A Pieri-type formula and a factorization formula for K-k-Schur functions

Motoki TAKIGIKU

The University of Tokyo

February 22, 2018

Introduction

K-k-Schur functions $g_{\lambda}^{(k)}$:symmetric functions parametrized by k-bounded partitions λ

 $\begin{array}{l} \underline{\text{Roughly speaking}} \dots & \text{they appear in "type affine A combinatorics"} \\ \hline (A) \\ \text{partitions } \mathcal{P}, \text{ Schur functions } s_{\lambda}, \text{ symmetric groups } S_n, \text{ Grassmannian,} \\ \dots \\ \hline (affine A) \\ k\text{-bounded partitions } \mathcal{P}_k, \ k+1\text{-core partitions } \mathcal{C}_{k+1}, \text{ affine symmetric groups } \tilde{S}_{k+1}, \text{ affine Grassmannian, } k\text{-Schur functions } s_{\lambda}^{(k)}, \ K\text{-}k\text{-Schur functions } g_{\lambda}^{(k)}, \dots \end{array}$

Introduction

History

(conjecturally) equivalent definitions of the k-Schur function $s_{\lambda}^{(k)}$:

- * Using tableaux atoms (Lascoux, Lapointe and Morse, 2003)
- * Using a certain symmetric function operator (Lapointe and Morse, 2003)
- * Using a Pieri-type formula (Lapointe and Morse, 2007)
 - shown to be the Schubert basis of the homology of the affine Grassmannian (Lam, 2008)
 - * K-theoretic version: K-k-Schur function $g_{\lambda}^{(k)}$
 - * as the Schubert basis of the *K*-homology of the affine Grassmannian (Lam, Schilling and Shimozono, 2010)
 - * Pieri-type formula (Morse, 2012) \leftarrow we start here
- * As a generating function of *strong marked tableaux* (Lam, Lapointe, Morse and Shimozono, 2010)

Introduction

<u>Outline</u>

- * Start with the Pieri formula for K-k-Schur functions $g_{\lambda}^{(k)}$
- * Consider $\widetilde{g}_{\lambda}^{(k)} := \sum_{\mu \leq \lambda} g_{\mu}^{(k)}$
- * Prove a Pieri-type formula

$$\widetilde{g}_{\lambda}^{(k)}\widetilde{h}_{r}=\sum_{\mu}\pm\widetilde{g}_{\mu}^{(k)}$$

where $\tilde{h}_r = h_0 + h_1 + \cdots + h_r$.

* Prove a k-rectangle factorization formula

$$\widetilde{g}_{R_t\cup\lambda}^{(k)}=\widetilde{g}_{R_t}^{(k)}\widetilde{g}_\lambda^{(k)}.$$

$$(R_t = (t^{k+1-t}) = (t, \ldots, t))$$

* Main tool: Bruhat orderings of affine symmetric groups

1 Background Objects

Weak strips and (K-)k-Schur functions

8 Results

Preliminaries: Type A

$$\mathcal{P} = \{\lambda = (\lambda_1 \ge \lambda_2 \ge \dots) \mid \lambda_i \in \mathbb{Z}_{\ge 0}, \sum_i \lambda_i < \infty\}$$

e.g. (4, 3, 1) \longleftrightarrow its Young diagram
(French notation)

 $\Lambda = \mathbb{Z}[h_1, h_2, \dots]: \text{ the ring of symmetric functions,}$ where $h_r = \sum_{i_1 \leq \dots \leq i_r} x_{i_1} \dots x_{i_r}.$

Schur function s_{λ} ($\lambda \in \mathcal{P}$) is characterized by the Pieri rule:

$$h_r s_\lambda = \sum_{\mu/\lambda: ext{horizontal strip of size } r} s_\mu \quad ext{ for } \lambda \in \mathcal{P}, \ r \geq 1$$

 $(\mu/\lambda: \text{ horizontal strip } \iff \mu_1 \ge \lambda_1 \ge \mu_2 \ge \lambda_2 \ge \dots)$

Preliminaries

In the theory of (K-)k-Schur functions,

Underlying objects: $\mathcal{P} \rightsquigarrow \mathcal{P}_k(\simeq \mathcal{C}_{k+1} \simeq \tilde{S}_{k+1}^\circ)$ Pieri rule : horizontal strips \rightsquigarrow weak strips Fix $k \in \mathbb{Z}_{>0}$.

