/\mu}(x; q, t) P_{\lambda/\nu}(y; q, t)$$

$$= \prod(x; y; q, t) \sum_{\tau} Q_{\nu/\tau}(x; q, t) P_{\mu/\tau}(y; q, t)$$

Proof.

$$\sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda/\mu}(x) P_{\lambda/\nu}(y) Q_{\mu}(z) P_{\nu}(w)$$

$$= \sum_{\mu, \nu} \sum_{\lambda} Q_{\lambda}(x, z) P_{\lambda}(y, w)$$

$$= \prod(x, z; y, w)$$

$$= \prod(x; y) \prod(x; w) \prod(z; y) \prod(z; w)$$
Proof

\[
= \prod(x; y) \sum_{\xi} Q_{\xi}(x) P_{\xi}(w) \sum_{\eta} Q_{\eta}(z) P_{\eta}(y) \sum_{\tau} Q_{\tau}(z) P_{\tau}(w)
\]

\[
= \prod(x; y) \sum_{\xi, \eta, \tau} Q_{\xi}(x) P_{\eta}(y) \sum_{\mu} \frac{b_\eta b_\tau}{b_\mu} f_{\eta \tau}^\mu Q_{\mu}(z) \sum_{\nu} f_{\xi \tau}^\nu P_{\nu}(w)
\]

\[
= \prod(x; y) \sum_{\mu, \nu, \tau} Q_{\nu/\tau}(x) P_{\mu/\tau}(y) Q_{\mu}(z) P_{\nu}(w)
\]

Hence, by comparing the coefficients of \(Q_{\mu}(z) P_{\nu}(w) \) in the both sides, we obtain the desired identity. This completes the proof.
Proof

\[\Pi(x; y) \sum_{\xi} Q_{\xi}(x) P_{\xi}(w) \sum_{\eta} Q_{\eta}(z) P_{\eta}(y) \sum_{\tau} Q_{\tau}(z) P_{\tau}(w) \]

\[= \Pi(x; y) \sum_{\xi,\eta,\tau} Q_{\xi}(x) P_{\eta}(y) \sum_{\mu} \frac{b_{\eta} b_{\tau}}{b_{\mu}} f_{\eta\tau}^{\mu} Q_{\mu}(z) \sum_{\nu} f_{\xi\tau}^{\nu} P_{\nu}(w) \]

\[= \Pi(x; y) \sum_{\mu,\nu,\tau} Q_{\nu/\tau}(x) P_{\mu/\tau}(y) Q_{\mu}(z) P_{\nu}(w) \]

Hence, by comparing the coefficients of \(Q_{\mu}(z) P_{\nu}(w) \) in the both sides, we obtain the desired identity. This completes the proof.
Proof

\[\prod(x; y) \sum_{\xi} Q_\xi(x) P_\xi(w) \sum_{\eta} Q_\eta(z) P_\eta(y) \sum_{\tau} Q_\tau(z) P_\tau(w) \]

\[\prod(x; y) \sum_{\xi, \eta, \tau} Q_\xi(x) P_\eta(y) \sum_{\mu} \frac{b_\eta b_\tau}{b_\mu} f_{\eta \tau}^\mu Q_\mu(z) \sum_{\nu} f_{\xi \tau}^\nu P_\nu(w) \]

\[\prod(x; y) \sum_{\mu, \nu, \tau} Q_{\nu/\tau}(x) P_{\mu/\tau}(y) Q_\mu(z) P_\nu(w) \]

Hence, by comparing the coefficients of \(Q_\mu(z) P_\nu(w) \) in the both sides, we obtain the desired identity. This completes the proof.
Proof

\[
= \Pi(x; y) \sum_{\xi} Q_\xi(x) P_\xi(w) \sum_{\eta} Q_\eta(z) P_\eta(y) \sum_{\tau} Q_\tau(z) P_\tau(w)
\]

\[
= \Pi(x; y) \sum_{\xi, \eta, \tau} Q_\xi(x) P_\eta(y) \sum_{\mu} \frac{b_\eta b_\tau}{b_\mu} f^\mu_{\eta \tau} Q_\mu(z) \sum_{\nu} f^\nu_{\xi \tau} P_\nu(w)
\]

\[
= \Pi(x; y) \sum_{\mu, \nu, \tau} Q_{\nu/\tau}(x) P_{\mu/\tau}(y) Q_\mu(z) P_\nu(w)
\]

Hence, by comparing the coefficients of \(Q_\mu(z) P_\nu(w) \) in the both sides, we obtain the desired identity. This completes the proof.
A generalization of Vuletić’s formula