 $\mathcal{P}_k = \{k \text{-bounded partitions}\} := \{\lambda \in \mathcal{P} \mid \lambda_1 < k\}$ $C_{k+1} = \{k + 1 \text{-core partitions}\}$ $:= \{ \kappa \in \mathcal{P} \mid \text{No hook with length} = k + 1 \}$ $ilde{S}_{k+1} = \langle s_0, s_1, \dots, s_k \rangle / \begin{pmatrix} s_i^2 = 1 \\ s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \\ s_i s_i = s_i s_i \ (i - j \neq 0, \pm 1) \end{pmatrix}$ (all indices are mod k+1) $S_{k+1} = \langle s_1, \ldots, s_k \rangle \subset \tilde{S}_{k+1}.$ $\tilde{S}_{k+1}^{\circ} = \{ \text{affine Grassmannian elements} \}$:= minimal length representatives of \tilde{S}_{k+1}/S_{k+1} $= \{ w \in \tilde{S}_{k+1} \mid l(wx) = l(w) + l(x) \; (\forall x \in S_{k+1}) \}$ $= \{ w \in \tilde{S}_{k+1} \mid \text{any reduced expression for } w \text{ ends in } s_0 \}.$

Theorem

$$\mathcal{P}_k \simeq \mathcal{C}_{k+1} \simeq \tilde{S}_{k+1}^\circ.$$

Bijection
$$\mathcal{P}_k \simeq \mathcal{C}_{k+1} \simeq \widetilde{S}_{k+1}^\circ$$

$$\frac{\mathfrak{p} \colon \mathcal{C}_{k+1} \longrightarrow \mathcal{P}_k; \kappa \mapsto \lambda}{\text{given by } \lambda_i = \#\{j \mid (i,j) \in \kappa, \text{ hook}_{(i,j)}(\kappa) \leq k\}.}$$

Example. $k = 4 \ (C_5 \longrightarrow P_4)$

"count the cells with hook length $\leq k$ "

$$\mathfrak{c}\colon \mathcal{P}_k \longrightarrow \mathcal{C}_{k+1}; \lambda \mapsto \kappa$$

Example.
$$k = 4 \ (\mathcal{P}_3 \longrightarrow \mathcal{C}_4)$$

1: for
$$i = l(\lambda), ..., 1$$
 :

while there is a cell with hook length > k in *i*-th row :
 slide *i*-th row to the right

$$\mathfrak{s}: \widetilde{S}_{k+1}^{\circ} \longrightarrow \mathcal{C}_{k+1}$$

<u>Def.</u> residue of a cell $(i,j) := j - i \mod k + 1 \in \mathbb{Z}_{k+1}$.

Action of s_i on C_{k+1} : (exactly one of the following happens)

- * if there exist addable corners of residue *i*, add them all
- * if there exist removable corners of residue *i*, remove them all
- * otherwise, do nothing

Example. k = 3

<u>Fact</u> This gives a well-defined action of \tilde{S}_{k+1} on C_{k+1} , and induces a bijection $\mathfrak{s}: \tilde{S}_{k+1}^{\circ} \longrightarrow C_{k+1}; w \mapsto w \cdot \emptyset$.

$$\mathcal{P}_k \longrightarrow \widetilde{S}_{k+1}^\circ; \lambda \mapsto w_\lambda$$

"reading the residues" from the shortest row to the largest, and within each row from right to left.