Theorem

Fix a positive integer T and two partitions μ^0 and μ^T. Let $x^0, \ldots, x^{T-1}, y^1, \ldots, y^T$ be sets of variables. Then we have

$$\sum_{(\lambda^1, \mu^1, \ldots, \lambda^T)} \prod_{i=1}^{T} Q_{\lambda^i/\mu^{i-1}}(x^{i-1}; q, t) P_{\lambda^i/\mu^i}(y^i; q, t)$$

$$= \prod_{0 \leq i < j \leq T} \prod(x^i, y^j; q, t) \sum_{\nu} Q_{\mu^T/\nu}(x^0, \ldots, x^{T-1}; q, t) P_{\mu^0/\nu}(y^1, \ldots, y^T; q, t)$$

where the sum runs over $(2T-1)$-tuples $(\lambda^1, \mu^1, \lambda^2, \ldots, \mu^{T-1}, \lambda^T)$ of partitions satisfying

$$\mu^0 \subset \lambda^1 \subset \mu^1 \subset \lambda^2 \subset \mu^2 \subset \ldots \subset \mu^{T-1} \subset \lambda^T \supset \mu^T.$$

Proof. Use induction and the above lemma.
A generalization of Vuletić’s formula

Theorem

Fix a positive integer T and two partitions μ^0 and μ^T. Let x^0, \ldots, x^{T-1}, y^1, \ldots, y^T be sets of variables. Then we have

$$\sum_{(\lambda^1, \mu^1, \lambda^2, \ldots, \lambda^T)} \prod_{i=1}^{T} Q_{\lambda^i/\mu^{i-1}}(x^{i-1}; q, t) P_{\lambda^i/\mu^i}(y^i; q, t)$$

$$= \prod_{0 \leq i < j \leq T} \prod (x^i, y^j; q, t) \sum_{\nu} Q_{\mu^T/\nu}(x^0, \ldots, x^{T-1}; q, t) P_{\mu^0/\nu}(y^1, \ldots, y^T; q, t)$$

where the sum runs over $(2T-1)$-tuples $(\lambda^1, \mu^1, \lambda^2, \ldots, \mu^{T-1}, \lambda^T)$ of partitions satisfying

$$\mu^0 \subset \lambda^1 \subset \mu^1 \subset \lambda^2 \subset \mu^2 \subset \cdots \subset \mu^{T-1} \subset \lambda^T \subset \mu^T.$$

Proof. Use induction and the above lemma.
A corollary

Definition

We define $P_{[\lambda,\mu]}^\varepsilon(x; q, t)$ and $Q_{[\lambda,\mu]}^\varepsilon(x; q, t)$ for a pair (λ, μ) of partitions, a set $x = (x_1, x_2, \ldots)$ of independent variables and $\varepsilon = \pm$ by

\[
P_{[\lambda,\mu]}^\varepsilon(x; q, t) = \begin{cases}
P_{\lambda/\mu}(x; q, t) & \text{if } \varepsilon = +, \\
Q_{\mu/\lambda}(x; q, t) & \text{if } \varepsilon = -,
\end{cases}
\]

\[
Q_{[\lambda,\mu]}^\varepsilon(q, t) = \begin{cases}
Q_{\lambda/\mu}(x; q, t) & \text{if } \varepsilon = +, \\
P_{\mu/\lambda}(x; q, t) & \text{if } \varepsilon = -.
\end{cases}
\]

Here we assume $\lambda \supset \mu$ if $\varepsilon = +$, and $\lambda \subset \mu$ if $\varepsilon = -$.
A corollary

Theorem

Let n be a positive integer, and $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ a sequence of \pm. Fix a positive integer n and two partitions λ^0 and λ^n. Let x^1, \ldots, x^n be sets of variables. Then we have

$$\sum_{(\lambda^1, \lambda^2, \ldots, \lambda^{n-1})} \prod_{i=1}^{n} P_{\lambda^{i-1}, \lambda^i}(x^i; q, t) = \prod_{i<j} \prod_{(\epsilon_i, \epsilon_j) = (-, +)} \prod_{(\epsilon_i, \epsilon_j) = (+, -)} \prod_{X^i; x^j; q, t)}$$

$$\times \sum_{\nu} Q_{\lambda^n/\nu}(\{x^i\}_{\epsilon_i = -}; q, t) P_{\lambda^n/\nu}(\{x^i\}_{\epsilon_i = +}; q, t),$$

where the sum runs over $(n - 1)$-tuples $(\lambda^1, \lambda^2, \ldots, \lambda^{n-1})$ of partitions satisfying

$$\begin{cases}
\lambda^{i-1} \supset \lambda^i & \text{if } \epsilon_i = +, \\
\lambda^{i-1} \subset \lambda^i & \text{if } \epsilon_i = -.
\end{cases}$$

Proof. Take $T = n$ and put $X^{i-1} = 0$ and $Y^i = x^i$ if $\epsilon_i = +1$, and $X^{i-1} = x^i$ and $Y^i = 0$ if $\epsilon_i = -1$.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Theorem

Let n be a positive integer, and $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ a sequence of \pm. Fix a positive integer n and two partitions λ^0 and λ^n. Let x^1, \ldots, x^n be sets of variables. Then we have

$$\sum_{(\lambda^1, \lambda^2, \ldots, \lambda^{n-1})} \prod_{i=1}^{n} P_{[\lambda^{i-1}, \lambda^i]}^\epsilon (x^i; q, t) = \prod_{i<j}^{i<j} \Pi (x^i; x^j; q, t)$$

$$\times \sum_{\nu} Q_{\lambda^n/\nu} (\{x^i\}_{i=1}^{n}; q, t) P_{\lambda^0/\nu} (\{x^i\}_{i=1}^{n}; q, t),$$

where the sum runs over $(n-1)$-tuples $(\lambda^1, \lambda^2, \ldots, \lambda^{n-1})$ of partitions satisfying

$$\begin{cases} \lambda^{i-1} \supset \lambda^i & \text{if } \epsilon_i = +, \\ \lambda^{i-1} \subset \lambda^i & \text{if } \epsilon_i = -. \end{cases}$$

Proof. Take $T = n$ and put $X^{i-1} = 0$ and $Y^i = x^i$ if $\epsilon_i = +1$, and $X^{i-1} = x^i$ and $Y^i = 0$ if $\epsilon_i = -1$.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
A corollary

Theorem

Let \(n \) be a positive integer, and \(\epsilon = (\epsilon_1, \ldots, \epsilon_n) \) a sequence of \(\pm \). Fix a positive integer \(n \) and two partitions \(\lambda^0 \) and \(\lambda^n \). Let \(x^1, \ldots, x^n \) be sets of variables. Then we have

\[
\sum_{(\lambda^1, \lambda^2, \ldots, \lambda^{n-1})} \prod_{i=1}^{n} P_{[\lambda^{i-1}, \lambda^i]}(x^i; q, t) = \prod_{i<j}^{n} \Pi(x^i; x^j; q, t)
\times \sum_{\nu} Q_{\lambda^n/\nu}(\{x^i\}_{\epsilon_i=+}; q, t) P_{\lambda^0/\nu}(\{x^i\}_{\epsilon_i=-}; q, t),
\]

where the sum runs over \((n-1)\)-tuples \((\lambda^1, \lambda^2, \ldots, \lambda^{n-1})\) of partitions satisfying

\[
\begin{cases}
\lambda^{i-1} \supset \lambda^i & \text{if } \epsilon_i = +, \\
\lambda^{i-1} \subset \lambda^i & \text{if } \epsilon_i = -.
\end{cases}
\]

Proof. Take \(T = n \) and put \(X^{i-1} = 0 \) and \(Y^i = x^i \) if \(\epsilon_i = +1 \), and \(X^{i-1} = x^i \) and \(Y^i = 0 \) if \(\epsilon_i = -1 \).
Notation

Definition

Under the assumption that $\lambda \supseteq \mu$ if $\varepsilon = -$, or $\lambda \subseteq \mu$ if $\varepsilon = +$, we write

$$\Psi^\varepsilon_{\lambda/\mu} = \begin{cases} \psi_{\lambda/\mu} & \text{if } \varepsilon = -, \\ \varphi_{\mu/\lambda} & \text{if } \varepsilon = +, \end{cases} \quad \Phi^\varepsilon_{\lambda/\mu} = \begin{cases} \varphi_{\lambda/\mu} & \text{if } \varepsilon = -, \\ \psi_{\mu/\lambda} & \text{if } \varepsilon = +. \end{cases}$$

Definition

Here we assume $\lambda > \mu$ if $\delta = +1$, and $\lambda < \mu$ if $\delta = -1$. We also write

$$|\lambda - \mu|_\delta = \begin{cases} |\lambda - \mu| & \text{if } \delta = +1, \\ |\mu - \lambda| & \text{if } \delta = -1. \end{cases}$$
Notation

Definition

Under the assumption that $\lambda \supseteq \mu$ if $\varepsilon = -$, or $\lambda \subseteq \mu$ if $\varepsilon = +$, we write

$$
\Psi^{\varepsilon}_{\lambda/\mu} = \begin{cases}
\psi_{\lambda/\mu} & \text{if } \varepsilon = -, \\
\phi_{\mu/\lambda} & \text{if } \varepsilon = +,
\end{cases}
\quad
\Phi^{\varepsilon}_{\lambda/\mu} = \begin{cases}
\varphi_{\lambda/\mu} & \text{if } \varepsilon = -, \\
\psi_{\mu/\lambda} & \text{if } \varepsilon = +.
\end{cases}
$$

Definition

Here we assume $\lambda > \mu$ if $\delta = +1$, and $\lambda < \mu$ if $\delta = -1$. We also write

$$
|\lambda - \mu|_{\delta} = \begin{cases}
|\lambda - \mu| & \text{if } \delta = +1, \\
|\mu - \lambda| & \text{if } \delta = -1.
\end{cases}
$$
Notation

Definition

Let n be a positive integer. Let $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ be a sequence of ± 1. Let $(\lambda^0, \lambda^1, \ldots, \lambda^n)$ be an $(n + 1)$-tuple of partitions such that $\lambda^{i-1} > \lambda^i$ if $\epsilon = +1$, and $\lambda^{i-1} < \lambda^i$ if $\epsilon = -1$. Then we write

$$\phi_\epsilon^\lambda(q, t) = \prod_{i=1}^n \phi_{\lambda^{i-1}, \lambda^i}(q, t),$$
$$\psi_\epsilon^\lambda(q, t) = \prod_{i=1}^n \psi_{\lambda^{i-1}, \lambda^i}(q, t).$$