Example. $k = 3 \ (C_4 \simeq \mathcal{P}_3 \simeq \tilde{S}_4^\circ)$

The strong and weak orders

(W, S): a Coxeter group The (left) weak order \leq_L is given by the covering relation

$$u \leq _L v \iff l(u) + 1 = l(v), \ su = v \ (\exists s \in S).$$

The strong order (Bruhat order) \leq is given by the covering relation

$$u \leqslant v \iff l(u) + 1 = l(v),$$

$$u = s_1 \dots \widehat{s_i} \dots s_m (\exists i)$$

for \exists reduced expression $v = s_1 \dots s_m$.

 \rightsquigarrow We induce $\leq \leq_{L}$ on $\tilde{S}_{k+1}^{\circ} (\simeq C_{k+1} \simeq \mathcal{P}_{k})$.

Example. $\mathcal{P}_3 \simeq \mathcal{C}_4 \simeq \tilde{S}_4^{\circ}$. ($\mathfrak{c}(\lambda)$ and w_{λ} are displayed)

1 Background Objects

2 Weak strips and (K-)k-Schur functions

8 Results

Definition (Cyclically decreasing sequence)

A sequence (i_1, \ldots, i_m) in $\mathbb{Z}_{k+1} = \{0, 1, \ldots, k\}$ is cyclically decreasing if $\not\exists a < b \text{ s.t. } i_b \equiv i_a \text{ or } i_a + 1 \mod k + 1.$

i.e. there is no appearance of

 $\dots, j, \dots, j, \dots$ nor $\dots, j, \dots, j+1, \dots$

in $(i_1, ..., i_m)$.

Definition (Cyclically decreasing element) For $A = \{i_1, \dots, i_m\} \subsetneq \mathbb{Z}_{k+1}$ where (i_1, \dots, i_m) is cyclically decreasing, $d_A := s_{i_1} \dots s_{i_m} \ (\in \tilde{S}_{k+1}).$

Example. k = 5. $A = \{0, 1, 3, 5\} \subsetneq \mathbb{Z}_6$. $\rightsquigarrow d_A = s_1 s_0 s_5 s_3 = s_1 s_0 s_3 s_5 = s_1 s_3 s_0 s_5 = s_3 s_1 s_0 s_5$.

Weak Strips and k-Schur functions

Definition (weak strip)

For
$$\lambda, \mu \in \mathcal{P}_k$$
, μ/λ : a weak strip of size r
: $\iff \exists A \subsetneq \mathbb{Z}_{k+1} \text{ s.t. } |A| = r$, $w_\mu = d_A w_\lambda \ge_L w_\lambda$
($\iff \exists A \subsetneq \mathbb{Z}_{k+1} \text{ s.t. } |A| = r$, $w_\mu = d_A w_\lambda$, $l(w_\mu) = l(d_A) + l(w_\lambda)$)

Remark. In fact,

$$\mu/\lambda: \text{ a weak strip } \iff \begin{cases} \mathfrak{c}(\mu)/\mathfrak{c}(\lambda): \text{ horizontal strip} \\ w_{\mu} \geq_{L} w_{\lambda} \\ \end{cases}$$
$$\underset{\mathfrak{p}(\mathfrak{c}(\mu)')/\mathfrak{p}(\mathfrak{c}(\lambda)'): \text{ vertical strip} \end{cases}$$

.

Weak Strips and k-Schur functions

Definition (k-Schur function)

k-Schur functions $s_{\lambda}^{(k)}$ is characterized by $s_{\varnothing}^{(k)}=1$ and

$$h_r s_{\lambda}^{(k)} = \sum_{\mu/\lambda: \text{ weak strip of size } r} s_{\mu}^{(k)}.$$
 (for $\lambda \in \mathcal{P}_k, \ r \leq k$)

Remark.

$$\{s_{\lambda}^{(k)}\}_{\lambda \in \mathcal{P}_k}$$
 is \mathbb{Z} -bases of $\Lambda^{(k)} = \mathbb{Z}[h_1, \dots, h_k]$.
 $s_{\lambda}^{(k)}$: homogeneous

Weak strips and (K-)k-Schur functions

Weak set-valued strips and K-k-Schur functions

For
$$i \in \mathbb{Z}_{k+1}$$
, let $\phi_i \colon \tilde{S}_{k+1} \longrightarrow \tilde{S}_{k+1}$; $\phi_i(x) = \begin{cases} x & (\text{if } x > s_i x) \\ s_i x & (\text{if } x < s_i x) \end{cases}$
For $x = s_{i_1} \dots s_{i_m}$ (red. exp.), let $\phi_x = \phi_{i_1} \dots \phi_{i_m}$.

Definition (weak set-valued strip)

$$(\mu/\lambda, A)$$
: a weak set-valued strip of size r
: $\iff \exists A \subsetneq \mathbb{Z}_{k+1} \text{ s.t. } |A| = r, w_{\mu} = \phi_{d_A}(w_{\lambda}).$

Definition (*K*-*k*-Schur function)

ŀ

K-k-Schur functions
$$g_{\lambda}^{(k)}$$
 is characterized by $g_{\varnothing}^{(k)} = 1$ and
 $h_r g_{\lambda}^{(k)} = \sum_{(\mu/\lambda, A): \text{ weak set-valued strip of size } r} (-1)^{|A| - (|\mu| - |\lambda|)} g_{\mu}^{(k)}.$

Weak strips and (K-)k-Schur functions

$$\begin{array}{c} \textit{Example. } k = 3. \ \lambda = \fbox{P}_{3}, \ \mathfrak{c}(\lambda) = \vcenter{P}_{3}, \ \mathfrak{c}(\lambda) = \mathrel{P}_{3}, \$$

Remark.

$$\{g_{\lambda}^{(k)}\}_{\lambda \in \mathcal{P}_k}$$
 in \mathbb{Z} -bases of $\Lambda^{(k)} = \mathbb{Z}[h_1, \dots, h_k]$.
 $g_{\lambda}^{(k)}$: inhomogeneous, highest degree term $= s_{\lambda}^{(k)}$

Background Objects

2 Weak strips and (K-)k-Schur functions

3 Results

Auxiliary Results (A): On the lattice property on W

For (P, \leq) : poset, $a, b \in P$, their meet $a \wedge b := \max\{c \in P \mid a \geq c \leq b\}$ (if max exists), their join $a \vee b := \min\{c \in P \mid a \leq c \geq b\}$ (if min exists).

Let W: \forall Coxeter group, $x, y \in W$.

Fact

$$\begin{aligned} x \wedge_L y &= \max_{\leq_L} \{ z \mid x \geq_L z \leq_L y \} \text{ exists.} \\ x \vee_L y &= \min_{\leq_L} \{ z \mid x \leq_L z \geq_L y \} \text{ exists if } \{ z \mid x \leq_L z \geq_L y \} \neq \emptyset \end{aligned}$$

Remark.

$$x \wedge y = \max_{\leq} \{z \mid x \geq z \leq y\}$$
 and
 $x \vee y = \min_{\leq} \{z \mid x \leq z \geq y\}$ do not always exist.

Auxiliary Results (A): On the lattice property on W

W: \forall Coxeter group $x, y \in W$.

Lemma (T.) $x_S \wedge_L y := \max_{\leq} \{z \in W \mid x \geq z \leq_L y\}$ exists. $x_S \vee_L y := \min_{\leq} \{z \in W \mid x \leq z \geq_L y\}$ exists.

Sketch: present

$$egin{array}{lll} x=s_{i_1}\ldots s_{i_n} & s_{j_{a_1}}\ldots s_{j_{a_t}} & (1\leq a_1<\cdots < a_l\leq m) \ y=& s_{j_1}\ldots \ldots s_{j_m} \end{array}$$

so that t is maximal. Then

$$x_L \wedge_S y = s_{j_{a_1}} \dots s_{j_{a_t}}$$
$$x_S \vee_L y = s_{i_1} \dots s_{i_n} s_{j_1} \dots \dots s_{j_m}$$

Auxiliary Results (B): On the weak strips

Lemma (T.)