Definition

Let α be a strict partition, and let n be an integer such that $n \geq \alpha_1$. Define a sequence $\epsilon_n(\alpha) = (\epsilon_1(\alpha), \ldots, \epsilon_n(\alpha))$ of ± 1 by putting

$$\epsilon_k(\alpha) = \begin{cases} +1 & \text{if } k \text{ is a part of } \alpha, \\ -1 & \text{if } k \text{ is not a part of } \alpha. \end{cases}$$
Let n be a positive integer. Let $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ be a sequence of ± 1. Let $(\lambda^0, \lambda^1, \ldots, \lambda^n)$ be an $(n + 1)$-tuple of partitions such that $\lambda^{i-1} > \lambda^i$ if $\epsilon = +1$, and $\lambda^{i-1} < \lambda^i$ if $\epsilon = -1$. Then we write

$$
\phi_{\lambda^0, \lambda^1, \ldots, \lambda^n}^\epsilon(q, t) = \prod_{i=1}^n \phi_{\lambda^{i-1}, \lambda^i}^{\epsilon_i}(q, t), \quad \psi_{\lambda^0, \lambda^1, \ldots, \lambda^n}^\epsilon(q, t) = \prod_{i=1}^n \psi_{\lambda^{i-1}, \lambda^i}^{\epsilon_i}(q, t).
$$

Let α be a strict partition, and let n be an integer such that $n \geq \alpha_1$. Define a sequence $\epsilon_n(\alpha) = (\epsilon_1(\alpha), \ldots, \epsilon_n(\alpha))$ of ± 1 by putting

$$
\epsilon_k(\alpha) = \begin{cases} +1 & \text{if } k \text{ is a part of } \alpha, \\ -1 & \text{if } k \text{ is not a part of } \alpha. \end{cases}
$$
Example of $\epsilon(\alpha)$ and kth trace $\pi[k]$

Definition

For each integer $k = 0, \ldots, n$ we define the kth trace $\pi[k]$ to be the sequence $(\ldots, \pi_{2,k+2}, \pi_{1,k+1})$ obtained by reading the kth diagonal from SE to NW. Here we use the convention that $\pi[k] = \emptyset$ if $k \geq \alpha_1$.

Example

For example, if $\alpha = (8, 5, 2, 1)$ and $n = 10$, then we have $\epsilon = (+ + - - + - - + - - + - - + - -)$.

We have $\pi[0] = (\pi_{44}, \pi_{33}, \pi_{22}, \pi_{11})$, $\pi[1] = (\pi_{34}, \pi_{23}, \pi_{12})$, \ldots, $\pi[10] = \emptyset$.
Example of $\epsilon(\alpha)$ and kth trace $\pi[k]$

Definition

For each integer $k = 0, \ldots, n$ we define the *kth trace $\pi[k]$* to be the sequence $(\ldots, \pi_{2,k+2}, \pi_{1,k+1})$ obtained by reading the kth diagonal from SE to NW. Here we use the convention that $\pi[k] = \emptyset$ if $k \geq \alpha_1$.

Example

For example, if $\alpha = (8, 5, 2, 1)$ and $n = 10$, then we have $\epsilon = (+ + - - + - - + --)$.

We have $\pi[0] = (\pi_{44}, \pi_{33}, \pi_{22}, \pi_{11})$, $\pi[1] = (\pi_{34}, \pi_{23}, \pi_{12}), \ldots, \pi[10] = \emptyset$, \ldots
Tailed Inset Case

(q, t)-hook formula for Tailed Insets
Tailed Insets

Definition

Let \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) and \(\beta = (\beta_1, \beta_2) \) be strict partitions such that

\[
\alpha_1 > \alpha_2 > \alpha_3 \geq 0, \quad \beta_1 > \beta_2 \geq 0.
\]

Let \(P \) be the set \(P = P_H \cup P_M \cup P_L \cup P_R \cup P_T \) of lattice points in \(\mathbb{Z}^2 \), where \(P_M = \{ (2, 1) \} \), \(P_T = \{ (4, 4) \} \) and

\[
\begin{align*}
P_H &= \{ (1, j) : -\beta_1 + 1 \leq j \leq 0 \}, \\
P_R &= \{ (i, j) : 1 \leq i \leq j \leq \alpha_i + i (i = 1, 2, 3) \}, \\
P_L &= \{ (i + 1, j + 1) : 1 \leq j \leq i \leq \beta_j + j (j = 1, 2) \}.
\end{align*}
\]

We regard \(P \) as a poset by defining the order relation

\[
(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.
\]

if neither of \((i_1, j_1)\) and \((i_2, j_2)\) is not in \(P_T \), whereas \((3, 3) < (4, 4)\). We call this poset a Tailed Inset, denoted by \(P_5(\alpha, \beta) \).
Tailed Insets

Definition

Let \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) and \(\beta = (\beta_1, \beta_2) \) be strict partitions such that

\[
\alpha_1 > \alpha_2 > \alpha_3 \geq 0, \quad \beta_1 > \beta_2 \geq 0.
\]