$$d_A\lambda/\lambda, \ d_B\lambda/\lambda: w.s. \Longrightarrow \begin{cases} d_{A\cup B}\lambda/\lambda, \ d_{A\cap B}\lambda/\lambda: w.s. \\ d_{A\cap B}\lambda = (d_A\lambda) \wedge (d_B\lambda) \ under \leq . \end{cases}$$

where "w.s." = weak strip, \leq : strong order

Main Results (A) a Pieri-type formula

For $\lambda \in \mathcal{P}_k$ and 1 < r < k, let $\widetilde{g}_{\lambda}^{(k)} = \sum g_{\mu}^{(k)},$ $\widetilde{h}_r = h_0 + h_1 + \cdots + h_r.$ $\mu \leq \lambda$ Let $\{d_{A_1}\lambda, d_{A_2}\lambda, \dots\}$ be the list of weak strips over λ of size r. Theorem (T.) $\widetilde{g}_{\lambda}^{(k)}\widetilde{h}_r = \sum g_{\mu}^{(k)}$ $\mu \leq d_{A_i} \lambda \ (\exists i)$ $=\sum_{a}\widetilde{g}_{d_{A_{a}}\lambda}^{(k)}-\sum_{\gamma < b}\widetilde{g}_{d_{A_{a}}\cap A_{b}}^{(k)}\lambda+\sum_{a < b < c}\widetilde{g}_{d_{A_{a}}\cap A_{b}}^{(k)}\lambda-\ldots.$

(The second equiality is from $d_{B\cap C}\lambda = (d_B\lambda) \wedge (d_C\lambda)$ and the Inclusion-Exclusion Principle)

Motoki TAKIGIKU (Univ. Tokyo) A Pieri-type formula and a factorization form

Example. k = 3.

Motoki TAKIGIKU (Univ. Tokyo) A Pieri-type formula a

A Pieri-type formula and a factorization form

Main Results (B): *k*-rectangle factorization (1)

k-rectangle:
$$R_t = \underbrace{(t, \dots, t)}_{k+1-t} \in \mathcal{P}_k$$
 for $1 \le t \le k$

Theorem (Lapointe, Morse)

 $s_{R_t\cup\lambda}^{(k)}=s_{R_t}^{(k)}s_{\lambda}^{(k)}$ for $\forall\lambda\in\mathcal{P}_k.$

Here,

 $\mu \cup \nu =$ the partition obtained by reordering $(\mu_1, \ldots, \mu_{l(\mu)}, \nu_1, \ldots, \nu_{l(\nu)})$

Main Results (B): *k*-rectangle factorization (2)

Similar formula for
$$g_{\lambda}^{(k)}$$
?
 $\rightarrow \begin{cases} g_{R_t}^{(k)} | g_{R_t \cup \lambda}^{(k)} \text{ (in } \mathbb{Z}[h_1, \dots, h_k]) \text{ is proved} \\ \text{but } g_{R_t \cup \lambda}^{(k)} \neq g_{R_t}^{(k)} g_{\lambda}^{(k)} \text{ in general} \end{cases}$

Example.

$$g_{R_{t}\cup(r)}^{(k)} = \begin{cases} g_{R_{t}}^{(k)} \cdot g_{(r)}^{(k)} & \text{(if } t < r), \\ g_{R_{t}}^{(k)} \cdot \left(g_{(r)}^{(k)} + g_{(r-1)}^{(k)} + \dots + g_{\varnothing}^{(k)}\right) & \text{(if } t \ge r) \end{cases}$$

$$g_{\Box}^{(3)} = g_{\Box}^{(3)} \left(g_{\Box}^{(3)} + g_{\Box}^{(3)}\right)$$

$$g_{\Box}^{(3)} = g_{\Box}^{(3)} \left(g_{\Box}^{(3)} + g_{\Box}^{(3)} + g_{\Box}^{(3)}$$

Main Results (B): k-rectangle factorization (3)

Theorem (T.) For any $\lambda \in \mathcal{P}_k$ and $1 \le t \le k$, $\widetilde{g}_{R_t \cup \lambda}^{(k)} = \widetilde{g}_{R_t}^{(k)} \widetilde{g}_{\lambda}^{(k)}$.