Let \(P \) be the set \(P = P_H \cup P_M \cup P_L \cup P_R \cup P_T \) of lattice points in \(\mathbb{Z}^2 \), where \(P_M = \{ (2, 1) \} \), \(P_T = \{ (4, 4) \} \) and

\[
\begin{align*}
P_H &= \{ (1, j) : -\beta_1 + 1 \leq j \leq 0 \}, \\
P_R &= \{ (i, j) : 1 \leq i \leq j \leq \alpha_i + i \ (i = 1, 2, 3) \}, \\
P_L &= \{ (i + 1, j + 1) : 1 \leq j \leq i \leq \beta_j + j \ (j = 1, 2) \}.
\end{align*}
\]

We regard \(P \) as a poset by defining the order relation

\[
(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.
\]

if neither of \((i_1, j_1) \) and \((i_2, j_2) \) is not in \(P_T \), whereas \((3, 3) < (4, 4) \). We call this poset a Tailed Inset, denoted by \(P_5(\alpha, \beta) \).
Tailed Insets

Definition

Let \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \) and \(\beta = (\beta_1, \beta_2) \) be strict partitions such that

\[
\alpha_1 > \alpha_2 > \alpha_3 \geq 0, \quad \beta_1 > \beta_2 \geq 0.
\]

Let \(P \) be the set \(P = P_H \cup P_M \cup P_L \cup P_R \cup P_T \) of lattice points in \(\mathbb{Z}^2 \), where \(P_M = \{(2, 1)\} \), \(P_T = \{(4, 4)\} \) and

\[
\begin{align*}
P_H &= \{(1, j) : -\beta_1 + 1 \leq j \leq 0\}, \\
P_R &= \{(i, j) : 1 \leq i \leq j \leq \alpha_i + i \ (i = 1, 2, 3)\}, \\
P_L &= \{(i + 1, j + 1) : 1 \leq j \leq i \leq \beta_j + j \ (j = 1, 2)\}.
\end{align*}
\]

We regard \(P \) as a poset by defining the order relation

\[
(i_1, j_1) \geq (i_2, j_2) \iff i_1 \leq i_2 \text{ and } j_1 \leq j_2.
\]

if neither of \((i_1, j_1)\) and \((i_2, j_2)\) is not in \(P_T \), whereas \((3, 3) < (4, 4)\). We call this poset a **Tailed Inset**, denoted by \(P_5(\alpha, \beta) \).
Tailed Insets

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Tailed Insets

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
Definition

Let $\pi = (\sigma, \tau, \rho, \gamma, \delta) \in A(P)$ be a P-partition as in the following figure.
Let p_i (resp. q_i) denote the number of vertices in the ith diagonal of λ (resp. μ) for $i \geq 1$, whereas we set $p_0 = 3$ and $q_0 = 2$. We define $\varepsilon = (\varepsilon_{c,c+1})_{c \in \mathbb{Z}}$ as follows. If $c \geq 1$,

$$\varepsilon_{c,c+1} = \begin{cases} + & \text{if } p_c = p_{c-1}, \\ - & \text{if } p_c = p_{c-1} - 1, \end{cases}$$

and if $c \leq 0$,

$$\varepsilon_{c,c+1} = \begin{cases} - & \text{if } q_{-c+1} = q_{-c}, \\ + & \text{if } q_{-c+1} = q_{-c} - 1. \end{cases}$$

The color of each vertex is shown in the figure above. In this example, we have $(p_i)_{i \geq 1} = (332211100 \ldots)$, $(q_i)_{i \geq 1} = (221100 \ldots)$ and $p_0 = 3$, $q_0 = 2$ by definition. Hence we have $\varepsilon_\lambda = (\cdots - - + - + - - + - + - - + - + - + + \cdots)$ as in the above figure.
If we set

\[W^c_d(\pi; q, t) = \prod_{x, y \in \mathcal{P}, x < y} f_{q, t} \left(\pi(x) - \pi(y); \left\lfloor \frac{r(y) - r(x)}{2} \right\rfloor \right) \]

if \(c \) and \(d \) are adjacent colors in \(\hat{T} \), and

\[W^c_{D+}(\pi; q, t) = \prod_{x, y \in \mathcal{P}, x < y} f_{q, t} \left(\pi(x) - \pi(y); \left\lfloor \frac{r(y) - r(x)}{2} \right\rfloor \right), \]

\[W^c_{D-}(\pi; q, t) = \prod_{x, y \in \mathcal{P}, x < y} f \left(\pi(x) - \pi(y); \left\lfloor \frac{r(y) - r(x)}{2} \right\rfloor - 1 \right), \]

then we have

\[W_P(\pi; q, t) = \frac{\prod_{c \text{ and } d \text{ are adjacent in } \hat{T}} W^c_d(\pi; q, t)}{\prod_{c \text{ all colors in } \hat{T}} W^c_D(\pi; q, t)}. \]

where

\[W^c_D(\pi; q, t) = W^c_{D+}(\pi; q, t) W^c_{D-}(\pi; q, t). \]
If \(\lambda \) and \(\mu \) are partitions such that \(\lambda - \mu \) is a horizontal strip, then it is known that