Remark. $s_{\lambda}^{(k)} \mapsto \widetilde{g}_{\lambda}^{(k)}$ is not a ring homomorphism.

Outline of the proof: Pieri

Write simply $W = \tilde{S}_{k+1}$ and $W^{\circ} = \tilde{S}_{k+1}^{\circ}$. Recall the Pieri rule

$$g_{v}^{(k)}h_{i} = \sum_{\substack{A \subset I, |A| = i \\ \phi_{d_{A}}(v) \in W^{\circ}}} (-1)^{i - (I(\phi_{d_{A}}(v)) - I(v))} g_{\phi_{d_{A}}(v)}^{(k)}.$$

Summing over $v \in \{v \in W^\circ \mid v \leq w\}$ and $i = 0, 1, \dots, r$,

$$\widetilde{g}_{w}^{(k)}\widetilde{h}_{r} = \sum_{\substack{v \leq w \\ v \in W^{\circ}}} \sum_{\substack{A \subset I, |A| \leq r \\ \phi_{d_{A}}(v) \in W^{\circ}}} (-1)^{|A| - (I(\phi_{d_{A}}(v)) - I(v))} g_{\phi_{d_{A}}(w)}^{(k)},$$

and its coefficient of $g_u^{(k)}$ $(u \in W^\circ)$ is

$$\sum_{\substack{v \le w \\ v \in W^{\circ} \\ A \subseteq I, |A| \le r \\ u = \phi_{d_{A}}(v)}} (-1)^{|A| - (I(u) - I(v))} = \sum_{|A| \le r} \sum_{\substack{v \le w \\ v \in W^{\circ} \\ u = \phi_{d_{A}}(v)}} (-1)^{|A| - (I(u) - I(v))}.$$

Outline of the proof: Pieri (cont.)

 \ldots and its coefficient of $g_u^{(k)} \in W^\circ$ is

$$\sum_{\substack{v \le w \\ v \in W^{\circ} \\ A \subset I, |A| \le r \\ u = \phi_{d_{A}}(v)}} (-1)^{|A| - (I(u) - I(v))} = \sum_{|A| \le r} \sum_{\substack{v \le w \\ v \in W^{\circ} \\ u = \phi_{d_{A}}(v)}} (-1)^{|A| - (I(u) - I(v))}$$

Outline of the proof: Pieri (cont.)

... and its coefficient of $g_u^{(k)} \in W^\circ$ is

$$\sum_{\substack{v \le w \\ v \in W^{\circ} \\ A \subset I, |A| \le r \\ u = \phi_{d_{A}}(v)}} (-1)^{|A| - (I(u) - I(v))} = \sum_{|A| \le r} \sum_{\substack{v \le w \\ v \in W^{\circ} \\ u = \phi_{d_{A}}(v)}} (-1)^{|A| - (I(u) - I(v))}$$

$$= \sum_{|A| \leq r} \sum_{v \in Y_{A,u}} (-1)^{|A| - (I(u) - I(v))},$$

where $Y_{A,u} := \{ v \in W^{\circ} \mid \phi_{d_A}(v) = u \text{ and } v \leq w \}.$

Step 1. $Y_{A,u}$ is isomorphic to boolean lattices. Hence

$$\sum_{v \in Y_{A,u}} (-1)^{|A| - (I(u) - I(v))} = \begin{cases} 1 & \text{if } |Y_{A,u}| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Outline of the proof: Pieri

 $\underbrace{\text{Step 2.}}_{\text{Hence}} |Y_{A,u}| = 1 \iff d_A^{-1}u = \max\{z \mid w \ge z \le_L u\} (= w_S \wedge_L u).$

$$\sum_{|A|\leq r} \sum_{v\in Y_{A,u}} (-1)^{|A|-(l(u)-l(v))} = 1 \iff \exists A \text{ s.t. } \begin{cases} |A|\leq r, \\ d_A^{-1}u = w_S \wedge_L u. \end{cases}$$