\[
\psi_{\lambda/\mu}(q, t) = \prod_{1 \leq i \leq j \leq \ell(\mu)} \frac{f_{q, t}(\lambda_i - \mu_j; j - i) f_{q, t}(\mu_i - \lambda_{j+1}; j - i)}{f_{q, t}(\mu_i - \mu_j; j - i) f_{q, t}(\lambda_i - \lambda_{j+1}; j - i)},
\]

\[
\varphi_{\lambda/\mu}(q, t) = \prod_{1 \leq i \leq j \leq \ell(\lambda)} \frac{f_{q, t}(\lambda_i - \mu_j; j - i) f_{q, t}(\mu_i - \lambda_{j+1}; j - i)}{f_{q, t}(\lambda_i - \lambda_j; j - i) f_{q, t}(\mu_i - \mu_{j+1}; j - i)}.
\]

Under the assumption that \(\lambda \supseteq \mu \) if \(\varepsilon = - \), or \(\lambda \subseteq \mu \) if \(\varepsilon = + \), we write

\[
\psi_{<\lambda/\mu} = \begin{cases}
\psi_{\lambda/\mu} & \text{if } \varepsilon = - , \\
\varphi_{\mu/\lambda} & \text{if } \varepsilon = + ,
\end{cases}
\]

\[
\Phi_{<\lambda/\mu} = \begin{cases}
\varphi_{\lambda/\mu} & \text{if } \varepsilon = - , \\
\psi_{\mu/\lambda} & \text{if } \varepsilon = + .
\end{cases}
\]
Definition

I) For $0 \leq c \leq \lambda_1$, we define the partition Λ^c of length $\leq p_c$ by

$$\Lambda^c = (\sigma_{p_c+p_c+c}, \ldots, \sigma_{1,1+c}) = (\sigma_{p+c+1-i, p+c+1-i+c})_{1\leq i \leq p_c}.$$

II) Now we set

$$\Lambda^{-1} = (\tau_{q_1+1,q_1}, \ldots, \tau_{2,1}, \gamma, \rho_1),$$

where $q_1 = 1$ or 2.

III) If $-\mu_1 \leq c \leq -2$, then we set

$$\Lambda^c = (\tau_{q_c-c,q_c}, \ldots, \tau_{1-c,1}, \gamma, \ldots, \gamma, \rho_c),$$

where $q_{-c} = 1$ or 2.

IV) If $c = -\mu_1 - 1$, then we set

$$\Lambda^{-\mu_1-1} = (\gamma, \gamma, \ldots, \gamma).$$
Definition

I) For $0 \leq c \leq \lambda_1$, we define the partition Λ^c of length $\leq p_c$ by

$$\Lambda^c = (\sigma_{p_c, p_c+c}, \ldots, \sigma_{1, 1+c}) = (\sigma_{p_c+1-i, p_c+1-i+c})_{1 \leq i \leq p_c}.$$

II) Now we set

$$\Lambda^{-1} = (\tau_{q_1+1, q_1}, \ldots, \tau_{2, 1}, \gamma, \rho_1),$$

where $q_1 = 1$ or 2.

III) If $-\mu_1 \leq c \leq -2$, then we set

$$\Lambda^c = (\tau_{q_{-c}-c, q_{-c}}, \ldots, \tau_{1-c, 1}, \gamma, \ldots, \gamma, \rho_{-c}),$$

where $q_{-c} = 1$ or 2.

IV) If $c = -\mu_1 - 1$, then we set

$$\Lambda^{-\mu_1-1} = (\gamma, \gamma, \ldots, \gamma).$$
Definition

I) For $0 \leq c \leq \lambda_1$, we define the partition Λ^c of length $\leq p_c$ by

$$\Lambda^c = (\sigma_{p_c,p_c+c}, \ldots, \sigma_{1,1+c}) = (\sigma_{p_c+1-i,p_c+1-i+c})_{1 \leq i \leq p_c}.$$

II) Now we set

$$\Lambda^{-1} = \left(\tau_{q_1+1,q_1}, \ldots, \tau_{2,1}, \gamma, \rho_1\right),$$

where $q_1 = 1$ or 2.

III) If $-\mu_1 \leq c \leq -2$, then we set

$$\Lambda^c = \left(\tau_{q_c-c,q_c}, \ldots, \tau_{1-c,1}, \gamma, \ldots, \gamma, \rho_{-c}\right),$$

where $q_{-c} = 1$ or 2.

IV) If $c = -\mu_1 - 1$, then we set

$$\Lambda^{-\mu_1-1} = (\gamma, \gamma, \ldots, \gamma).$$
Definition

I) For $0 \leq c \leq \lambda_1$, we define the partition Λ^c of length $\leq p_c$ by

$$\Lambda^c = (\sigma_{p_c, p_c+c}, \ldots, \sigma_{1, 1+c}) = (\sigma_{p_c+1-i, p_c+1-i+c})_{1 \leq i \leq p_c}.$$

II) Now we set

$$\Lambda^{-1} = (\tau_{q_1+1, q_1}, \ldots, \tau_{2, 1}, \gamma, \rho_1),$$

where $q_1 = 1$ or 2.