Step 3.

$$\exists A \text{ s.t. } \begin{cases} |A| \leq r, \\ d_A^{-1}u = w_S \wedge_L u \end{cases}$$
$$\iff u \leq d_C w \text{ for } \exists C \text{ s.t. } \begin{cases} |C| \leq r \\ d_C w/w: \text{ weak strip} \end{cases}$$

Outline of the proof: k-rectangle factorization

(Basically similar to the proof of $s_{R_t\cup\lambda}^{(k)}=s_{R_t}^{(k)}s_\lambda^{(k)}$)

Define a linear map $\Theta : \Lambda^{(k)} \longrightarrow \Lambda^{(k)}$ by $\widetilde{g}_{\lambda}^{(k)} \mapsto \widetilde{g}_{R_t \cup \lambda}^{(k)}$ $(\forall \lambda \in \mathcal{P}_k)$. It suffices to show

$$\Theta(\widetilde{h}_r \widetilde{g}_{\lambda}^{(k)}) = \widetilde{h}_r \Theta(\widetilde{g}_{\lambda}^{(k)}).$$
(1)

(since it implies Θ is $\Lambda^{(k)}$ -hom and

$$\widetilde{g}_{R_t\cup\lambda}^{(k)}=\Theta(\widetilde{g}_\lambda^{(k)})=\widetilde{g}_\lambda^{(k)}\Theta(1)=\widetilde{g}_\lambda^{(k)}\Theta(\widetilde{g}_arnoting)=\widetilde{g}_\lambda^{(k)}\widetilde{g}_{R_t}^{(k)}$$

Outline of the proof: k-rectangle factorization

Let $\{d_{A_1}\lambda, d_{A_2}\lambda, \dots\}$ be the list of weak strips over λ of size r. From the Pieri rule for $\tilde{g}_{\lambda}^{(k)}$,

$$\widetilde{h}_{r}\widetilde{g}_{\lambda}^{(k)} = \sum_{a} \widetilde{g}_{d_{A_{a}}\lambda}^{(k)} - \sum_{a < b} \widetilde{g}_{d_{A_{a} \cap A_{b}}\lambda}^{(k)} + \dots,$$

Applying Θ to this, (LHS) of (1) is

$$\Theta(\widetilde{h}_{r}\widetilde{g}_{\lambda}^{(k)}) = \sum_{a} \widetilde{g}_{R_{t}\cup d_{A_{a}}\lambda}^{(k)} - \sum_{a < b} \widetilde{g}_{R_{t}\cup d_{A_{a}\cap A_{b}}\lambda}^{(k)} + \dots$$

Outline of the proof: k-rectangle factorization

 $\{d_{A_1}\lambda, d_{A_2}\lambda, \dots\}$: the list of weak strips over λ of size r.

Fact

(a) $\{d_{A_1+t}(R_t \cup \lambda), d_{A_2+t}(R_t \cup \lambda), \dots\}$ is the list of weak strips over $R_t \cup \lambda$ of size r.

(b)
$$d_{A_i+t}(R_t \cup \lambda) = R_t \cup (d_A \lambda).$$

From the Pieri rule for $\widetilde{g}_{\lambda}^{(k)}$ and Fact(a), (RHS) of (1) is

$$\widetilde{h}_{r}\Theta(\widetilde{g}_{\lambda}^{(k)}) = \widetilde{h}_{r}\widetilde{g}_{R_{t}\cup\lambda}^{(k)}$$
$$= \sum_{a} \widetilde{g}_{d_{A_{a}+t}(R_{t}\cup\lambda)}^{(k)} - \sum_{a < b} \widetilde{g}_{d_{(A_{a}+t)}\cap(A_{b}+t)}^{(k)}(R_{t}\cup\lambda) + \dots$$

From Fact (b), this equals to (LHS) of (1).