III) If $-\mu_1 \leq c \leq -2$, then we set

$$\Lambda^c = (\tau_{q_{-c}, q_{-c}}, \ldots, \tau_{1-c, 1}, \gamma, \ldots, \gamma, \rho_{-c}),$$

where $q_{-c} = 1$ or 2.

IV) If $c = -\mu_1 - 1$, then we set

$$\Lambda^{-\mu_1-1} = (\gamma, \gamma, \ldots, \gamma).$$
Definition

I) For $0 \leq c \leq \lambda_1$, we define the partition Λ^c of length $\leq p_c$ by

$$\Lambda^c = (\sigma_{p_c, p_c+c}, \ldots, \sigma_{1,1+c}) = (\sigma_{p_c+1-i, p_c+1-i+c})_{1 \leq i \leq p_c}.$$

II) Now we set

$$\Lambda^{-1} = \left(\tau_{q_1+1,q_1}, \ldots, \tau_{2,1}, \gamma, \rho_1\right),$$

where $q_1 = 1$ or 2.

III) If $-\mu_1 \leq c \leq -2$, then we set

$$\Lambda^c = \left(\tau_{q_c-c,q_c}, \ldots, \tau_{1-c,1}, \gamma, \ldots, \gamma, \rho_{-c}\right),$$

where $q_{-c} = 1$ or 2.

IV) If $c = -\mu_1 - 1$, then we set

$$\Lambda^{-\mu_1-1} = (\gamma, \gamma, \ldots, \gamma).$$
(q, t)-weight by Pieri coefficient

Theorem

If \(P = P_5(\lambda, \mu) \) is the Tailed Insets corresponding to strict partitions \(\lambda \) and \(\mu \), then we have

\[
W_P(\pi; q, t) = \frac{f_{q,t}(\gamma; 0) \prod_{i=1}^{3} f_{q,t}(\delta - \sigma_{i,i}; 3 - i)}{f_{q,t}(\delta - \gamma; 2) f_{q,t}(\delta - \gamma; 1)} \prod_{c=-\mu_1-1}^{\lambda_1} \psi^{c,c+1}_{\Lambda_c/\Lambda_{c+1}}.
\]

Proposition

We set

\[
Z_c = \prod_{k=-\mu_1-1}^{c} z_k, \quad Z_{c,d} = \frac{Z_d}{Z_c} = \prod_{k=c+1}^{d} z_k,
\]

where \(z_{-\mu_1-1} \) is a dummy variable which does not appear in the original weight. Then we have

\[
z^{\pi} = \prod_{c=-\mu_1-1}^{\lambda_1} \frac{Z_c^{\gamma+\delta}}{Z_c^{\gamma}} \cdot \prod_{c=-\mu_1-1}^{\lambda_1} Z_c^{\Lambda_c - \Lambda_{c+1}}.
\]
Theorem

If \(P = P_5(\lambda, \mu) \) is the Tailed Insets corresponding to strict partitions \(\lambda \) and \(\mu \), then we have

\[
W_P(\pi; q, t) = \frac{f_{q,t}(\gamma; 0) \prod_{i=1}^{3} f_{q,t}(\delta - \sigma_{i,i}; 3 - i)}{f_{q,t}(\delta - \gamma; 2)f_{q,t}(\delta - \gamma; 1)} \prod_{c=-\mu_1-1}^{\lambda_1} \psi^{c,c+1}_{\Lambda_c/\Lambda_{c+1}}.
\]

Proposition

We set

\[
Z_c = \prod_{k=-\mu_1-1}^{c} z_k,
\]

\[
Z_{c,d} = \frac{Z_d}{Z_c} = \prod_{k=c+1}^{d} z_k,
\]

where \(z_{-\mu_1-1} \) is a dummy variable which does not appear in the original weight. Then we have

\[
z^{\pi} = \frac{Z_{\mu_1+1}^{\gamma+\delta}}{\prod_{c=-\mu_1-1}^{\lambda_1} Z_c^{c}} \cdot \prod_{c=-\mu_1-1}^{\lambda_1} Z_c^{c} Z_{\Lambda_c/\Lambda_{c+1}}.
\]
We use the convention that $\varepsilon_{-\mu_1-1,-\mu_1} = +$ and $\varepsilon_{c,c+1} = -$ for $c < -\mu_1 - 1$. Note that $\#\{c < 0 \mid \varepsilon_{c,c+1} = +\} = 2$. Because $\varepsilon_{-\mu_1-1,-\mu_1} = +$ and $\varepsilon_{c,c+1} = -$ for $c < -\mu_1 - 1$, we may set

$$\{c < 0 \mid \varepsilon_{c,c+1} = +\} = \{c_1^-, c_2^-\}.$$

where $-\mu_1 - 1 = c_2^- < c_1^- < 0$ Also note that $\#\{c \geq 0 \mid \varepsilon_{c,c+1} = -\} = 3$. Because $\varepsilon_{\lambda_1,\lambda_1+1} = -$ and $\varepsilon_{c,c+1} = +$ for $c > \lambda_1$, we may set

$$\{c \geq 0 \mid \varepsilon_{c,c+1} = -\} = \{c_1^+, c_2^+, c_3^+\}.$$

where $0 \leq c_1^+ < c_2^+ < c_3^+ = \lambda_1$. Hence we have

$$-\mu_1 - 1 = c_2^- < c_1^- < 0 \leq c_1^+ < c_2^+ < c_3^+ = \lambda_1.$$
Theorem

$$\sum W_P(\pi; q, t) z^\pi = \prod_{0 \leq i < j} \prod (Z_i^{-1}; Z_j; q, t) \prod_{i < j < 0} \prod (Z_i^{-1}; Z_j; q, t) \times$$

$$\times \sum_{\sigma_{1,1}, \sigma_{2,2}, \sigma_{3,3} \atop \gamma, \delta, \nu_3} f_{q,t}(\gamma; 0) \prod_{i=1}^{3} f_{q,t}(\delta - \sigma_{i,i}; 3 - i) \frac{f_{q,t}(\delta - \gamma; 2)f_{q,t}(\delta - \gamma; 1)}{f_{q,t}(\delta - \gamma; 2)} . \frac{Z_\gamma^{\gamma+\delta}}{\prod_{c=-\mu_1-1}^{-1} Z_c^\nu}$$

$$\times P_{\Lambda^0}(Z_{c_2}^+, Z_{c_3}^+, Z_{\lambda_1}; q, t) \times Q_{\Lambda^0/\nu}(Z_{-\mu_1-1}^{-1}, Z_{c_i}^{-1}; q, t) P_{\Lambda^{-\mu_1-1}/\nu}(Z_{-\mu_1}, \ldots, \widehat{Z_{c_i}}, \ldots Z_{-1}; q, t),$$

where the sum runs over

$$0 \leq \nu_3 \leq \sigma_{1,1} \leq \gamma \leq \sigma_{2,2} \leq \sigma_{3,3} \leq \delta$$

and $\Lambda^0 = (\sigma_{3,3}, \sigma_{2,2}, \sigma_{1,1})$, $\Lambda^{-\mu_1-1} = (\gamma, \gamma, \ldots, \gamma)$ and $\nu = (\gamma, \gamma, \nu_3)$.

Masao Ishikawa

(q, t)-hook formula for Tailed Insets
We put $P = P_1 \cup P_2 \cup P_3 \cup P_4 \cup P_5 \cup P_6$, where

\begin{align*}
P_1 &= \{(i, i + c) \mid j > 3, \ 1 \leq i \leq p_i, \ 1 \leq c \leq \lambda_1, \}\, , \\
P_2 &= \{(j + 1 - c, j + 1) \mid i > 3, \ 1 \leq j \leq q_c, \ -\mu_1 \leq c \leq -1\} \\
P_3 &= \{(i, j) \mid 1 \leq i \leq 3, \ 2 \leq j \leq 3\} , \\
P_4 &= \{(2, 1), (1, 1), (1, 0)\} , \\
P_5 &= \{(1, c + 1) \mid -\mu_1 \leq c \leq -2\} , \\
P_6 &= \{(4, 4)\}
\end{align*}

and we write

\[R_i = \prod_{v \in P_i} F(z[H_P(v)] ; q, t) , \]

for $i = 1, \ldots, 6$.
Right-hand side

\[\begin{align*}
& c_2^- = -5, \quad c_1^- = -3. \\
& c_1^+ = 2, \quad c_2^+ = 4, \quad c_3^+ = 7.
\end{align*} \]
Interpretation of RHS

Proposition

By direct computation, it is not hard to see

\[R_1 = \prod_{0 \leq i < j \atop \varepsilon_{i,i+1} = + \atop \varepsilon_{i,j+1} = -} F(Z_{i,j}; q, t), \]

\[R_2 = \prod_{i < j < 0 \atop \varepsilon_{i,i+1} = + \atop \varepsilon_{i,j+1} = -} F(Z_{i,j}; q, t). \]

\[R_3 = \prod_{i < 0 \leq j \atop \varepsilon_{i,i+1} = + \atop \varepsilon_{i,j+1} = -} F(wZ_{i,j}; q, t) \]

\[= F(wZ_{c_1^-c_1^+}; q, t) F(wZ_{c_1^-c_2^+}; q, t) F(wZ_{c_1^-c_3^+}; q, t) \]

\[\times F(wZ_{c_2^-c_1^+}; q, t) F(wZ_{c_2^-c_2^+}; q, t) F(wZ_{c_2^-c_3^+}; q, t) \]
Proposition

\[R_4 = F\left(wZ_{c_2^-}c_1^+Z_{c_1^-}c_2^+; q, t\right)F\left(wZ_{c_2^-}c_1^+Z_{c_1^-}c_3^+; q, t\right)F\left(wZ_{c_2^-}c_3^+Z_{c_1^-}c_2^+; q, t\right) \]

\[P_5 = \prod_{c=-\mu_1}^{c_1^-} \prod_{c\neq c_1^-}^{c_1^-} F\left(w^2Z_{c_2^-}c_1^+Z_{c_1^-}c_2^+Z_{c,c_3^+}; q, t\right) \]
Thank you for your attention!